JPH0233439B2 - - Google Patents

Info

Publication number
JPH0233439B2
JPH0233439B2 JP57193654A JP19365482A JPH0233439B2 JP H0233439 B2 JPH0233439 B2 JP H0233439B2 JP 57193654 A JP57193654 A JP 57193654A JP 19365482 A JP19365482 A JP 19365482A JP H0233439 B2 JPH0233439 B2 JP H0233439B2
Authority
JP
Japan
Prior art keywords
caustic soda
waste liquid
desalter
crude oil
soda waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57193654A
Other languages
Japanese (ja)
Other versions
JPS5982999A (en
Inventor
Tooru Yasumoto
Tadashi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP57193654A priority Critical patent/JPS5982999A/en
Publication of JPS5982999A publication Critical patent/JPS5982999A/en
Publication of JPH0233439B2 publication Critical patent/JPH0233439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳现な説明】 本発明は、石油粟補工堎や石油化孊工堎等から
排出されるプノヌル及びCOD物質を含有する
カセむ゜ヌダ廃液の凊理方法に関するものであ
る。さらに詳述すれば、本発明は、石油粟補工堎
等から排出されるプノヌル等の有害物質を含有
するカセむ゜ヌダ廃液を、原油脱塩噚以䞋、脱
塩噚ず略蚘するに䟛絊し、凊理した埌、掻性汚
泥装眮で凊理しお圓該廃液を枅浄化するこずを目
的ずするカセむ゜ヌダ廃液の凊理方法に関するも
のである。 石油粟補工堎や石油化孊工堎では、各皮排ガス
及び石油留分に含有される硫化氎玠、メルカプタ
ン及びプノヌル等の䞍玔物を陀去するためにカ
セむ゜ヌダで掗浄する方法が䞀般に採甚されおい
る。この掗浄に䜿甚したカセむ゜ヌダ廃液には各
皮排ガスや石油留分から抜出されたむオり化合
物、プノヌル等の有害物質が含有されおいるた
め、このような有害物質を倚量に含有するカセむ
゜ヌダ廃液を単に酞で䞭和するのみで河川等ぞ攟
流すれば魚貝類や海草類に察しお莫倧な被害を䞎
えるこずになる。 埓぀お、埓来から有害物質を含有するカセむ゜
ヌダ廃液を枅浄化するためにカセむ゜ヌダ廃液を
掻性汚泥装眮で凊理しおいる。 本発明者らは、このような問題に察し鋭意怜蚎
を重ねた結果、䞭和したカセむ゜ヌダ廃液を脱塩
噚で凊理するこずにより該廃液䞭のプノヌル及
びCOD物質等の有害物質が陀去されるずいう事
実を確認し本発明を完成した。 埓぀お、本発明の䞻たる目的は、石油粟補及び
石油化孊の装眮から排出するカセむ゜ヌダ廃液に
含有されるプノヌル、COD物質を該廃液から
特別の装眮を蚭けるこずなく工堎内で効果的に陀
去するこずにある。 又、本発明の他の目的は、プノヌル、COD
物質を含有するカセむ゜ヌダ廃液を毒物シペツク
を䞎えるこずなく効率よく安定しお掻性汚泥装眮
で凊理するこずにある。 曎に、本発明の他の目的は、石油粟補及び石油
化孊の装眮から排出されるカセむ゜ヌダ廃液䞭の
プノヌル、COD物質を簡易な操䜜で陀去する
こずにある。 本発明の曎に他の目的は、カセむ゜ヌダ廃液を
原油脱塩噚ぞ導入するこずにより該脱塩噚内の腐
蝕を防止するこずにある。 本発明は、石油粟補工堎、石油化孊工堎等から
排出され、プノヌル及びCOD物質を含有する
カセむ゜ヌダ廃液を、鉱酞の添加により䞭和した
埌、脱塩噚ぞ䟛絊しお凊理し、次にプノヌルが
100ppm以䞋か぀CODが500ppm以䞋に枛少した
脱塩噚排氎を掻性汚泥装眮ぞ䟛絊しお凊理するこ
ずを特城ずするカセむ゜ヌダ廃液の凊理方法に関
するものである。 すなわち、本発明は、(1)プノヌル及びCOD
物質等を倚量に含有するカセむ゜ヌダ廃液に鉱酞
を添加し䞭和するこず、(2)䞭和したカセむ゜ヌダ
廃液を脱塩甚氎ずしお脱塩噚ぞ䟛絊し、廃液から
プノヌル及びCOD物質等の有害物質を陀去す
るこず、(3)プノヌル及びCOD物質等の有害物
質の含有量が蚱容倀以䞋に枛少したカセむ゜ヌダ
廃液を、掻性汚泥装眮ぞ䟛絊しお廃液を枅浄化す
るこず、の工皋を包含するカセむ゜ヌダ廃液の凊
理方法を提䟛するものである。 本発明においお凊理されるカセむ゜ヌダ廃液
は、石油粟補工堎及び石油化孊工堎等から排出さ
れるものである。石油留分の掗浄に䜿甚したカセ
む゜ヌダ廃液は、通垞硫化゜ヌダ、氎硫化゜ヌ
ダ、炭酞゜ヌダ等を玄〜15重量含むほかに、
メルカプタン類を玄0.5〜重量、プノヌル
及びクレゟヌル類をナトリりム塩ずしお各々玄
0.5〜25重量含有するものである。埓来方法に
よれば、ある皋床のプノヌルやメルカプタン等
の䞍玔物は掻性汚泥により分解されるのでカセむ
゜ヌダ廃液を枅浄化するこずができる。しかしな
がら、プノヌルやメルカプタン等の䞍玔物がか
なり倚量に含有されおいるカセむ゜ヌダを䟛絊し
た堎合、汚泥䞭の埮生物が死滅し、掻性汚泥装眮
の正垞運転が䞍胜ずなる事態が頻発しおいる。掻
性汚泥装眮は、廃液凊理系統の末端に蚭眮されお
いるために、掻性汚泥装眮の䞍調は廃氎凊理䜜業
に倚倧の悪圱響を及がすこずになる。さらに、こ
の掻性汚泥装眮で倚量に生じた䜙剰汚泥は有害物
質を包含しおいるために容易には凊分するこずが
できない。このような幟倚の問題をかかえ、カセ
む゜ヌダ廃液を効果的に凊理する方法の出珟が匷
く望たれおいる。 本発明の方法は、これらのカセむ゜ヌダ廃液の
凊理に有効であり、プノヌルが10000ppm以䞊、
か぀CODが50000ppm以䞊であるようなカセむ゜
ヌダ廃液を察象ずするこずができる。 カセむ゜ヌダ廃液を䞭和するための鉱酞ずしお
は硫酞が奜適であり、䟋えば、アルキレヌシペン
装眮などから排出される硫酞廃液を䜿甚するこず
が経枈的にも奜たしい。カセむ゜ヌダ廃液の䞭和
のための鉱酞の添加量は、廃液のPHが以䞋ずな
るに充分な量でなければならず、廃液のPHが鉱酞
