JPH0232570B2 - - Google Patents

Info

Publication number
JPH0232570B2
JPH0232570B2 JP60186565A JP18656585A JPH0232570B2 JP H0232570 B2 JPH0232570 B2 JP H0232570B2 JP 60186565 A JP60186565 A JP 60186565A JP 18656585 A JP18656585 A JP 18656585A JP H0232570 B2 JPH0232570 B2 JP H0232570B2
Authority
JP
Japan
Prior art keywords
core
leakage
cladding
oil
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60186565A
Other languages
Japanese (ja)
Other versions
JPS6247531A (en
Inventor
Akira Tane
Mutsuro Araki
Taku Kosuge
Yutaka Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
Original Assignee
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK filed Critical Nippon Kokan Koji KK
Priority to JP60186565A priority Critical patent/JPS6247531A/en
Publication of JPS6247531A publication Critical patent/JPS6247531A/en
Publication of JPH0232570B2 publication Critical patent/JPH0232570B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は化学プラントや燃料パイプラインに
おける油や水等の漏洩を光を利用して無電源で検
知できる漏洩検知用光フアイバセンサ及びその製
造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an optical fiber sensor for detecting leaks that can detect leaks of oil, water, etc. in chemical plants and fuel pipelines using light without a power source, and its manufacture. It is about the method.

〔従来の技術〕[Conventional technology]

従来の電気的検知方法による漏洩検知センサと
しては金属線の外周をテフロン多孔質の絶縁材で
被覆したものがあつた。この漏洩検知センサはそ
の絶縁材に油が付着して湿潤化すると、金属線と
絶縁材間のインピーダンスが変化するため、この
インピーダンスの変化により油の漏洩を検知して
いた。しかしながら、かかる漏洩検知センサは絶
縁材に水が付着してもインピーダンスが変化する
ため、水と油との区別が難しいことと経年変化に
よる感度低下をもたらし、測定できる距離も最大
限1Kmと短く、更には電気的に検出するために誘
導ノイズによる誤検出や発火原因ともなる本質的
な欠陥があつた。
A conventional leakage detection sensor using an electrical detection method includes one in which the outer periphery of a metal wire is covered with a Teflon porous insulating material. When oil adheres to the insulating material and becomes wet, this leakage detection sensor changes the impedance between the metal wire and the insulating material, and detects oil leakage based on this change in impedance. However, since the impedance of such leakage detection sensors changes even when water adheres to the insulating material, it is difficult to distinguish between water and oil, the sensitivity decreases due to aging, and the measurable distance is short at 1 km. Furthermore, since the detection is done electrically, there is an inherent defect that can cause false detection or fire due to induced noise.

かかる欠陥を解消せんとしたものとして光フア
イバを利用した漏洩検知用光フアイバセンサが現
在発明されている。
An optical fiber sensor for detecting leakage that utilizes an optical fiber has now been invented in an attempt to eliminate this defect.

第3図は第1従来例の漏洩検知用光フアイバセ
ンサを示す斜視図、第4図は漏洩検知用光フアイ
バセンサの漏洩検知原理を示す説明図である。
FIG. 3 is a perspective view showing a first conventional optical fiber sensor for leak detection, and FIG. 4 is an explanatory diagram showing the leak detection principle of the optical fiber sensor for leak detection.

図において、1は光フアイバのクラツド部、2
はコア部で、3はクラツド部1を所定長切り欠い
てコア部2を露出させて形成された漏洩検知光セ
ンサ部である。
In the figure, 1 is the cladding part of the optical fiber, 2
3 is a core portion, and 3 is a leak detection optical sensor portion formed by cutting out a predetermined length of the cladding portion 1 to expose the core portion 2.

第1従来例の漏洩検知用光フアイバセンサは上
記のように構成され、油の漏洩検知をこの光フア
イバで行う原理は、屈折率(n=1空気、n=
1.458油、n=1.333水)の違いを利用したもの
で、例えば漏洩検知光センサ部3に油が付着する
と、漏洩検知光センサ部3がコア部2より屈折率
が大きくなり、コア部2内の伝搬モードの光が漏
洩検知光センサ部3で漏洩モードに変換される即
ち外部に漏洩する。これを光パルス試験器
(OTDR)を用いて後方散乱光を計測すれば、漏
洩の発生時刻と発生位置を検知することができ
る。
The first conventional optical fiber sensor for detecting leakage is constructed as described above, and the principle of detecting oil leakage using this optical fiber is based on the refractive index (n=1 air, n=
For example, when oil adheres to the leakage detection optical sensor section 3, the refractive index of the leakage detection optical sensor section 3 becomes larger than that of the core section 2, and the inside of the core section 2 The light in the propagation mode is converted into a leakage mode by the leakage detection optical sensor section 3, that is, it leaks to the outside. By measuring the backscattered light using an optical pulse tester (OTDR), the time and location of leakage can be detected.

