JPH0232852B2 - - Google Patents

Info

Publication number
JPH0232852B2
JPH0232852B2 JP56199668A JP19966881A JPH0232852B2 JP H0232852 B2 JPH0232852 B2 JP H0232852B2 JP 56199668 A JP56199668 A JP 56199668A JP 19966881 A JP19966881 A JP 19966881A JP H0232852 B2 JPH0232852 B2 JP H0232852B2
Authority
JP
Japan
Prior art keywords
current
voltage
relay
saturable reactor
overcurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56199668A
Other languages
Japanese (ja)
Other versions
JPS5899219A (en
Inventor
Nobuo Eda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56199668A priority Critical patent/JPS5899219A/en
Publication of JPS5899219A publication Critical patent/JPS5899219A/en
Publication of JPH0232852B2 publication Critical patent/JPH0232852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は、電力系統の母線等を事故から保護
するための差動保護継電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential protection relay device for protecting bus bars and the like of a power system from accidents.

従来、この種の装置として第1図に示すものが
あつた。1は保護対象の母線、2−1〜2−nは
母線1に接続された回線、3−1〜3−nは回線
2−1〜2−n上に設けられた変流器、4は変流
器3−1〜3−nの2次側に接続された電圧差動
リレー、5は過電流リレー、6は過電流リレー5
を介して電圧差動リレー4に並列に接続された抵
抗素子で、印加される電圧が所定値以上となると
抵抗値を減少させる非直線性特性を有し、例えば
バリスターの名で販売されている。
Conventionally, there has been a device of this type as shown in FIG. 1 is the bus to be protected, 2-1 to 2-n are the lines connected to bus 1, 3-1 to 3-n are current transformers installed on the lines 2-1 to 2-n, and 4 is the current transformer installed on the lines 2-1 to 2-n. Voltage differential relays connected to the secondary sides of current transformers 3-1 to 3-n, 5 is an overcurrent relay, 6 is an overcurrent relay 5
A resistive element connected in parallel to the voltage differential relay 4 through There is.

次に動作について説明する。変流器3−1〜3
−nの2次側の電流I2から分流された電流IRは高
入力インピーダンスをもつ電圧差動リレー4に導
かれる。母線1の外部事故時は母線1に流入する
電流の和と、母線1から事故点に向つて流出する
電流の和が等しいため、電圧差動リレー4に導か
れた電流IRはその応動レベル以下にある。
Next, the operation will be explained. Current transformer 3-1~3
The current I R shunted from the current I 2 on the secondary side of -n is led to a voltage differential relay 4 with a high input impedance. When an external fault occurs on the bus 1, the sum of the current flowing into the bus 1 and the sum of the current flowing out from the bus 1 toward the fault point are equal, so the current I R led to the voltage differential relay 4 is at its response level. It's below.

しかし、母線1の内部事故時は母線1から流出
する電流がないので、電圧差動リレー4に導かれ
る電流IRのレベルが応動レベル以上となり、これ
が応動する。電圧差動リレー4の入力インピーダ
ンスは非常に高いため、その入力端に発生する電
圧V2も相当に高いレベルに達する。
However, in the event of an internal fault in the bus bar 1, no current flows out from the bus bar 1, so the level of the current I R led to the voltage differential relay 4 becomes equal to or higher than the response level, and this reacts. Since the input impedance of the voltage differential relay 4 is very high, the voltage V 2 generated at its input terminal also reaches a fairly high level.

このような状態になると、抵抗素子6の抵抗値
が減少し、これに流れ込む電流IVが増大し、この
電流IVが所定レベル以上となると、過電流リレー
5が動作する。このようにして過電流リレー5は
電圧差動リレー4のバツクアツプ動作をする。
In such a state, the resistance value of the resistance element 6 decreases, and the current IV flowing into it increases. When this current IV exceeds a predetermined level, the overcurrent relay 5 is activated. In this manner, overcurrent relay 5 performs a backup operation of voltage differential relay 4.

変流器3−1〜3−nの2次励磁インピーダン
ス7−1〜7−nには電流Iex1〜Iexoが流れる。
母線1の内部事故時に変流器3−1より事故電流
Iが供給されると、この事故電流Iは2次励磁イ
ンピーダンス7−1〜7−n、電圧差動リレー4
及び抵抗素子6に流れる電流Iex1〜Iexo、I2(IR
びIV)に分流される。
Currents I ex1 to I exo flow through the secondary excitation impedances 7-1 to 7-n of the current transformers 3-1 to 3-n.
When a fault current I is supplied from the current transformer 3-1 at the time of an internal fault in the bus 1, this fault current I flows through the secondary excitation impedances 7-1 to 7-n and the voltage differential relay 4.
The currents I ex1 to I exo and I 2 (I R and I V ) flowing through the resistance element 6 are shunted.

