JPH0233203A - Beam scanning antenna system - Google Patents

Beam scanning antenna system

Info

Publication number
JPH0233203A
JPH0233203A JP63183117A JP18311788A JPH0233203A JP H0233203 A JPH0233203 A JP H0233203A JP 63183117 A JP63183117 A JP 63183117A JP 18311788 A JP18311788 A JP 18311788A JP H0233203 A JPH0233203 A JP H0233203A
Authority
JP
Japan
Prior art keywords
array antenna
antenna
weight
restoring force
beam scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63183117A
Other languages
Japanese (ja)
Inventor
Minoru Okumura
実 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63183117A priority Critical patent/JPH0233203A/en
Publication of JPH0233203A publication Critical patent/JPH0233203A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/422Simultaneous measurement of distance and other co-ordinates sequential lobing, e.g. conical scan

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To facilitate the correction or change of the beam direction by setting the beam angle based on the correlation among a drive speed of a rotating shaft, a weight fitted to other end of an array antenna and a restoring force generator fitted between the array antenna and the rotary shaft. CONSTITUTION:Conical scanning is applied to an array antenna 1 conically at an angle of thetab with respect to a direction of a rotary shaft 2 by the drive of the rotary shaft 2 and when the drive speed is being increased, a force is exerted in a direction to increase the angle theta by a centrifugal force 5f of a weight 5 connecting to other end 1b of the array antenna 1. Since a restoring force generator 6 comprising a coil spring is connected between the weight 5 and the rotary shaft 2 and a force 6f retracting the weight in the direction of the rotary shaft 2 at that time, the angle theta is controlled to be constant and the direction of the beam is made stable. The direction thetab of the antenna beam is controlled optionally by adjusting the generating restoring force of the restoring force generator 6 in advance.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、人工衛星等に搭載して好適なビーム走査ア
ンテナ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a beam scanning antenna device suitable for being mounted on an artificial satellite or the like.

(従来の技術) レーダビーム等をIIi射し空間を走査するビーム走査
アンテナ装置には、機械的に走査するアンテナ装置と、
電子的に走査するアンテナ装置とがある。
(Prior Art) A beam scanning antenna device that scans space by emitting a radar beam or the like includes an antenna device that scans mechanically,
There are antenna devices that scan electronically.

人工衛星等に搭載されるビーム走査アンテナ装置は、パ
ラボラアンテナを機械的に回転させ、ビーム走査を行な
わせていることが多い。この場合、回転軸角度は目的に
応じ任意に設定できるが、回転軸とビーム方向とのなす
角度を鋭角に設定することにより、いわゆるコニカルス
キャンを行わせることができる。
Beam scanning antenna devices mounted on artificial satellites and the like often perform beam scanning by mechanically rotating a parabolic antenna. In this case, the rotation axis angle can be set arbitrarily depending on the purpose, but by setting the angle between the rotation axis and the beam direction to be an acute angle, a so-called conical scan can be performed.

また、一方電子ビーム走査アンテナ装置は、個々のアン
テナ素子の位相を制御することによってビーム方向を瞬
時に切替えることができる利点があり、地上別器では利
用分野が拡大されつつある。
On the other hand, electron beam scanning antenna devices have the advantage of being able to instantaneously switch the beam direction by controlling the phase of individual antenna elements, and the field of use for terrestrial antenna devices is expanding.

しかしながら、電子ビーム走査アンテナ装置は、構成が
複雑な上、比較的給電損失が大で、また重量も大きくな
る。人工衛星では重量の軽減が重要な問題であることか
ら、現状では人工衛星への搭載例は比較的少ない。
However, the electron beam scanning antenna device has a complicated structure, has a relatively large power supply loss, and is also heavy. Since weight reduction is an important issue in artificial satellites, there are currently relatively few examples of their being mounted on artificial satellites.

以上のようなことから、人工衛星搭載用としてのビーム
走査アンテナ装置としては、パラボラ反射鏡を備えたア
ンテナを職域的に走査させる方式が現状では多用されて
いる。パラボラアンテナによる礪械的ビーム走査アンテ
ナ装置は、構成が簡単で、給電損失も小さい利点がある
が、その反面、ビーム走査のためのアンテナ回転が人工
衛星本体の姿勢制御に影響を与えるという欠点があった
For the reasons described above, as a beam scanning antenna device mounted on an artificial satellite, a system in which an antenna equipped with a parabolic reflector scans the area is currently frequently used. A mechanical beam scanning antenna system using a parabolic antenna has the advantage of a simple configuration and low power loss, but on the other hand, it has the disadvantage that the rotation of the antenna for beam scanning affects the attitude control of the satellite itself. there were.