第5図は第2従来例の漏洩検知用光フアイバセ
ンサ(実開昭57−22103号)を示す説明図である。
FIG. 5 is an explanatory diagram showing a second conventional optical fiber sensor for detecting leakage (Utility Model Application No. 57-22103).

図において、1は光フアイバのクラツド部で、
シリコン樹脂により形成されており、漏洩検知光
センサ部を兼ねる。2は通常のコア部である。
In the figure, 1 is the clad part of the optical fiber,
It is made of silicone resin and also serves as a leak detection light sensor section. 2 is a normal core part.

第2従来例の漏洩検知用光フアイバセンサは上
記のように構成され、油の漏洩検知をこの光フア
イバで行う原理はシリコン樹脂で形成されたクラ
ツド部1に油が付着して浸油された時に生じる屈
折率の変化を利用したもので、例えば、クラツド
部1のある場所に油が付着すると、油がクラツド
部1に浸漬し、クラツド部1はその油の浸漬を受
けて屈折率がn=1.405からn=1.451に変化す
る。そうすると、コア部2内の伝搬モードL1
光がクラツド部1の油の浸漬を受けた部分で全て
漏洩モードL2に変換される。なおL0はクラツド
部1の屈折率が変化しても漏洩モードに変換しな
い伝搬モードの光である。この場合も、光パルス
試験器により漏洩の発生時刻と発生位置を検知で
きる。
The second conventional optical fiber sensor for detecting leakage is constructed as described above, and the principle of detecting oil leakage using this optical fiber is that oil adheres to the cladding part 1 made of silicone resin and the sensor is immersed in oil. For example, when oil adheres to a certain place in the cladding part 1, the oil immerses in the cladding part 1, and the cladding part 1 is immersed in the oil and the refractive index changes to n. =1.405 to n=1.451. Then, all the light in the propagation mode L1 in the core part 2 is converted into the leakage mode L2 at the part of the cladding part 1 that is immersed in oil. Note that L 0 is light in a propagation mode that does not convert into a leaky mode even if the refractive index of the cladding portion 1 changes. In this case as well, the optical pulse tester can detect the time and location of leakage occurrence.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような第1従来例の漏洩検知用光フアイ
バセンサでは、漏洩検知光センサ部3がクラツド
部1を所定長切り欠いてコア部2を露出させて形
成された点状センサであり、光フアイバの全長に
亘る連続センサでないため、漏油箇所と漏洩検知
光センサ部3が不一致のときには検出不能とな
り、該センサ部3の数を増やすと損失が増大して
後方の感度が悪くなるか或いは検出不能となる。
更に、クラツド部1が切り欠かれていることか
ら、機械的に弱くなるという問題点があつた。
In the optical fiber sensor for leakage detection of the first conventional example as described above, the leakage detection optical sensor section 3 is a dot-like sensor formed by cutting out a predetermined length of the cladding section 1 to expose the core section 2, and Since the sensor is not continuous over the entire length of the fiber, if the oil leakage location and the leakage detection optical sensor section 3 do not match, detection will not be possible.If the number of the sensor sections 3 is increased, the loss will increase and the sensitivity at the rear will deteriorate, or becomes undetectable.
Furthermore, since the clad portion 1 is notched, there is a problem that it becomes mechanically weak.

また、上記のような第2従来例の漏洩検知用光
フアイバセンサでは、シリコン樹脂で形成された
クラツド部1が光漏洩検知センサ部を兼ねてお
り、そのクラツド部1のある場所が油の浸漬を受
けて屈折率が変化し、その部分でコア部2内の伝
搬モードの光が全て漏洩モードに変換されてしま
う。これはコア部2が直線状であり、コア・クラ
ツド境界面で例えば角度θで反射する光は、コア
部2の径が一定なので、どこまでいつてもθの角
度で反射されるが、油の浸漬によつて、クラツド
部1の屈折率が変化すると、その浸漬を受けた部
分で角度θで反射する光即ち伝搬モードの光が漏
れモードの角θRの光に変換されて外部に大部分漏
れてしまい後方では既にθRの光は少なくなつてお
り、全光量中の漏れモードになる光の割合が減少
してしまい、角度θとは異なる別の角度で反射す
る光は漏れモードに変換されないからである。
In addition, in the optical fiber sensor for leakage detection of the second conventional example as described above, the cladding part 1 made of silicone resin also serves as the light leakage detection sensor part, and the part of the cladding part 1 is immersed in oil. As a result, the refractive index changes, and all of the light in the propagation mode within the core portion 2 is converted into a leakage mode at that portion. This is because the core part 2 is linear, and the light that is reflected at the core-clad interface at an angle of θ, for example, is reflected at an angle of θ no matter how far it goes because the diameter of the core part 2 is constant. When the refractive index of the cladding part 1 changes due to immersion, the light that is reflected at an angle θ at the immersed part, that is, the light in the propagation mode, is converted into light in the leakage mode at an angle θ R , and most of it is transmitted to the outside. After leaking, the light at θ R has already decreased at the rear, and the proportion of light that becomes leak mode in the total amount of light decreases, and the light that is reflected at another angle different from angle θ is converted to leak mode. This is because it is not done.