第3図において、φは変流器3−1〜3−nの
磁束である。磁束φと変流器の2次誘起電圧E2
との間には、周知のようにE2=N2dφ/dt(N2は変 流器3−1〜3−nの2次巻線数)の関係があ
る。E2=R2I(R2は変流器3−1〜3−nの2次
側の負荷)であるため、φ=K∫Idtとなるが、電
圧V2が大きいため、磁束φはすぐに飽村して磁
束φsとなり、dφ/dtは零となる。
In FIG. 3, φ is the magnetic flux of current transformers 3-1 to 3-n. Magnetic flux φ and secondary induced voltage of current transformer E 2
As is well known, there is a relationship of E 2 =N 2 dφ/dt (N 2 is the number of secondary windings of current transformers 3-1 to 3-n). Since E 2 = R 2 I (R 2 is the load on the secondary side of current transformers 3-1 to 3-n), φ = K∫Idt, but since the voltage V 2 is large, the magnetic flux φ is It soon becomes saturated and becomes magnetic flux φs, and dφ/dt becomes zero.

したがつて、2次誘起電圧E2及び電圧V2も零
になり、電流I2は事故電流Iに比例しないものと
なり、電流Iex1〜Iexoがその分だけ大きくなる。
Therefore, the secondary induced voltage E 2 and the voltage V 2 also become zero, the current I 2 becomes not proportional to the fault current I, and the currents I ex1 to I exo increase accordingly.

以上の説明から明らかなように、電圧差動リレ
ー4に印加される電圧V2は、事故電流Iが0の
時点から磁束φが飽和するまでの期間のものであ
る。また、過電流リレー5に流れる電流IVは、抵
抗素子6が飽和した時点から磁束φが飽和するま
でのものである。
As is clear from the above description, the voltage V 2 applied to the voltage differential relay 4 is for the period from when the fault current I is 0 until the magnetic flux φ is saturated. Further, the current IV flowing through the overcurrent relay 5 is from the time when the resistive element 6 is saturated until the magnetic flux φ is saturated.

このような電圧V2及び電流IVは電圧差動リレ
ー4及び過電流リレー5の応動レベルに達してい
ても、これらが応動し得ない短期間のものとなる
危険性がある。
Even if such voltage V 2 and current I V reach the response level of voltage differential relay 4 and overcurrent relay 5, there is a risk that these will be short-lived and cannot respond.

なお、過電流リレー5に流れる電流IVは第3図
からも明らかなように、電圧V2が一定値以上と
なつた時にのみに生じるものであるため、電圧差
動リレー4に印加される入力より条件は悪く、過
電流リレー5は動作しにくいので、電圧差動リレ
ー4の動作信頼度をカバーする目的としては不充
分である。
Note that, as is clear from FIG. 3, the current I V flowing through the overcurrent relay 5 is generated only when the voltage V 2 exceeds a certain value; Since the conditions are worse than the input, and the overcurrent relay 5 is difficult to operate, it is insufficient for the purpose of covering the operational reliability of the voltage differential relay 4.

従来の差動継電装置は以上のように構成を有す
るので、電圧差動リレーと過電流リレーとの協働
が容易でなく、過電流リレー5を設けた効果が低
いものであつた。
Since the conventional differential relay device has the configuration as described above, it is not easy for the voltage differential relay and the overcurrent relay to work together, and the effect of providing the overcurrent relay 5 is low.

この発明は、上記のような従来の欠点を解消す
るためになされたもので、可飽和リアクトルとこ
れに流れる電流を検出する過電流リレーを設ける
ことにより、電圧差動リレー用入力が消滅する飽
和期間でも確実に動作信号が得られる信頼性の高
い差動保護継電装置を得ることを目的とする。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology.By providing a saturable reactor and an overcurrent relay that detects the current flowing through the reactor, the input for the voltage differential relay disappears. It is an object of the present invention to provide a highly reliable differential protection relay device that can reliably obtain an operating signal even during periods.

以下、この発明の一実施例を図について説明す
る。第2図において、8は可飽和リアクトルであ
り、過電流リレー5を介して電圧差動リレー4の
入力端に並列接続され、抵抗素子6もこれに並列
接続され、飽和電圧値が変流器3−1〜3−nの
ものよりも低く、かつ電圧差動リレー4の動作値
より高い特性をもつ。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, 8 is a saturable reactor, which is connected in parallel to the input terminal of the voltage differential relay 4 via an overcurrent relay 5, and a resistance element 6 is also connected in parallel to this, so that the saturation voltage value is equal to the current transformer. It has characteristics lower than those of 3-1 to 3-n and higher than the operating value of the voltage differential relay 4.