また、−度宇宙空間に打上げた場合、ビーム方向の補正
または変更が困難となる欠陥もあった。
Additionally, there was also a flaw that made it difficult to correct or change the beam direction when launched into -degree space.

(発明が解決しようとする課題) 従来の殿械的ビーム走査アンテナ装置は、人工衛星等に
搭載して操作した場合、自己の慣性モーメントが本体を
含む他の構成典器の姿勢制御に影響を与え、また、ビー
ム方向の補正または変更が困難であるという欠点があっ
た。
(Problems to be Solved by the Invention) When a conventional axial beam scanning antenna device is mounted on an artificial satellite or the like and operated, its own moment of inertia affects the attitude control of other components including the main body. However, there was also the disadvantage that it was difficult to correct or change the beam direction.

この発明は、アンテナ装置を比較的軽量に構成でき、ビ
ーム走査による慣性モーメントを小さくし、またビーム
方向の補正または変更が容易なビーム走査アンテナ装置
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a beam scanning antenna device that can be configured to be relatively lightweight, has a small moment of inertia due to beam scanning, and can easily correct or change the beam direction.

[発明の構成] (課題を解決するための手段) この発明によるビーム走査アンテナ装置は、ビーム走査
駆動源となる回転軸と、この回転軸に一端が軸支され回
転軸の軸を含む面方向に回動可能に取付けられたアレー
アンテナと、このアレーアンテナの他端に取付けられた
重りと、この重りと前記回転軸との間に接続された復元
力発生器とを具備することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) A beam scanning antenna device according to the present invention includes a rotating shaft serving as a beam scanning drive source, and one end of which is supported on the rotating shaft in a plane direction including the axis of the rotating shaft. The present invention is characterized by comprising an array antenna rotatably attached to the antenna, a weight attached to the other end of the array antenna, and a restoring force generator connected between the weight and the rotation axis. do.

(作 用) この発明によるビーム走査アンテナ装置は、アレーアン
テナの一端が回転軸に回動自在に軸支されているので、
回転軸の回転速度制御によって、アレーアンテナのコニ
カルスキャンビーム角度は制御される。またビーム角度
は、回転軸の回転速度と、アレーアンテナの他端に取付
けられた重りと、アレーアンテナと回転軸間に取付けら
れた復元力発生器との相関関係をもとに設定されるので
、ビーム方向の補正または変更を容易に行うことができ
る。
(Function) In the beam scanning antenna device according to the present invention, one end of the array antenna is rotatably supported on the rotation axis.
The conical scan beam angle of the array antenna is controlled by controlling the rotation speed of the rotation axis. In addition, the beam angle is set based on the correlation between the rotational speed of the rotational axis, the weight attached to the other end of the array antenna, and the restoring force generator installed between the array antenna and the rotational axis. , the beam direction can be easily corrected or changed.

また、この発明装置は、アンテナをいくつかの薄板また
は薄膜による積In成のアレーアンテナで構成すること
により著しく軽量化が図れビーム走査による慣性モーメ
ントを小さくできるとともに、回転軸の回転駆動により
ビーム走査させるという簡単な構成によるので、特に宇
宙空間において使用して優れた効果が得られる。
In addition, the device of this invention can significantly reduce the weight by configuring the antenna as an integrated array antenna made of several thin plates or thin films, and can reduce the moment of inertia due to beam scanning. Because of its simple configuration, it can be used particularly in outer space to obtain excellent effects.

(実施例) 以下、この発明によるビーム走査アンテナ装置の実施例
を図面を参照し詳細に説明する。
(Embodiments) Hereinafter, embodiments of the beam scanning antenna device according to the present invention will be described in detail with reference to the drawings.

第1図はこの発明装置の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the inventive device.

まず、平板状に形成されたアレーアンテナ1の一端1a
は回転軸2の一端に軸支され、この回転軸2は人工衛星
本体3内に収納されたモータ4によって回転駆動される
First, one end 1a of the array antenna 1 formed into a flat plate shape.
is pivotally supported at one end of a rotating shaft 2, and this rotating shaft 2 is rotationally driven by a motor 4 housed within the satellite main body 3.