従つて、2箇所以上に油の浸漬が生じ、2箇所
以上の同時検知では伝搬モードの光が最初の検知
箇所で全て漏洩モードに変換され、後方の検知箇
所では検知不能となるという問題点があつた。
Therefore, oil immersion occurs in two or more locations, and when two or more locations are detected simultaneously, all of the propagation mode light is converted to leakage mode at the first detection location, and detection becomes impossible at the rear detection location. It was hot.

更に、シリコン樹脂で形成されたクラツド部1
は一回油の浸漬を受けると、油抜きが困難であつ
て再利用できず、耐久性の面でも問題があつた。
この発明は、かかる問題点を解決するためになさ
れたもので、光フアイバの全長に亘つて油等の漏
液油の検知が行え、二箇所で漏液があつた場合に
後方の漏液を検知感度を低下させずに検知でき、
繰り返し検知可能な漏洩検知用光フアイバセンサ
及びその製造方法を得ることを目的とする。
Furthermore, a clad part 1 made of silicone resin
Once immersed in oil, it is difficult to remove the oil and cannot be reused, and there are also problems in terms of durability.
This invention was made in order to solve this problem, and it is possible to detect leaking oil such as oil over the entire length of the optical fiber, and when there is a leak in two places, it is possible to detect the leak at the rear. Can be detected without reducing detection sensitivity,
The object of the present invention is to obtain an optical fiber sensor for detecting leakage that can be repeatedly detected and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る漏洩検知用光フアイバセンサ
は、少なくとも1つのヘリカル状に形成されたコ
ア部と該コア部を取巻くクラツド部とからなり、
該コア部の外周面の一部とクラツド部の外周面と
の最短距離をエバネツシエント波長厚さ以下に形
成して全長に亘る漏洩検知光センサ部を備えるよ
うに構成したものである。
The optical fiber sensor for leakage detection according to the present invention includes at least one core portion formed in a helical shape and a clad portion surrounding the core portion,
The shortest distance between a part of the outer circumferential surface of the core portion and the outer circumferential surface of the cladding portion is formed to be less than the evanescent wavelength thickness, so that a leak detection optical sensor portion extending over the entire length is provided.

また、もう一つの発明に係る漏洩検知用光フア
イバセンサの製造方法は、クラツド材の偏心位置
に少なくとも1本以上の貫通孔を設け、該貫通孔
にコア材を挿入し、加熱してクラツド材とコア材
を固着させた後にクラツド材及びコア材を軟化さ
せるように加熱してクラツド材の線引きを回転し
ながら行つて細径化されたクラツド部とヘリカル
状のコア部を形成すると共に該コア材の外周面の
一部とクラツド材の外周面との最短距離がエバネ
ツシエント波長厚さ以下の全長に亘る漏洩検知光
センサ部を形成するように構成したものである。
Another method of manufacturing an optical fiber sensor for detecting leakage according to the invention is to provide at least one through hole at an eccentric position of the clad material, insert a core material into the through hole, and heat the core material to form the clad material. After fixing the cladding material and the core material, the cladding material and the core material are heated to soften them, and the cladding material is drawn while rotating to form a thinned cladding part and a helical core part, and the core is The shortest distance between a part of the outer circumferential surface of the clad material and the outer circumferential surface of the cladding material is configured to form a leak detection optical sensor portion over the entire length less than or equal to the evanescent wavelength thickness.