次に動作について説明する。母線1の外部事故
のときは、第1図で説明した従来装置と同じよう
に、事故電流Iは変流器3−1〜3−n間を環流
し電圧Vはほとんど発生しないため、電圧差動リ
レー4及び過電流リレー5は動作しない。
Next, the operation will be explained. In the event of an external fault on the bus 1, the fault current I circulates between the current transformers 3-1 to 3-n and almost no voltage V is generated, as in the conventional device explained in Fig. 1, so the voltage difference is dynamic relay 4 and overcurrent relay 5 do not operate.

母線1の内部事故のときは次のようになる。電
源端の変流器3−1から流入する事故電流Iは、
電圧差動リレー4に流れる電流IR、抵抗素子6に
流れる電流IV、可飽和リアクトル8に流れる電流
IL(第3図参照)及び2次励磁インピーダンス7
−1〜7−nを流れる電流Iex1〜Iexoに分流され、
これらの電流の値は変流器2次回路の電圧V(第
3図の電圧V2に対応する)で決定される。
In the event of an internal accident on bus 1, the following will occur. The fault current I flowing from the current transformer 3-1 at the power supply end is:
Current I R flowing through voltage differential relay 4, current I V flowing through resistance element 6, and current flowing through saturable reactor 8.
I L (see Figure 3) and secondary excitation impedance 7
The current flowing through -1 to 7-n is shunted into I ex1 to I exo ,
The values of these currents are determined by the voltage V (corresponding to voltage V 2 in FIG. 3) of the current transformer secondary circuit.

可飽和リアクトル8に流れる電流ILは電流Iex1
〜Iexoと同じような特性を有する。即つ、可飽和
リアクトル8を設けたことは、特性の異なる変流
器を1次追加したことと同じことになる。それら
の間の相違点は、可飽和リアクトル8の飽和電圧
値が変流器3−1のものよりも低いということだ
けである。
The current I L flowing through the saturable reactor 8 is the current I ex1
~I Has similar properties to exo . That is, providing the saturable reactor 8 is equivalent to adding a primary current transformer with different characteristics. The only difference between them is that the saturation voltage value of the saturable reactor 8 is lower than that of the current transformer 3-1.

このような相違により、電圧Vの発生期間Tは
可飽和リアクトル8の不飽和期間で決定される。
電圧差動リレー4は抵抗素子6の特性と可飽和リ
アクトル8の特性で決定される電圧Vを検出する
ことになり、過電流リレー5は可飽村リアクトル
8に印加される電圧Vが飽和電圧に達した時から
急激に流れ始める電流LLを検出するものである。
Due to such a difference, the generation period T of the voltage V is determined by the unsaturated period of the saturable reactor 8.
The voltage differential relay 4 detects the voltage V determined by the characteristics of the resistive element 6 and the saturable reactor 8, and the overcurrent relay 5 detects the voltage V applied to the saturable reactor 8 so that the voltage V is the saturation voltage. This is to detect the current L L that starts flowing rapidly when the current L L is reached.

即ち、可飽和リアクトル8が飽和すると、事故
電流Iはほぼその全てが可飽和リアクトル8に流
れ込み、IILとなり、過電流リレー5は十分に
応動可能となる。
That is, when the saturable reactor 8 is saturated, almost all of the fault current I flows into the saturable reactor 8, becoming II L , and the overcurrent relay 5 can sufficiently respond.

第3図の波形から明らかなように、電圧Vと電
流IL(本発明によれば、この時IL≫ΣIex)との発
生時間は互に相関しているので、可飽和リアクト
ル8の不飽和期間は電流ILが小さく、過電流リレ
ー5は動作していないが、電圧Vは大きいため電
圧差動リレー4が確実に動作し、可飽和リアクト
ル8が飽和し始めて電圧Vが小さくなれが、電流
ILが大きくなるため、過電流リレー5が確実に動
作する。したがつて、電圧差動リレー4の出力と
過電流リレー5の出力を並列使用すれば、出力が
途切れることなく確実に動作出力を発生させるこ
とができる。
As is clear from the waveforms in FIG. 3, the generation times of the voltage V and the current I L (according to the present invention, at this time I L ≫ΣIex) are correlated with each other, so the saturable reactor 8 is During the saturation period, the current I L is small and the overcurrent relay 5 is not operating, but since the voltage V is large, the voltage differential relay 4 operates reliably, and the saturable reactor 8 begins to saturate, causing the voltage V to become small. , current
Since I L becomes large, the overcurrent relay 5 operates reliably. Therefore, by using the output of the voltage differential relay 4 and the output of the overcurrent relay 5 in parallel, it is possible to reliably generate an operating output without interruption of the output.

なお、抵抗素子6を可飽和リアクトル8に並列
接続し、両者の合成電流が過電流リレー5に流れ
るようにしても上記実施例と同様な効果を奏す
る。
Note that even if the resistance element 6 is connected in parallel to the saturable reactor 8 and the combined current of both flows to the overcurrent relay 5, the same effect as in the above embodiment can be obtained.