アレーアンテナ1は2等辺3角形状に形成され、その頂
点部をなす前記一端1aが回転軸2に軸支されるもので
あるが、アレーアンテナ1は回転軸2を含む平面内で回
動自在に軸支される。
The array antenna 1 is formed into an isosceles triangular shape, and the one end 1a forming the apex thereof is pivotally supported on the rotation axis 2, and the array antenna 1 is rotatable within a plane including the rotation axis 2. It is pivoted on.

また、アレ−アンテナ1自体は、第2図にその構成の一
部分解図を示したようにいくつかの薄板による積層構成
で形成される。即ち、まずアレーアンテナ1は板状の誘
電体11aの一方の面に金等の金属を蒸着等により形成
した地導体板11をベースとする。この地導体板11の
蒸着層の上に、第1の誘電体板12を介して、両面にス
トリップ給電線路13aのパターンを蒸着等により形成
した第2の誘電体板13を積層する。次に第2の誘電体
板13の上には第3の誘電体板14を介して、放射素子
板15を積層して構成する。放射素子板15は誘電体基
板15aに図示の様に格子状に幅広の金属膜15t)を
蒸着等により形成し、この格子状の金属膜の枠内に放射
素子15cを蒸着形成する。この放射素子15cの形成
面がアンテナ開口面となるよう回転軸2に取着する。な
お、第1図に示す平板状のアレーアンテナ1は三角形状
となっているが四角形状でもあるいは多角形状でも良い
ことは言うまでもない。
Further, the array antenna 1 itself is formed of a laminated structure of several thin plates, as shown in a partially exploded view of its structure in FIG. That is, first, the array antenna 1 is based on a ground conductor plate 11 formed by depositing a metal such as gold on one surface of a plate-shaped dielectric 11a. On top of the vapor deposited layer of the ground conductor plate 11, a second dielectric plate 13 having a pattern of strip feed lines 13a formed on both surfaces by vapor deposition or the like is laminated via the first dielectric plate 12. Next, a radiation element plate 15 is laminated on the second dielectric plate 13 with a third dielectric plate 14 interposed therebetween. The radiating element plate 15 is formed by forming a wide metal film 15t in a lattice shape on a dielectric substrate 15a by vapor deposition or the like as shown in the figure, and then forming a radiating element 15c within the frame of this lattice-shaped metal film by vapor deposition. The radiating element 15c is attached to the rotating shaft 2 so that the surface on which the radiating element 15c is formed becomes the antenna aperture surface. Although the flat array antenna 1 shown in FIG. 1 has a triangular shape, it goes without saying that it may have a rectangular or polygonal shape.

さて、アレーアンテナ1の他端1bには、棒状の重り5
をアレーアンテナ1の縁に添って取着し、この重り5の
中央部5aと前記回転軸2どの間にコイルスプリングか
らなる復元力発生器6を連結する。
Now, a rod-shaped weight 5 is attached to the other end 1b of the array antenna 1.
is attached along the edge of the array antenna 1, and a restoring force generator 6 made of a coil spring is connected between the central portion 5a of the weight 5 and the rotating shaft 2.

この実施例は以上の構成によるが、アレーアンテナ1に
よるビーム走査の原理を更に第3図を参照し説明する。
Although this embodiment has the above configuration, the principle of beam scanning by the array antenna 1 will be further explained with reference to FIG. 3.

第3図は、ビーム走査原理を説明するための説明図で、
アンテナ装置の側面から見た状況を示す。
FIG. 3 is an explanatory diagram for explaining the principle of beam scanning.
The situation as seen from the side of the antenna device is shown.

即ち、アレーアンテナ1は回転軸2とは角度θをなして
軸支されるので、前記人工衛星本体30図示しない信号
源から前記ストリップ給電線路13aへの信号供給によ
り、ビームは回転軸2に対してObをなす方向に放射さ
れる。この場合、θ+θb=90度の関係となり、ビー
ムはアレーアンテナ1の面に対し、垂直方向に放射され
る。
That is, since the array antenna 1 is supported at an angle θ with respect to the rotation axis 2, the beam is oriented with respect to the rotation axis 2 by supplying a signal from a signal source (not shown) to the strip feed line 13a of the satellite main body 30. It is radiated in the direction forming Ob. In this case, the relationship is θ+θb=90 degrees, and the beam is radiated perpendicularly to the surface of the array antenna 1.