の添加埌も以䞊である堎合、脱塩噚においおカ
セむ゜ヌダ廃液䞭の酞性物質が枛少するのでPH倀
が䞊昇し脱塩噚の運転効率が䜎䞋するこずがあ
る。䞀般に原油の脱塩効率はPHが小さい皋高くな
るが、PHが3.5以䞋では脱塩噚の腐食の問題が生
ずるので奜たしくない。 本発明においおプロセス排氎ずは、石油粟補工
堎等の蚭備から発生した䞍玔物や有害物を含有す
る党おの排氎を意味する。 䟋えばタンクダヌドからの含油排氎、原油や石
油留分等の熱亀換に䜿甚した冷华氎、ボむラヌや
蒞留塔からのスチヌムの凝瞮氎などをあげるこず
ができる。プロセス排氎はCODBOD及び油分
などの䞍玔物を含有するこずが倚いが、これらは
脱塩噚でカセむ゜ヌダ廃液ず同時に効率的に陀去
され掻性汚泥装眮の負担を軜枛するこずができ
る。䞭和埌のカセむ゜ヌダ廃液ぞのプロセス排氎
の混合量は、カセむ゜ヌダ廃液の凊理量及びアル
カリ濃床によ぀お適宜決定すればよい。䟋えば、
遊離アルカリ濃床が〜15重量であれば、プロ
セス排氎はカセむ゜ヌダ廃液の10〜40倍容量を混
合するのが奜たしい。皀釈したカセむ゜ヌダ廃液
は、脱塩噚で原油ず接觊させる。カセむ゜ヌダ廃
液は原油に察し玄〜15重量、奜たしくは玄
〜10重量の割合で接觊させるこずができる。 原油は、特に限定されずあらゆる皮類の原油を
䜿甚するこずができる。すなわち、軜質原油から
重質原油たで、䜎硫黄原油から高硫黄原油たで、
その性状に関係なく䜿甚するこずができる。 本発明で䜿甚する脱塩噚は、原油䞭に分散した
塩化ナトリりムや塩化カルシりムなどの塩分を含
んだ氎、泥状物質などを化孊的たたは電気的に原
油から分離するための装眮である。 脱塩法には、原油ず氎の安定した゚マルゞペン
に化孊薬品を添加しお原油ず氎分の分離を容易に
した化孊的脱塩法、凊理すべき原油に察し高電圧
を印加し゚マルゞペンを砎壊しお塩分を含有する
氎を分離する電気的脱塩法、あるいは䞡法を䜵甚
した脱塩法などがあるが、本発明はいずれの脱塩
法にも適甚するこずができる。近幎、脱塩噚を
基接続しお原油を脱塩する二段脱塩法が採甚され
おいるが、本発明では、いずれか䞀方の脱塩噚を
䜿甚するだけで充分な廃液凊理効果を埗るこずが
できる。カセむ゜ヌダ廃液は、加熱された原油ず
脱塩噚入口のミキシングバルブによ぀お激しく混
合される。こうしお生成した原油ず廃液の゚マル
ゞペンは、脱塩噚のデむストリビナヌタヌから高
圧電堎内に噎出される。゚マルゞペン状のカセむ
゜ヌダ廃液は、この操䜜によりプノヌル及び
COD物質の倧半を原油に奪われる䞀方、原油䞭
の塩分及び泥分を溶かし蟌んで電極間の高圧電堎
により巚倧な氎滎ずな぀お脱塩噚底郚に沈降す
る。 カセむ゜ヌダ廃液ず原油ずの接觊枩床は玄200
℃以䞋、奜たしくは、120℃〜150℃の範囲であ
る。䞀般に原油の枩床は高い方が脱塩効果が高
く、䞀方、廃液の浄化率も優れおいるので本発明
の実斜にはより高枩が奜適である。脱塩噚は、原
油䞭の䜎沞点成分及び氎蒞気等の逞散を抑制する
ために通垞〜25Kgcm2特に玄10〜15Kgcm2
の圧力で運転される。たた、脱塩噚はPH7.5以䞋
の範囲に保持される。䞀般に原油の脱塩噚は、も
ずもず原油䞭に含有されおいるナフテン酞や脱塩
凊理䞭に新たに生成する塩化氎玠などのために腐
蝕され易いこずが指摘されおいる。このような酞
性成分による脱塩噚の腐蝕は、本発明によりカセ
む゜ヌダ廃液を脱塩噚ぞ䟛絊するこずにより防止
するこずができる。そしお、このためにも脱塩噚
のPHは4.0以䞊に管理する必芁がある。しかしな
がら、PHが7.5以䞊になるず脱塩効果は䜎䞋し、
カセむ゜ヌダ廃液からのプノヌル等の陀去率も
䜎䞋するので䞭和工皋においお添加する酞の量を
調敎する必芁がある。脱塩噚におけるカセむ゜ヌ
ダ廃液の滞留時間は玄〜時間が適圓である。 掻性汚泥装眮は、脱塩噚からのカセむ゜ヌダ廃
液及び他のプロセス排氎に含有される䞍玔物を生
物化孊的に分解陀去するための装眮である。該装
眮は、通垞掻性炭吞収塔、前曝気槜などの前凊理
装眮、曝気槜、凝集沈柱槜、凊理枈廃氎槜及び䜙
剰汚泥凊理装眮などから構成される。しかし、本
発明ではカセむ゜ヌダ廃液䞭の硫化氎玠などの䞍
玔物が倧郚分脱塩噚によ぀お陀去されるので、掻
性炭吞収塔や前曝気槜などの前凊理装眮を蚭眮し
なくずも差し支えがない。曝気槜内には、掻性汚
泥すなわち现菌、酵母、カビ、原生動物などの奜
気性埮生物がフロツク状に集萜したものが投入さ
れ、槜内ぞ流入する廃液ず吹蟌たれる空気により
流動し、槜内を埪環しおいる。 掻性汚泥は、プノヌルや硫黄化合物などの䞍
玔物に敏感で、これらの成分を倚量に含有する廃
液ず接觊するず毒物シペツクを受け、掻性汚泥装
眮を安定的に運転するこずができなくなるので装
眮入口における䞍玔物濃床の管理を厳栌に行なう
必芁がある。特にプノヌルは100ppm以䞋、
CODは500ppm以䞋に廃液の有毒物を枛少するこ
ずが奜たしい。䞀局奜たしくは、プノヌルを
50ppm以䞋、CODを300ppm以䞋ずするこずであ
る。掻性汚泥装眮は、PH〜か぀枩床30〜40℃
で運転するこずが奜たしい。 なお、カセむ゜ヌダ廃液䞭のプノヌル、
COD物質等の化合物は、脱塩噚内で原油偎ぞ移
行しお、蒞留装眮ぞ運ばれるが埌段の氎玠化凊理
装眮、氎玠化脱硫装眮などの凊理装眮においお氎
玠ず反応し、陀去又は炭化氎玠等に転化されるの
で最終的に石油補品の品質を悪化させる恐れはな
い。 次に、本発明の実斜態様を第図により説明す
る。凊理すべきカセむ゜ヌダ廃液は、たず硫酞に
よ぀おPH調敎がなされる。硫酞は脱塩噚入口のPH
が3.5〜ずなるに充分な量が添加される。この
䞭和凊理は、䞭和ドラムによ぀お行なわれる。
䞭和ドラムは玄30℃に保持され、撹拌されおい
る。䞭和されたカセむ゜ヌダ廃液は、脱気噚で
硫化氎玠やアンモニアがスチヌムストリツピング
されたプロセス排氎により皀釈される。カセむ゜
ヌダ廃液は熱亀換噚で昇枩された原油ず混合さ
れ、脱塩噚ぞ䟛絊される。脱塩噚は、PH4.0〜7.5
及び枩床120〜150℃で運転される。脱塩噚に䟛絊
されたカセむ゜ヌダ廃液は、〜時間の滞留時
間を経過埌流路から抜き出される。次いで、脱
塩凊理排氎は冷华噚及び油分分離噚を通過し
お掻性汚泥装眮に䟛絊される。掻性汚泥装眮
で凊理され有害物質が枛少した排氎は、ガヌドベ
ヌスンから河川に攟流される。なお、脱塩噚
で凊理を受けた原油は、流路から抜き出され加
熱された埌、図瀺しない蒞留装眮に䟛絊され通垞
の方法で凊理されお各皮石油留分に分離される。 ここで、本発明を実斜䟋により説明する。 実斜䟋  石油粟補工堎のガ゜リン掗浄工皋から排出され