〔作用〕[Effect]

この発明においては漏洩検知用光フアイバセン
サは少なくとも1つのヘリカル状に形成されたコ
ア部と該コア部を取巻くクラツド部とからなり、
該コア部の外周面とクラツドの外周面との最短距
離をエバネツシエント波長厚さ以下に形成された
全長に亘る漏洩検知光センサ部を備えているか
ら、漏液の検知がクラツド部のいずれの箇所に付
着しても検知でき、しかもコア部がヘリカル状に
形成されているために二箇所以上に油等の液体が
付着した場合に後方の漏洩モードとなる伝搬モー
ドの光は前方の漏洩モードとなる伝搬モードの光
の反射する角度とは反射する角度θが異つたもの
がなり、漏油の検知感度が低下することはない。
In the present invention, an optical fiber sensor for leakage detection includes at least one core portion formed in a helical shape and a clad portion surrounding the core portion,
Since it is equipped with a leak detection optical sensor section that extends over the entire length and is formed so that the shortest distance between the outer circumferential surface of the core section and the outer circumferential surface of the cladding is less than the evanescent wavelength thickness, liquid leakage can be detected at any point on the cladding section. Moreover, because the core is formed in a helical shape, if oil or other liquid adheres to two or more places, the light in the propagation mode becomes the rear leakage mode, and the light in the propagation mode becomes the front leakage mode. The angle θ at which the light is reflected is different from the angle at which the light is reflected in the propagation mode, and the oil leakage detection sensitivity does not decrease.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す一部省略の
斜視図である。
FIG. 1 is a partially omitted perspective view showing an embodiment of the present invention.

図において、11は光フアイバーのクラツド
部、12は1つのヘリカル状に形成されたコア部
で、コア部12の周囲をクラツド部11が取り巻
いている。13は光フアイバの全長に亘つて形成
された漏洩検知光センサ部で、ヘリカル状のコア
部12外周面の一部とクラツド部11の外周面と
の最短距離をエバネツシエント波長厚さtとする
ことにより形成される。
In the figure, 11 is a cladding portion of the optical fiber, 12 is a core portion formed in a helical shape, and the cladding portion 11 surrounds the core portion 12 . Reference numeral 13 denotes a leak detection optical sensor section formed over the entire length of the optical fiber, and the shortest distance between a part of the outer circumferential surface of the helical core section 12 and the outer circumferential surface of the cladding section 11 is defined as the evanescent wavelength thickness t. formed by.

次に、この実施例の漏洩検知用光フアイバセン
サの製造方法について説明する。
Next, a method of manufacturing the optical fiber sensor for leakage detection of this embodiment will be explained.

まず、たとえば直径3cm、長さ60cmのクラツド
材の偏心位置に直径1cm程度の貫通孔をあける。
次に、その貫通孔にコア材を挿入し、加熱体を相
対的に移動させつつ真空引きしてクラツド材とコ
ア材との間の空隙を加熱融着し、次いでクラツド
材及びコア材を溶融しないで軟化するように加熱
してクラツド材の線引きを回転させながら行つて
クラツド材とコア材を細径化する。この細径化を
コア材の直径が約50μmになるまで行うと、所定
長さの光フアイバのクラツド部11とコア部12
が形成されると共にコア材であるコア部12の外
周面の一部とクラツド材であるクラツド部1の外
周面との最短距離がエバネツシエント波長厚さt
よりも小さ目の厚さの全長に亘る漏洩検知光セン
サ部13が形成される。なお、これと同種の技術
としてロツドチユーブ法と呼ばれるものがある。
(発行所、特許庁編(社団法人発明協会)「特許か
らみた光フアイバー技術」86頁及び87頁参照)。
First, a through hole with a diameter of about 1 cm is made at an eccentric position in a cladding material of, for example, 3 cm in diameter and 60 cm in length.
Next, the core material is inserted into the through hole, and the gap between the cladding material and the core material is heated and fused by drawing a vacuum while moving the heating element relatively, and then the cladding material and the core material are melted. The cladding material is heated to soften it without being heated, and the cladding material is drawn while rotating to reduce the diameter of the cladding material and the core material. When this diameter reduction is performed until the diameter of the core material becomes approximately 50 μm, the clad part 11 and core part 12 of the optical fiber of a predetermined length are formed.
is formed, and the shortest distance between a part of the outer peripheral surface of the core part 12 which is the core material and the outer peripheral surface of the clad part 1 which is the clad material is the evanescent wavelength thickness t.
A leakage detection optical sensor section 13 is formed over the entire length and has a smaller thickness than the above. Note that there is a technique similar to this called the rod tube method.
(Refer to pages 86 and 87 of “Optical Fiber Technology from the Perspective of Patents” edited by the Publisher and Japan Patent Office (Japan Institute of Invention and Innovation)).