以上のように、この発明によれば、内部事故時
に電圧差動リレー入力が消滅し始める飽和域にお
いても、過電流リレーが引続き動作してきて、電
圧差動リレーの出力を補償できる構成としたの
で、確実な動作出力が得られ差動保護継電装置の
信頼性を高める効果がある。
As described above, according to the present invention, even in the saturation region where the voltage differential relay input begins to disappear in the event of an internal fault, the overcurrent relay continues to operate and the output of the voltage differential relay can be compensated. This has the effect of providing a reliable operating output and increasing the reliability of the differential protection relay device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の差動保護継電装置の回路図、第
2図はこの発明の一実施例による差動保護継電装
置の回路図、第3図は第1図及び第2図に示す差
動保護継電装置の動作を説明する波形図である。 1……母線、3−1〜3−n……変流器、4…
…電圧差動リレー、5……過電流リレー、6……
抵抗素子、8……可飽和リアクトル。なお、図
中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a circuit diagram of a conventional differential protection relay device, Fig. 2 is a circuit diagram of a differential protection relay device according to an embodiment of the present invention, and Fig. 3 is shown in Figs. 1 and 2. FIG. 3 is a waveform diagram illustrating the operation of the differential protection relay device. 1...Bus bar, 3-1 to 3-n...Current transformer, 4...
...Voltage differential relay, 5... Overcurrent relay, 6...
Resistance element, 8...Saturable reactor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 母線に接続された各回線に設けられ2次側を
互に並列接続した複数の変流器と、高入力インピ
ーダンスを有し上記変流器の2次側に接続された
電圧差動リレーと、流入する電流が所定値以上と
なつたときに応動する過電流リレーと、上記変流
器の飽和電圧より低く、かつ、上記差動電圧リレ
ーが応動する電圧より高い値の飽和電圧を有する
可飽和リアクトルとを備え、上記の過電流リレー
と可飽和リアクトルを直列に接続して上記差動電
圧リレーと並列に接続したことを特徴とする差動
保護継電装置。
1. A plurality of current transformers installed in each line connected to the busbar and having their secondary sides connected in parallel to each other, and a voltage differential relay having high input impedance and connected to the secondary side of the current transformer. , an overcurrent relay that responds when the inflow current exceeds a predetermined value, and a saturation voltage that is lower than the saturation voltage of the current transformer and higher than the voltage that the differential voltage relay responds to. a saturable reactor, the overcurrent relay and the saturable reactor are connected in series and connected in parallel to the differential voltage relay.
JP56199668A 1981-12-09 1981-12-09 Differential protecting relay unit Granted JPS5899219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199668A JPS5899219A (en) 1981-12-09 1981-12-09 Differential protecting relay unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199668A JPS5899219A (en) 1981-12-09 1981-12-09 Differential protecting relay unit

Publications (2)

Publication Number Publication Date
JPS5899219A JPS5899219A (en) 1983-06-13
JPH0232852B2 true JPH0232852B2 (en) 1990-07-24

Family

ID=16411632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199668A Granted JPS5899219A (en) 1981-12-09 1981-12-09 Differential protecting relay unit

Country Status (1)

Country Link
JP (1) JPS5899219A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239150A (en) * 1975-09-22 1977-03-26 Mitsubishi Electric Corp Voltage differential protection relay

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239150A (en) * 1975-09-22 1977-03-26 Mitsubishi Electric Corp Voltage differential protection relay

Also Published As

Publication number Publication date
JPS5899219A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
JPH0232852B2 (en)
US3337772A (en) Transformer differential protection
US3974423A (en) Differential current protective device
US3710190A (en) Fault current protective circuit for a load supplied from single or polyphase systems
JP3833821B2 (en) Busbar protection relay device
JPS58103823A (en) Neutral point grounding protecting device for transformer
JPH0524733B2 (en)
JP3940492B2 (en) Digital type protective relay
JPH0210655B2 (en)
JPS5814137B2 (en) Busbar selection relay device
JPS608518Y2 (en) Display line protection relay device
JPH0130753Y2 (en)
JPS5970129A (en) Ground-fault accident detector for dc transmitting neutral line
JPS5959013A (en) Current difference protecting relay unit
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit
JPS6350936B2 (en)
JPS5866522A (en) Bus protecting and relaying device
JPS6361854B2 (en)
JPS59165918A (en) Bus protecting relaying device
JPS58144528A (en) Spot network power distributor
JPS5925527A (en) Transformer protecting relay unit
JPS58137923A (en) Control system for breaker
JPS6122542B2 (en)
JPS596799A (en) Field overvoltage protecting device for synchronous machine
JPS63249417A (en) Overcurrent protector