たカセむ゜ヌダ廃液を、本発明の方法により凊理
した。たずプノヌルを17480ppmか぀COD物質
を83020ppm含有するカセむ゜ヌダ廃液第衚
参照を、硫酞の添加により䞭和凊理した。この
䞭和したカセむ゜ヌダ廃液1klを、同石油粟補工
堎内で発生したプロセス排氎30klず混合し皀釈し
た。皀釈埌の廃液のPHは6.5であ぀た。次に、こ
の皀釈廃液を、熱亀換噚で予熱した䞭東原油80kl
に察し脱塩甚氎ずしお31klの割合で添加し脱塩噚
ぞ䟛絊した。脱塩噚は、130℃、、PHで運転し、
玄時間廃液を脱塩噚内で凊理した。この結果、
脱塩噚からのカセむ゜ヌダ廃液は、プノヌル
20ppm陀去率95、COD140ppm陀去率88
の性状ずな぀た。 たた原油の脱塩噚は、90であ぀た。 脱塩噚からのカセむ゜ヌダ廃液は、プロセス排
æ°Ž60klず混合しお、油分分離噚で凊理した埌、掻
性汚泥装眮ぞ䟛絊し凊理した。掻性汚泥装眮は、
奜気性现菌の存圚䞋、30℃、PHで運転した。掻
性汚泥凊理を終えた廃液は、プノヌル、COD
物質等の有害物質がほずんど怜出されなか぀た。
結果を第衚に瀺す。なお、䞊蚘のプロセス排氎
は、プノヌルを4ppm、COD物質を220ppm含
有するものであ぀た。 比范䟋  実斜䟋ず同䞀のカセむ゜ヌダ廃液第衚参
照を䜿甚し、脱塩噚内のPHを5.5ずしたこず以
倖すべお実斜䟋ず同様の条件で凊理した。すな
わち、プノヌルを17480ppmか぀COD物質を
83020ppm含有するカセむ゜ヌダ廃液に、実斜䟋
より少量の硫酞を添加した。このカセむ゜ヌダ
廃液1klを、同石油粟補工堎内で発生したプロセ
ス排氎30klず混合し皀釈した。次に、この皀釈廃
液を、熱亀換噚で予熱した䞭東原油80klに察し脱
塩甚氎ずしお30klの割合で添加し脱塩噚ぞ䟛絊し
た。脱塩噚は、130℃、PH8.6で運転し、玄時間
廃液を脱塩噚内で凊理した。この結果、脱塩噚か
らのカセむ゜ヌダ廃液は、プノヌル180ppm、
COD560ppmずな぀た。脱塩噚からのカセむ゜ヌ
ダ廃液は、プロセス排氎60klず混合しお、油分分
離噚で凊理した埌、掻性汚泥装眮ぞ䟛絊し凊理し
た。掻性汚泥装眮は、奜気性现菌の存圚䞋30℃、
PHで運転した。掻性汚泥凊理埌の排氎は、プ
ノヌル130ppm、COD300ppmで有害成分の陀去
率は、実斜䟋の堎合に比范しお䜎䞋した。 実斜䟋  プノヌルを17480ppm、COD物質を
83020ppm含有するカセむ゜ヌダ廃液第衚参
照に、実斜䟋よりも倚量の硫酞を添加した。
このカセむ゜ヌダ廃液1klを、同石油粟補工堎内
で発生したプロセス排氎30klを混合し皀釈した。
次にこの皀釈廃液を、熱亀換噚で予熱した䞭東原
æ²¹800klに察し脱塩甚氎ずしお31klの割合で添加
し脱塩噚ぞ䟛絊した。脱塩噚は、130℃、PH4.1で
運転し、玄時間廃液を脱塩噚内で凊理した。こ
の結果、脱塩排氎䞭のプノヌルは18ppm、
CODは130ppmに䜎䞋した。以䞋、実斜䟋ず同
様に掻性汚泥凊理し、第衚に瀺す結果を埗た。 以䞊説明したずおり本発明は、石油粟補工堎な
どから排氎されるカセむ゜ヌダ廃液の凊理に極め
お有効である。すなわち本発明を実斜すれば
カセむ゜ヌダ廃液に含有されるプノヌルやメル
カプタンが95以䞊陀去でき、COD物質が85
以䞊、油分も50以䞊陀去できるこず、脱塩
噚における原油の脱塩率を萜ずさず脱塩噚の腐蝕
が防止できるずずもに、掻性汚泥装眮を安定的に
運転するこずができるこず、掻性汚泥装眮の
呚囲における䜜業環境が改善されるずずもに、䜙
剰汚泥に含たれる有害成分の量を枛少できるため
䜙剰汚泥の倖郚凊理が容易ずなるこず、などの顕
著な効果を奏し、産業䞊の利甚性が極めお倧なる
ものである。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating caustic soda wastewater containing phenols and COD substances discharged from oil refineries, petrochemical plants, etc. More specifically, the present invention supplies caustic soda waste containing harmful substances such as phenols discharged from oil refineries etc. to a crude oil desalter (hereinafter abbreviated as desalter) and processes it. The present invention also relates to a method for treating caustic soda waste liquid, the purpose of which is to purify the waste liquid by treating it with an activated sludge device. In petroleum refineries and petrochemical plants, a method of cleaning with caustic soda is generally employed to remove impurities such as hydrogen sulfide, mercaptans, and phenols contained in various exhaust gases and petroleum fractions. The caustic soda waste liquid used for this cleaning contains harmful substances such as sulfur compounds and phenols extracted from various exhaust gases and petroleum fractions. If the water is released into rivers, etc., it will cause enormous damage to fish, shellfish, and seaweed. Therefore, in order to purify the caustic soda waste liquid containing harmful substances, the caustic soda waste liquid has