上記のように構成された漏洩検知用光フアイバ
センサにおいては光フアイバの全長に亘つて漏洩
検知光センサ部13が連続して形成されており、
クラツド部1のある箇所にコア部より高い屈折率
の液体例えば漏油が付着すると、コア部2内の漏
油付着部分において油がないときにはある角度で
反射して伝搬すべき伝搬モードの光は漏洩モード
に変換されて外部に漏洩する。従つて、これを光
パルス試験器を用いて後方散乱光を計測すれば、
漏洩の発生時刻と発生位置を検知することができ
る。なお、漏洩検知光センサ部13がコア部12
の外周面の一部とクラツド部11の外周面との最
短距離をエバネツシエント波長以下として形成さ
れているのは、それ以上では油が付着したときに
漏洩モードに変換されないからである。
In the optical fiber sensor for leakage detection configured as described above, the leakage detection optical sensor section 13 is continuously formed over the entire length of the optical fiber.
When a liquid with a refractive index higher than that of the core, such as leaked oil, adheres to a certain part of the cladding part 1, the light in the propagation mode that should be reflected at a certain angle and propagated when there is no oil in the part of the core part 2 where the oil leakage is attached is reflected. It is converted to leak mode and leaked to the outside. Therefore, if we measure the backscattered light using an optical pulse tester, we get
The time and location of leakage can be detected. Note that the leakage detection optical sensor section 13 is connected to the core section 12.
The reason why the shortest distance between a part of the outer circumferential surface of the cladding part 11 and the outer circumferential surface of the cladding part 11 is set to be less than the evanescent wavelength is that if the distance is longer than the evanescent wavelength, it will not be converted to the leakage mode when oil is attached.

次に、クラツド部1の二箇所以上に油が付着し
た場合、上流側である前方で油が付着した箇所で
は、コア部12内を油がないときにはある角度で
反射して伝搬してきた伝搬モードの光は漏洩モー
ドに変換されてしまうが、下流側である後方で油
が付着した箇所ではコア部12がヘリカル状に形
成されているために、コア部12内を前述とは別
の角度で反射して伝搬し、前方の漏油箇所では油
がクラツド部11に付着していても漏洩モードに
変換されない伝搬モードの光は、後方の箇所では
その反射角が変化させられることにより、油の付
着で漏洩モードに変換されて外部に漏洩する。従
つて、二箇所以上に漏油があつても漏油の検知感
度が低下することはなく、伝送損失も大きくな
い。また、第2従来例のように油がクラツドに浸
漬するものでないので、クラツド部11の表面に
付着した油を拭きとれば、繰り返し使用すること
が可能である。更に、油の付着によりある角度で
反射する伝搬モードの光が全て漏洩モードの光に
変換されるという検出感度の高いものであるか
ら、クラツド部11に油が油滴状に付着した場合
だけでなく、薄膜状に付着した場合にも漏油を検
知することが可能である。
Next, when oil adheres to two or more places on the cladding part 1, the propagation mode that would have been reflected and propagated at a certain angle in the core part 12 when there was no oil at the place where the oil adhered at the front, which is the upstream side. However, since the core part 12 is formed in a helical shape at the downstream side where the oil is attached, the light inside the core part 12 is converted into a leakage mode at a different angle than the one described above. The light in the propagation mode that is reflected and propagated and is not converted to the leakage mode at the front oil leakage point even if oil is attached to the cladding part 11, is converted to the oil leakage mode by changing its reflection angle at the rear location. Due to adhesion, it is converted to leakage mode and leaks to the outside. Therefore, even if there is oil leakage in two or more places, the oil leakage detection sensitivity will not decrease and the transmission loss will not be large. Further, unlike the second conventional example, the cladding part 11 is not immersed in oil, so that it can be used repeatedly by wiping off the oil adhering to the surface of the cladding part 11. Furthermore, since the detection sensitivity is high in that all the light in the propagation mode that is reflected at a certain angle due to the attachment of oil is converted into light in the leakage mode, only when oil is attached to the cladding part 11 in the form of oil droplets, the detection sensitivity is high. It is possible to detect oil leakage even if the oil is attached in the form of a thin film.

この実施例では油の検知について述べたが、水
の検知もすることができ、この場合にはコア部1
2の屈折率を被検知物質の屈折率よりコア部12
の屈折率を低くしているが、水を検知せずに油だ
けを検知するときにはn=1.333水以上でn=
1.458油の間にコア部12の屈折率をn=1.450程
度に設定すればよい。
Although oil detection has been described in this embodiment, water detection can also be performed, and in this case, the core part 1
2 from the refractive index of the substance to be detected.
However, when detecting only oil without detecting water, n = 1.333 or more than water, n =
The refractive index of the core portion 12 may be set to about n=1.450 between the 1.458 and 1.458 oil.

第2図はこの発明の第2実施例を示す一部省略
の斜視図である。
FIG. 2 is a partially omitted perspective view showing a second embodiment of the invention.