従って、回転軸2の回転により、アレーアンテナ1は回
転軸2方向に対しObをなす角度で円錐状にコニカルス
キャンが行われるが、回転速度を増してゆくと、アレー
アンテナ1の他端1bに接続したmす5の遠心力5fに
より、角度θが開く方向に力が作用する。しかし、この
とぎ重り5と前記回転軸2どの間にコイルスプリングか
らなる復元力発生器6が接続され回転軸2方向に引寄ぜ
るカ6fが動くので、前記角度θが一定を保つよう作用
し、ビーム方向は安定する。つまり、重り5による遠心
力5fと復元力発生器6による復元力6fとの力関係は
ある条件の下でバランスし、回転軸2の一定の回転速度
下において、常に一定のビーム方向を1■ることができ
る。
Therefore, as the rotation axis 2 rotates, the array antenna 1 performs a conical scan at an angle Ob with respect to the rotation axis 2 direction, but as the rotation speed increases, the other end 1b of the array antenna 1 Due to the centrifugal force 5f of the connected m 5, a force acts in the direction in which the angle θ opens. However, a restoring force generator 6 made of a coil spring is connected between this sharpening weight 5 and the rotating shaft 2, and a force 6f that pulls it in the direction of the rotating shaft 2 moves, so it acts to keep the angle θ constant. However, the beam direction is stabilized. In other words, the force relationship between the centrifugal force 5f due to the weight 5 and the restoring force 6f due to the restoring force generator 6 is balanced under certain conditions, and under a constant rotational speed of the rotating shaft 2, the beam direction is always constant. can be done.

換言すると、アレーアンテナ1の回転速度を変えること
によって、巾り5の遠心力5fは変化するので、復元力
発生器6の発生復元力を予め調整することにより、アン
テナビーム方向θbを任意に1iIJ御することができ
る。
In other words, by changing the rotational speed of the array antenna 1, the centrifugal force 5f of the width 5 changes, so by adjusting the restoring force generated by the restoring force generator 6 in advance, the antenna beam direction θb can be adjusted arbitrarily to 1iIJ. can be controlled.

なお、上記実施例では復元力発生器6にコイルスプリン
グを用いた例を示したが、コイルスプリングの代わりに
電磁石を用い、電磁石に流れる電流を制御して復元力6
fを制御し、回転軸2の一定回転速度下においても、ビ
ーム方向θbを変えることができる。
In the above embodiment, a coil spring is used as the restoring force generator 6, but an electromagnet is used instead of the coil spring, and the restoring force 6 is generated by controlling the current flowing through the electromagnet.
By controlling f, the beam direction θb can be changed even under a constant rotational speed of the rotating shaft 2.

また、徂り5は棒状体で構成したが、形状はこれに限ら
ず、また千り5の重量も従来の殿械的走査アンテナの重
量に比較して著1ノく軽量化できる。
Further, although the antenna 5 is constructed of a rod-shaped body, the shape thereof is not limited to this, and the weight of the antenna 5 can be significantly reduced by one order compared to the weight of a conventional gluteal scanning antenna.

また、アレーアンテナ1は薄板の積層構成としたが、フ
ィルム状の薄膜等による積層構成とすることもできる。
Furthermore, although the array antenna 1 has a laminated structure of thin plates, it can also have a laminated structure of film-like thin films or the like.

以上のように、この発明装置はアンテナを積層体で構成
されるアレーアンテナで構成したことにより、極めてコ
ンパクトかつ軽量化が実現でき、本体等信の機器の姿勢
制御に与える影響が少なく、また、ビーム方向も単に回
転軸の回転速度制御により容易に補正し得るものでおり
、人工衛星等宇宙空間での利用に好適である。
As described above, by configuring the antenna as an array antenna made up of laminated bodies, the device of this invention can be extremely compact and lightweight, and has little effect on the attitude control of the main body and other communication devices. The beam direction can also be easily corrected simply by controlling the rotational speed of the rotating shaft, making it suitable for use in space, such as in artificial satellites.