been treated in an activated sludge apparatus. As a result of extensive research into these problems, the inventors of the present invention have found that harmful substances such as phenols and COD substances in the neutralized caustic soda waste liquid can be removed by treating the waste liquid with a demineralizer. After confirming the facts, the present invention was completed. Therefore, the main object of the present invention is to effectively remove phenols and COD substances contained in caustic soda waste liquid discharged from petroleum refining and petrochemical equipment in a factory without installing special equipment. It is in. Another object of the present invention is to treat phenol, COD
To efficiently and stably treat caustic soda waste containing substances in an activated sludge apparatus without giving a poisonous shock. Furthermore, another object of the present invention is to remove phenols and COD substances from caustic soda waste liquid discharged from petroleum refining and petrochemical equipment with a simple operation. Still another object of the present invention is to prevent corrosion in the desalter by introducing caustic soda waste into the desalter. The present invention involves neutralizing caustic soda waste fluid containing phenols and COD substances discharged from oil refineries, petrochemical plants, etc. by adding mineral acids, supplying it to a desalter for treatment, and then treating it with phenols and COD substances. but
The present invention relates to a method for treating caustic soda waste, characterized in that demineralizer wastewater whose COD has been reduced to 100 ppm or less and 500 ppm or less is supplied to an activated sludge device for treatment. That is, the present invention provides (1) phenol and COD
(2) The neutralized caustic soda waste liquid is supplied as desalination water to a demineralizer to remove harmful substances such as phenols and COD substances from the waste liquid. and (3) supplying the caustic soda waste liquid whose content of harmful substances such as phenols and COD substances has been reduced below the permissible value to an activated sludge unit to purify the waste liquid. The present invention provides a method for treating waste liquid. The caustic soda waste liquid treated in the present invention is discharged from oil refineries, petrochemical factories, etc. Caustic soda waste used for cleaning petroleum fractions usually contains about 3 to 15% by weight of sodium sulfide, sodium bisulfide, soda carbonate, etc.
Approximately 0.5 to 5% by weight of mercaptans, approximately 0.5% to 5% by weight of phenols and cresols as sodium salts, respectively.