この実施例は、2つのヘリカル状に形成された
コア部12と該コア部12を取り巻くクラツド部
11とからなり、第1実施例と同様な全長に亘る
漏洩検知光センサ部13が2つ形成されるもので
ある。従つて、クラツド部11の所定長さ当り、
1本のヘリカル状コア部12を備えたものより、
センサ面積が増加し検知性能が向上する。
This embodiment consists of two helical core portions 12 and a cladding portion 11 surrounding the core portions 12, and two leakage detection optical sensor portions 13 extending over the entire length similar to the first embodiment are formed. It is something that will be done. Therefore, per predetermined length of the cladding portion 11,
Compared to the one with one helical core part 12,
The sensor area increases and detection performance improves.

この実施例の漏洩検知用光フアイバセンサの製
造方法は、クラツド材の偏心位置に2つの貫通孔
を平行に設け、各貫通孔にコア材を挿入する工程
が第1実施例と相違するだけで後の工程は第1実
施例と同様であるので、後の工程の説明は省略す
る。
The manufacturing method of the optical fiber sensor for leakage detection of this embodiment differs from the first embodiment only in the steps of providing two parallel through holes at eccentric positions in the clad material and inserting a core material into each through hole. Since the subsequent steps are similar to those in the first embodiment, explanations of the subsequent steps will be omitted.

この2本のコア部12,12とクラツド部11
とからなるいわゆるダフルヘリカル型の漏洩検知
用光フアイバセンサは、光フアイバをループ型に
して逆方向からも光パルスを挿入すれば位置検出
の二重化が図れ、検知精度が一段と向上する。こ
の他には透過光検知によつて光フアイバの断線等
の動作チエツクも行なえる。
These two core parts 12, 12 and the clad part 11
In the so-called duffle helical type optical fiber sensor for leakage detection, the optical fiber can be made into a loop type and optical pulses can be inserted from the opposite direction to achieve redundant position detection, further improving detection accuracy. In addition to this, it is also possible to check the operation of optical fibers, such as disconnection, by detecting transmitted light.

上記第1実施例、第2実施例ではいずれも漏洩
検知光センサ部13を、コア部12の外周面の一
部とクラツド部11の外周面との最短距離をエバ
ネツシエント波長厚さより少し小さ目にすること
により形成していたが、該最短距離をエバネツシ
エント波長以下(零を含む)としても漏洩検知光
センサ部が形成されることは勿論である。このよ
うに、1本又は2本のコア部12の外周面の一部
がクラツド部11の外周面とが接する即ち該最短
距離が零の漏洩検知光センサ部13を備えた漏洩
検知用光フアイバセンサを製造する場合、クラツ
ド材の外周に接した貫通孔をあけると、かけるお
それがある。そこで、一定の厚さとした位置に貫
通孔をあけ、コア材を貫通孔に挿入し、一度加熱
してコア材をクラツド材に固着させてからクラツ
ド材の外周部を切削し、漏洩検知光センサ部13
のクラツド厚さを所定の値(線引き後にエバネツ
シエント波長以下〜0となる)まで切削加工した
後に線引きを行うことが行われる。このようにす
ることにより、簡単で良好な漏洩検知用光フアイ
バセンサが得られる。
In both the first and second embodiments, the shortest distance between a part of the outer circumferential surface of the core section 12 and the outer circumferential surface of the cladding section 11 is made slightly smaller than the evanescent wavelength thickness in the leak detection optical sensor section 13. However, it goes without saying that the leak detection optical sensor section can also be formed even if the shortest distance is equal to or less than the evanescent wavelength (including zero). In this way, an optical fiber for leakage detection is provided with a leakage detection optical sensor section 13 in which a part of the outer circumferential surface of one or two core sections 12 is in contact with the outer circumferential surface of the cladding section 11, that is, the shortest distance is zero. When manufacturing a sensor, if a through hole is made in contact with the outer periphery of the cladding material, there is a risk of chipping. Therefore, we drilled a through hole at a certain thickness, inserted the core material into the through hole, heated it once to fix the core material to the cladding material, and then cut the outer periphery of the cladding material to create a leak detection optical sensor. Part 13
After cutting the cladding thickness to a predetermined value (below the evanescent wavelength to 0 after drawing), drawing is performed. By doing so, a simple and good optical fiber sensor for detecting leakage can be obtained.