[発明の効果] 以上のように、この発明によるビーム走査アンテナ装置
は、軽量なアレーアンテナで構成できるとともに、重り
及び復元力発生器という簡単な構成で、ビーム放射方向
を容易に制御できるので、特に宇宙空間で使用して、大
きな利点が得られる。
[Effects of the Invention] As described above, the beam scanning antenna device according to the present invention can be configured with a lightweight array antenna, and the beam radiation direction can be easily controlled with a simple configuration of a weight and a restoring force generator. Especially when used in outer space, significant advantages can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるビーム走査アンテナ装置の一実
施例を示す構成図、第2図は第1図に示す装置のアレー
アンテナの構成を示す分解斜視図、第3図は同じく第1
図に示す装置の動作原理を説明する説明図である。 1・・・アレーアンテナ 2・・・回転軸 5・・・重り 6・・・復元力発生器 代理人 弁理士 大 胡 典 夫 第 図
FIG. 1 is a configuration diagram showing one embodiment of a beam scanning antenna device according to the present invention, FIG. 2 is an exploded perspective view showing the configuration of an array antenna of the device shown in FIG.
FIG. 2 is an explanatory diagram illustrating the operating principle of the device shown in the figure. 1...Array antenna 2...Rotation axis 5...Weight 6...Restoring force generator Representative Patent attorney N.O.D.

Claims (1)

【特許請求の範囲】[Claims] ビーム走査駆動源となる回転軸と、この回転軸に一端が
軸支され回転軸の軸を含む面方向に回動可能に取付けら
れたアレーアンテナと、このアレーアンテナの他端に取
付けられた重りと、この重りと前記回転軸との間に接続
された復元力発生器とを具備するビーム走査アンテナ装
置。
A rotating shaft that serves as a beam scanning drive source, an array antenna whose one end is supported on the rotating shaft so as to be rotatable in a plane including the axis of the rotating shaft, and a weight attached to the other end of the array antenna. and a restoring force generator connected between the weight and the rotating shaft.
JP63183117A 1988-07-22 1988-07-22 Beam scanning antenna system Pending JPH0233203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183117A JPH0233203A (en) 1988-07-22 1988-07-22 Beam scanning antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183117A JPH0233203A (en) 1988-07-22 1988-07-22 Beam scanning antenna system

Publications (1)

Publication Number Publication Date
JPH0233203A true JPH0233203A (en) 1990-02-02

Family

ID=16130079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183117A Pending JPH0233203A (en) 1988-07-22 1988-07-22 Beam scanning antenna system

Country Status (1)

Country Link
JP (1) JPH0233203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250274A (en) * 2013-07-24 2013-12-12 Mitsubishi Space Software Kk Observation apparatus, observation object estimation apparatus, observation object estimation program, and observation object estimation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250274A (en) * 2013-07-24 2013-12-12 Mitsubishi Space Software Kk Observation apparatus, observation object estimation apparatus, observation object estimation program, and observation object estimation method

Similar Documents

Publication Publication Date Title
US6259415B1 (en) Minimum protrusion mechanically beam steered aircraft array antenna systems
KR100679571B1 (en) Scanning directional antenna with lens and reflector assembly
US6396448B1 (en) Scanning directional antenna with lens and reflector assembly
US4862185A (en) Variable wide angle conical scanning antenna
US3487413A (en) Wide angle electronic scan luneberg antenna
US6310583B1 (en) Steerable offset reflector antenna
US6307523B1 (en) Antenna apparatus and associated methods
US6888515B2 (en) Adaptive reflector antenna and method for implementing the same
JPH0233203A (en) Beam scanning antenna system
CA2067932A1 (en) High gain shaped lobe antenna
US7015866B1 (en) Flush-mounted air vehicle array antenna systems for satellite communication
US10910713B1 (en) Reconfigurable rotational reflectarrays
US8159410B2 (en) Reflective antenna assembly
EP0638956A1 (en) Active antenna with electronic scanning in azimuth and elevation, particularly for microwave imaging by satellite
JPH098534A (en) Antenna system
US20210005963A1 (en) Antenna apparatus
JPH09232864A (en) Antenna
JP2000295029A (en) Antenna device
JP2000082918A (en) Multi-beam antenna
JPH04162803A (en) Antenna array system
JP2581290B2 (en) Reflector antenna device
JP2010136258A (en) Tracking antenna
SE2350053A1 (en) Arrangement for remotely adjusting an antenna device and a method therefor
JPS63240202A (en) Omnidirectional antenna
JPH05218735A (en) Primary radiator for conical scanning