It contains 0.5 to 25% by weight. According to the conventional method, a certain amount of impurities such as phenols and mercaptans are decomposed by the activated sludge, so that the caustic soda waste liquid can be purified. However, when caustic soda containing a considerable amount of impurities such as phenol and mercaptan is supplied, microorganisms in the sludge are killed, and the activated sludge equipment is often unable to operate normally. Since the activated sludge device is installed at the end of the wastewater treatment system, malfunction of the activated sludge device will have a great negative impact on wastewater treatment work. Furthermore, the surplus sludge produced in large quantities in this activated sludge apparatus cannot be easily disposed of because it contains harmful substances. In view of these numerous problems, there is a strong desire for a method to effectively treat caustic soda waste liquid. The method of the present invention is effective in treating these caustic soda waste liquids, and contains 10,000 ppm or more of phenol,
Caustic soda waste liquid with a COD of 50,000 ppm or more can be targeted. Sulfuric acid is suitable as the mineral acid for neutralizing the caustic soda waste liquid. For example, it is economically preferable to use the sulfuric acid waste liquid discharged from an alkylation device. The amount of mineral acid added to neutralize the caustic soda waste liquid must be sufficient to reduce the pH of the waste liquid to 7 or less. In the salter, the acidic substances in the caustic soda waste decrease, so the PH value increases and the operating efficiency of the desalter may decrease. Generally, the desalination efficiency of crude oil increases as the pH decreases, but a pH below 3.5 is undesirable because it will cause corrosion of the desalter. In the present invention, process wastewater refers to all wastewater containing impurities and harmful substances generated from equipment such as oil refineries. Examples include oil-containing waste water from tank yards, cooling water used for heat exchange of crude oil and petroleum fractions, and steam condensate from boilers and distillation columns. Process wastewater often contains impurities such as COD, BOD, and oil, but these are efficiently removed in the desalter at the same time as the caustic soda wastewater, reducing the burden on the activated sludge equipment. The amount of process waste water to be mixed into the caustic soda waste liquid after neutralization may be appropriately determined depending on the amount of the caustic soda waste liquid to be treated and the alkali concentration. for example,
If the free alkali concentration is 5 to 15% by weight, the process wastewater is preferably mixed with a volume of 10 to 40 times the volume of the caustic soda waste. The diluted caustic soda waste is brought into contact with crude oil in a desalter. The caustic soda waste liquid is about 1 to 15% by weight, preferably about 3% by weight based on the crude oil.