上述したいずれの実施例も油等液体の漏洩を検
知するものとして説明してきたが、コア部の太
さ、ヘリカルピツチ、ヘリカル半径、クラツド厚
さ等を特定のものにすると、ある固有の波長(例
えば、CH4の吸収波長1.665μmや3.392μm)で共
振モードとするセンサを作ることができ、この場
合には検知感度が向上してガス検知も行えるガス
センサとしても利用が可能となる。
All of the above-mentioned embodiments have been described as detecting leakage of liquid such as oil, but if the core thickness, helical pitch, helical radius, cladding thickness, etc. are set to specific values, a specific wavelength (e.g. It is possible to create a sensor that has a resonance mode at the CH 4 absorption wavelength of 1.665 μm or 3.392 μm), and in this case, the detection sensitivity is improved and it can be used as a gas sensor that can also detect gases.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、少なくとも一
つのヘリカル状に形成されたコア部と、該コア部
を取巻くクラツド部とからなり、該コア部の外周
面の一部とクラツド部の外周面との最短距離をエ
バネツシエント波長厚さ以下に形成して全長に亘
る漏洩検知光センサ部を備えるようにしたので、
漏油等の液体がクラツド部の外周面における漏洩
検知光センサ部のいずれの箇所に付着しても検知
でき、しかもコア部がヘリカル状に形成されてい
るので、クラツド部の2箇所以上に油等の液体が
付着した場合にも前方の漏洩モードとなる伝搬モ
ードの光とは角度の異つた伝搬モードの光が後方
で漏洩モードとなり、後方の漏液の検知感度を低
下させることなく漏液を検知できるという効果が
ある。
As explained above, this invention consists of at least one core portion formed in a helical shape and a cladding portion surrounding the core portion, and the shortest distance between a part of the outer circumferential surface of the core portion and the outer circumferential surface of the cladding portion. Since the distance is formed to be less than the evanescent wavelength thickness and the leak detection optical sensor section is provided over the entire length,
It can be detected even if liquid such as oil leaks adheres to any part of the leakage detection optical sensor part on the outer peripheral surface of the cladding part.Moreover, since the core part is formed in a helical shape, it is possible to detect oil leakage at two or more places on the cladding part. Even when a liquid such as the like adheres to the liquid, the light in the propagation mode that is at a different angle from the light in the propagation mode that becomes the leakage mode in the front becomes the leakage mode in the rear, and it is possible to detect liquid leakage without reducing the detection sensitivity of liquid leakage in the rear. This has the effect of being able to detect.

また、もう一つの発明はクラツド材の偏心位置
に少なくとも一つ以上の貫通孔を設け、該貫通孔
にコア材を挿入し、加熱してクラツド材とコア材
とを固着させた後に、クラツド材とコア材を軟化
させるように加熱してクラツド材の線引きを回転
しながら行つて細径化されたクラツド部とヘリカ
ル状のコア部を形成すると共に該コア部の外周面
の一部とクラツド部の外周面との最短距離がエバ
ネツシエント波長厚さ以下の全長に亘る光漏洩検
知センサ部を形成するようにしたので漏油がいず
れの箇所に付着しても検知できると共に2箇所以
上に油等の液体が付着しても感度を低下させずに
検知できる良好な漏洩検知用光フアイバセンサを
簡単に得ることができるという効果がある。
Another invention is to provide at least one through hole in the eccentric position of the cladding material, insert the core material into the through hole, heat the cladding material and the core material, and then remove the cladding material. The core material is heated to soften it, and the clad material is drawn while rotating to form a thinned clad portion and a helical core, and a part of the outer peripheral surface of the core portion and the clad portion are drawn. Since the shortest distance to the outer peripheral surface of the light leakage detection sensor part is formed over the entire length so that the shortest distance is less than the evanescent wavelength thickness, it is possible to detect oil leakage at any location, and also to prevent oil etc. An advantageous effect is that it is possible to easily obtain a good optical fiber sensor for leakage detection that can detect liquid adhesion without reducing sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例を示す一部省略
の斜視図、第2図はこの発明の第2実施例を示す
一部省略の斜視図、第3図は第1従来例の漏洩検
知用光フアイバセンサを示す斜視図、第4図は漏
洩検知用光フアイバセンサの漏洩検知原理を示す
説明図、第5図は第2従来例の漏洩検知用光フア
イバセンサを示す説明図である。 図において、11はクラツド部、12はコア
部、13は漏洩検知光センサ部である。なお各図
中、同一符号は同一又は相当部分を示す。
Fig. 1 is a partially omitted perspective view showing a first embodiment of the present invention, Fig. 2 is a partially omitted perspective view showing a second embodiment of the invention, and Fig. 3 is a leakage diagram of the first conventional example. FIG. 4 is an explanatory diagram showing the leak detection principle of the optical fiber sensor for leak detection, and FIG. 5 is an explanatory diagram showing the second conventional optical fiber sensor for leak detection. . In the figure, 11 is a clad part, 12 is a core part, and 13 is a leakage detection optical sensor part. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 少なくとも1つのヘリカル状に形成されたコ
ア部と該コア部を取巻くクラツド部とからなり、
該コア部の外周面の一部とクラツド部の外周面と
の最短距離をエバネツシエント波長厚さ以下に形
成して全長に亘る漏洩検知光センサ部を備えたこ
とを特徴とする漏洩検知用光フアイバセンサ。 2 クラツド材の偏心位置に少なくとも1つ以上
の貫通孔を設け、該貫通孔にコア材を挿入し、加
熱してクラツド材とコア材とを固着させた後にク
ラツド材及びコア材を軟化させるように加熱して
クラツド材の線引きを回転しながら行つて細径化
されたクラツド部とヘリカル状のコア部を形成す
ると共に該コア部の外周面の一部とクラツド部の
外周面との最短距離がエバネツシエント波長厚さ
以下の全長に亘る漏洩検知光センサ部を形成する
ようにしたことを特徴とする漏洩検知用光フアイ
バセンサの製造方法。
[Claims] 1. Consisting of at least one helical core portion and a clad portion surrounding the core portion,
An optical fiber for leakage detection, characterized in that the shortest distance between a part of the outer peripheral surface of the core part and the outer peripheral surface of the cladding part is formed to be less than the evanescent wavelength thickness, and is provided with a leakage detection optical sensor part extending over the entire length. sensor. 2. At least one through hole is provided at an eccentric position in the cladding material, a core material is inserted into the through hole, the cladding material and the core material are fixed by heating, and then the cladding material and the core material are softened. The clad material is heated and drawn while rotating to form a thinned clad portion and a helical core, and the shortest distance between a part of the outer circumferential surface of the core portion and the outer circumferential surface of the clad portion. 1. A method for manufacturing an optical fiber sensor for leakage detection, characterized in that a leakage detection optical sensor portion is formed over an entire length less than or equal to an evanescent wavelength thickness.
JP60186565A 1985-08-27 1985-08-27 Optical fiber sensor for detecting leakage and its manufacture Granted JPS6247531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186565A JPS6247531A (en) 1985-08-27 1985-08-27 Optical fiber sensor for detecting leakage and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186565A JPS6247531A (en) 1985-08-27 1985-08-27 Optical fiber sensor for detecting leakage and its manufacture