It can be contacted at a proportion of ~10% by weight. The crude oil is not particularly limited, and any type of crude oil can be used. In other words, from light crude oil to heavy crude oil, from low sulfur crude oil to high sulfur crude oil,
It can be used regardless of its properties. The desalter used in the present invention is a device for chemically or electrically separating water, muddy substances, and the like containing salts such as sodium chloride and calcium chloride dispersed in the crude oil. Desalting methods include chemical desalting, in which chemicals are added to a stable emulsion of crude oil and water to facilitate the separation of crude oil and water, and chemical desalting, in which a high voltage is applied to the crude oil to be treated to destroy the emulsion. There are electrical desalination methods in which salt-containing water is separated by water, and desalination methods that use a combination of both methods, and the present invention can be applied to any of these desalination methods. In recent years, two demineralizers have been installed.
Although a two-stage desalination method has been adopted in which crude oil is desalted by connecting two demineralizers, in the present invention, a sufficient waste liquid treatment effect can be obtained by using only one of the demineralizers. The caustic soda waste is intensively mixed with the heated crude oil by a mixing valve at the desalter inlet. The emulsion of crude oil and waste liquid thus produced is ejected from the distributor of the desalter into a high-voltage electric field. This operation converts the emulsion-like caustic soda waste into phenol and
While most of the COD substances are taken away by the crude oil, the salt and mud in the crude oil are dissolved, and the high-voltage electric field between the electrodes turns them into huge water droplets that settle to the bottom of the desalter. The contact temperature between caustic soda waste and crude oil is approximately 200°C.
℃ or less, preferably in the range of 120°C to 150°C. In general, the higher the temperature of crude oil, the higher the desalting effect, and the better the purification rate of waste liquid, so higher temperatures are more suitable for carrying out the present invention. A desalter is usually 5 to 25 Kg/cm 2 (especially about 10 to 15 Kg/cm 2 ) in order to suppress the escape of low boiling point components and water vapor in crude oil.
It is operated at a pressure of In addition, the desalter maintains the pH within the range of 7.5 or less. It has been pointed out that, in general, crude oil desalters are susceptible to corrosion due to naphthenic acid originally contained in the crude oil and hydrogen chloride newly generated during the desalting process. Corrosion of the demineralizer due to such acidic components can be prevented by supplying caustic soda waste to the demineralizer according to the present invention. And for this reason, it is necessary to control the pH of the demineralizer to 4.0 or higher. However, when the pH becomes 7.5 or higher, the desalination effect decreases,
Since the removal rate of phenols etc. from the caustic soda waste liquid also decreases, it is necessary to adjust the amount of acid added in the neutralization step. The residence time of the caustic soda waste in the desalter is approximately 3 to 4 hours. An activated sludge device is a device for biochemically decomposing and removing impurities contained in caustic soda waste liquid and other process wastewater from a desalter. The equipment usually comprises an activated carbon absorption tower, pre-treatment equipment such as a pre-aeration tank, an aeration tank, a coagulation sedimentation tank, a treated wastewater tank, an excess sludge treatment equipment, and the like. However, in the present invention, most of the impurities such as hydrogen sulfide in the caustic soda waste liquid are removed by the demineralizer, so there is no need to install a pretreatment device such as an activated carbon absorption tower or a pre-aeration tank. Activated sludge, which is a floc-like colony of aerobic microorganisms such as bacteria, yeast, mold, and protozoa, is placed in the aeration tank, and is fluidized by the waste liquid flowing into the tank and the air blown into the tank. is circulating. Activated sludge is sensitive to impurities such as phenols and sulfur compounds, and if it comes into contact with waste liquid containing large amounts of these components, it will receive a toxic shock, making it impossible to operate the activated sludge equipment stably. It is necessary to strictly control the concentration. In particular, phenol is less than 100ppm,
It is preferable to reduce COD to 500 ppm or less. More preferably, phenol
The goal is to keep COD below 50ppm and below 300ppm. Activated sludge equipment has a pH of 6 to 8 and a temperature of 30 to 40℃.
It is preferable to drive at In addition, phenol in caustic soda waste liquid,
Compounds such as COD substances move to the crude oil side in the desalter and are transported to the distillation unit, but they react with hydrogen in subsequent processing equipment such as hydrotreating equipment and hydrodesulfurization equipment, and are removed or converted into hydrocarbons. etc., so there is no risk of ultimately deteriorating the quality of petroleum products. Next, an embodiment of the present invention will be explained with reference to FIG. The pH of the caustic soda waste liquid to be treated is first adjusted using sulfuric acid. The pH of sulfuric acid at the demineralizer inlet
A sufficient amount is added so that the ratio is 3.5 to 7. This neutralization process is performed by the neutralization drum 1.
The neutralization drum is maintained at approximately 30°C and is stirred. The neutralized caustic soda waste liquid is diluted in a deaerator 2 with process wastewater from which hydrogen sulfide and ammonia have been steam-stripped. The caustic soda waste liquid is mixed with crude oil heated in a heat exchanger and supplied to a desalter. The desalter has a pH of 4.0 to 7.5.
and operated at a temperature of 120-150℃. The caustic soda waste liquid supplied to the demineralizer is extracted from the channel 6 after a residence time of 3 to 4 hours. Next, the desalinated wastewater passes through a cooler 8 and an oil separator 9 and is supplied to an activated sludge device 10. The wastewater that has been treated with the activated sludge device and has reduced harmful substances is discharged from the guard basin 12 into the river. The crude oil treated with the desalter is extracted from the channel 7 and heated, then supplied to a distillation apparatus (not shown), treated in a conventional manner, and separated into various petroleum fractions. The present invention will now be described by way of examples. Example 1 Caustic soda waste liquid discharged from the gasoline washing process of an oil refinery was treated by the method of the present invention. First, a caustic soda waste solution containing 17,480 ppm of phenol and 83,020 ppm of COD substances (see Table 1) was neutralized by adding sulfuric acid. 1kl of this neutralized caustic soda waste liquid was mixed and diluted with 30kl of process wastewater generated within the same oil refinery. The pH of the waste liquid after dilution was 6.5. Next, this diluted waste liquid was mixed with 80kl of Middle Eastern crude oil that had been preheated in a heat exchanger.
The water was added at a rate of 31 kl as desalination water and supplied to the demineralizer. The desalter was operated at 130℃ and pH7.
The waste liquid was treated in a desalter for about 4 hours. As a result,
The caustic soda waste from the demineralizer contains phenols.
20ppm (removal rate 95%), COD140ppm (removal rate 88%)
It has become a characteristic of The number of crude oil desalters was 90%. The caustic soda waste from the desalter was mixed with 60kl of process wastewater, treated in an oil separator, and then supplied to an activated sludge unit for treatment. The activated sludge equipment is
It was operated at 30°C and pH 7 in the presence of aerobic bacteria. The waste liquid after activated sludge treatment contains phenol and COD.
Almost no harmful substances such as substances were detected.
The results are shown in Table 1. Note that the above process wastewater contained 4 ppm of phenol and 220 ppm of COD substances. Comparative Example 1 The same caustic soda waste liquid as in Example 1 (see Table 1) was used, and the treatment was carried out under the same conditions as in Example 1 except that the pH in the demineralizer was set to 5.5. That is, 17480 ppm of phenol and COD substances.
A smaller amount of sulfuric acid was added to the caustic soda waste solution containing 83020 ppm than in Example 1. 1kl of this caustic soda waste liquid was mixed and diluted with 30kl of process wastewater generated within the same oil refinery. Next, this diluted waste liquid was added as desalination water at a ratio of 30 kl to 80 kl of Middle Eastern crude oil preheated in a heat exchanger and supplied to the desalter. The desalter was operated at 130° C. and pH 8.6, and the waste liquid was treated in the desalter for about 4 hours. As a result, the caustic soda waste liquid from the desalter contained 180 ppm of phenol and
COD was 560ppm. The caustic soda waste from the desalter was mixed with 60kl of process wastewater, treated in an oil separator, and then supplied to an activated sludge unit for treatment. Activated sludge equipment is operated at 30℃ in the presence of aerobic bacteria.
I drove at PH7. The wastewater after activated sludge treatment had 130 ppm of phenol and 300 ppm of COD, and the removal rate of harmful components was lower than in Example 1. Example 2 17480ppm of phenol and COD substance
A larger amount of sulfuric acid than in Example 1 was added to the caustic soda waste solution containing 83020 ppm (see Table 1).
1kl of this caustic soda waste liquid was diluted by mixing 30kl of process wastewater generated within the same oil refinery.
Next, this diluted waste liquid was added as desalination water at a ratio of 31 kl to 800 kl of Middle Eastern crude oil preheated in a heat exchanger and supplied to the desalter. The desalter was operated at 130° C. and pH 4.1, and the waste liquid was treated in the desalter for about 4 hours. As a result, phenol in desalinated wastewater was 18 ppm.
COD decreased to 130ppm. Thereafter, activated sludge treatment was performed in the same manner as in Example 1, and the results shown in Table 1 were obtained. As explained above, the present invention is extremely effective in treating caustic soda waste liquid discharged from oil refineries and the like. That is, if the present invention is implemented, 1)
More than 95% of phenols and mercaptans contained in caustic soda waste can be removed, and 85% of COD substances are removed.