Publications (2)

Publication Number Publication Date
JPS6247531A JPS6247531A (en) 1987-03-02
JPH0232570B2 true JPH0232570B2 (en) 1990-07-20

Family

ID=16190749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186565A Granted JPS6247531A (en) 1985-08-27 1985-08-27 Optical fiber sensor for detecting leakage and its manufacture

Country Status (1)

Country Link
JP (1) JPS6247531A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650998B2 (en) * 1989-01-07 1997-09-10 古河電気工業株式会社 Optical fiber for detecting liquid, gas, etc.
JPH02275906A (en) * 1989-04-18 1990-11-09 Sumitomo Electric Ind Ltd Optical fiber sensor
US5239176A (en) * 1991-10-03 1993-08-24 Foster-Miller, Inc. Tapered optical fiber sensing attenuated total reflectance
US5585634A (en) * 1994-09-29 1996-12-17 Foster-Miller, Inc. Attenuated total reflectance sensing
CN114018435A (en) * 2021-09-18 2022-02-08 湖北三江航天红峰控制有限公司 Solid rocket engine propellant debonding detection device and detection method

Also Published As

Publication number Publication date
JPS6247531A (en) 1987-03-02

Similar Documents

Publication Publication Date Title
US5982959A (en) Coated fiber optic sensor for the detection of substances
US5061857A (en) Waveguide-binding sensor for use with assays
JP2010223817A (en) Ethanol sensor and ethanol measurement system using the same
US20020012115A1 (en) Small optical microphone/sensor
JPH0232570B2 (en)
CN110823834A (en) High-sensitivity SPR refractive index sensor based on plastic optical fiber periodic narrow groove structure
JP2000089042A (en) Optical fiber sensor and detection of information using the same
JPH061231B2 (en) Optical fiber sensor for leak detection
JP2513470B2 (en) Optical fiber sensor for oil leak detection and method of using the same
JP2650998B2 (en) Optical fiber for detecting liquid, gas, etc.
JPH0511780B2 (en)
JP3042557B2 (en) Gas and liquid detection method
JPS638536A (en) Liquid sensor
JPH0260259B2 (en)
JPH0446178Y2 (en)
JPH04258744A (en) Optical fiber gas sensor
JPH0330810B2 (en)
JPS60209143A (en) Liquid sensor
JPS627020A (en) Optical fiber hydrophone
JPH02236145A (en) Optical type liquid sensor and manufacture thereof
JPS62250324A (en) Optical fiber sensor for detecting leakage
JPS63154941A (en) Physical value measuring apparatus for fluid
JPS59188533A (en) Optical fiber for oil leak detection
JPH0260260B2 (en)
JPS6230939A (en) Optical fiber sensor