As mentioned above, it is possible to remove more than 50% of the oil content, 2) corrosion of the desalter can be prevented without reducing the crude oil removal rate in the desalter, and the activated sludge equipment can be operated stably, and 3) activation The work environment around the sludge equipment is improved, and the amount of harmful components contained in the surplus sludge can be reduced, making it easier to dispose of the surplus sludge externally. is extremely large. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第図は、本発明のカセむ゜ヌダ廃液の凊理を
瀺す工皋図である。  䞭和ドラム、 脱気噚、 脱塩噚、
 油分分離噚、 掻性汚泥装眮。
FIG. 1 is a process diagram showing the treatment of caustic soda waste liquid according to the present invention. 1...neutralization drum, 2...deaerator, 5...desalter, 9
...Oil separator, 10...Activated sludge device.

Claims (1)

【特蚱請求の範囲】  石油粟補又は石油化孊の装眮から排出される
カセむ゜ヌダ廃液に鉱酞を添加しお䞭和した埌、
脱塩甚氎ずしお又はその䞀郚ずしお原油脱塩噚ぞ
䟛絊しお凊理し、プノヌルが100ppm以䞋か぀
COD物質が500ppm以䞋に枛少した該脱塩噚排氎
を掻性汚泥装眮ぞ䟛絊しお凊理するこずを特城ず
するカセむ゜ヌダ廃液の凊理方法。  原油脱塩噚内のPHが7.5以䞋である特蚱請求
の範囲第項蚘茉の凊理方法。  カセむ゜ヌダ廃液を䞭和した埌、プロセス排
氎で皀釈する特蚱請求の範囲第項蚘茉の凊理方
法。
[Claims] 1. After neutralizing caustic soda waste liquid discharged from oil refining or petrochemical equipment by adding mineral acid,
It is supplied as desalination water or as a part of it to a crude oil desalter and treated, and the phenol content is 100 ppm or less.
A method for treating caustic soda wastewater, which comprises supplying the demineralizer wastewater whose COD substances have been reduced to 500 ppm or less to an activated sludge device for treatment. 2. The treatment method according to claim 1, wherein the PH in the crude oil desalter is 7.5 or less. 3. The treatment method according to claim 1, wherein the caustic soda waste liquid is neutralized and then diluted with process wastewater.
JP57193654A 1982-11-04 1982-11-04 Treatment of waste caustic soda liquid Granted JPS5982999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193654A JPS5982999A (en) 1982-11-04 1982-11-04 Treatment of waste caustic soda liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193654A JPS5982999A (en) 1982-11-04 1982-11-04 Treatment of waste caustic soda liquid

Publications (2)

Publication Number Publication Date
JPS5982999A JPS5982999A (en) 1984-05-14
JPH0233439B2 true JPH0233439B2 (en) 1990-07-27

Family

ID=16311536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193654A Granted JPS5982999A (en) 1982-11-04 1982-11-04 Treatment of waste caustic soda liquid

Country Status (1)

Country Link
JP (1) JPS5982999A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049409C (en) * 1994-08-04 2000-02-16 卢喜林 Synchronous intensified jet method of biological dephenolized mud mixed nutrient sewage
US7828962B2 (en) * 2008-11-20 2010-11-09 Merichem Company Apparatus for treating a waste stream

Also Published As

Publication number Publication date
JPS5982999A (en) 1984-05-14

Similar Documents

Publication Publication Date Title
US9630867B2 (en) Treatment of spent caustic waste
US5268104A (en) Process for treating and regenerating spent caustic
US4992210A (en) Crude oil desalting process
KR20010031417A (en) Process for removing selenium from refinery process water and waste water streams
US5705074A (en) Removal of acidic organic contaminants from refinery waste water
US20140042065A1 (en) Treatment stages for selenium removal
US2785120A (en) Process for phenol recovery and crude oil desalting
CN108117208B (en) Treatment method and treatment device for alkaline residue waste liquid
US4746434A (en) Process for treating sour water in oil refineries
TW201641437A (en) Method for separating pollutant from wastewater and system thereof
US4239620A (en) Cyanide removal from wastewaters
CN107840495B (en) Method for treating crude oil electric desalting wastewater
RU2569153C1 (en) Integrated waste treatment plant (versions)
JPH0233439B2 (en)
CN1111582C (en) Process for treating waste lye of refining oil products in petroleum refining industry
KR19990027620A (en) Demineralization Effluent Treatment System
CN103842302A (en) Treatment method for spent caustic soda
CN108117209B (en) Comprehensive treatment method and device for alkaline residue waste liquid
US5236591A (en) Method of removing benzene from petroleum desalter brine
CA2098217A1 (en) Method for removing soluble benzene from effluent water
US3489677A (en) Removal of elemental sulfur contaminants from petroleum oils
JPS6340470B2 (en)
WO2023233960A1 (en) Method and device for recovering oil from oil-containing waste liquid
JP2000084589A (en) Treatment of coke plant waste water
US5372724A (en) Process for removing toxic sulfur-containing compounds, ammonia, and oil and grease from an aqueous solution