JPH023255A - Evaluation method for integrated circuit device and semiconductor device for integrated circuit device evaluation - Google Patents

Evaluation method for integrated circuit device and semiconductor device for integrated circuit device evaluation

Info

Publication number
JPH023255A
JPH023255A JP63150144A JP15014488A JPH023255A JP H023255 A JPH023255 A JP H023255A JP 63150144 A JP63150144 A JP 63150144A JP 15014488 A JP15014488 A JP 15014488A JP H023255 A JPH023255 A JP H023255A
Authority
JP
Japan
Prior art keywords
yield
integrated circuit
circuit device
leakage
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63150144A
Other languages
Japanese (ja)
Other versions
JPH0691149B2 (en
Inventor
Hideo Yoshino
吉野 秀男
Hideo Akitani
秋谷 秀夫
Susumu Muramoto
村本 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63150144A priority Critical patent/JPH0691149B2/en
Publication of JPH023255A publication Critical patent/JPH023255A/en
Publication of JPH0691149B2 publication Critical patent/JPH0691149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To clarify which technical element the problem is in by dividing an integrated circuit device that a circuit constituting element is arranged into the specified scales, and evaluating the yield rates of the connection of a wiring layer, the interline leakage of a wiring layer, and the leakage between wiring layers so as to seek the yield rate of an integrated circuit device from the results. CONSTITUTION:For example, the area of 256K bits is properly divided so that the yield rate may be easily evaluated. 256K bits area is divided into three areas of 64K bits and three area of 16K bits, and the residual is made a drawing-out area to a pad. That is, they are made to be a pad 10 and areas A1, B1, C1, A2, B2 and C2. For example, the area A1 and A2 are made up based on the aluminum Al1 of the first layer of a memory cell such that breaking of a word line 20, breaking of a power source line 21, and interline leakage of Al1 can be evaluated. Also, they are made up based on the aluminum Al2 of the second layer of the memory cell such that breaking of a bit line 22, breaking of an earth line 23, and interline leakage of the Al2 can be evaluated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単位回路の繰返しからなる記憶回路や論理回
路を製造する場合の歩留りを評価する際において、製造
の各技術要素毎に歩留りを評価し集積回路装置全体とし
ての歩留りを推定するとともに、各技術要素の歩留り要
因を明らかにすることを可能とする効率の高い歩留り評
価方法およびその方法を実施する装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention aims to evaluate the yield for each technical element of manufacturing when evaluating the yield in manufacturing memory circuits and logic circuits consisting of repeated unit circuits. The present invention relates to a highly efficient yield evaluation method that makes it possible to estimate the yield of an integrated circuit device as a whole and clarify the yield factors of each technical element, and a device that implements the method.

〔従来の技術〕[Conventional technology]

従来、開発段階の集積回路の歩留りを評価する際におい
ては、目的とする集積回路そのものを試作し歩留り評価
を行なってきたが、開発当初は目的とする集積回路の歩
留りが低く、評価ができないことがあるという欠点があ
った。
Conventionally, when evaluating the yield of integrated circuits at the development stage, the target integrated circuit itself was prototyped and the yield was evaluated. There was a drawback that there was.

一方、これと並行して、目的とする集積回路と同一ウェ
ハもしくは他のウェハ上に専用のテストエレメントグル
ープ(TEG)パターンを形成し、これらをそれぞれ測
定し、各技術要素毎に歩留りを評価するという方法もと
られていた(「近藤他、電子通信学会誌、第62巻4号
、393頁、昭和54年4月」参照)。従来の歩留り評
価TEGパターンの例を第5図に示す。第5図(a)は
、段差上を直行して配線が通過する場合に配線の断線と
線間のショートもしくはリークを測定するパターンの一
例を示すパターン図である。また、第5図(b)は下層
の配線と上層の配線をコンタクトホールで多段接続した
ものを示すパターン図で、コンタクト接続の歩留りを評
価するものである。
Meanwhile, in parallel, a dedicated test element group (TEG) pattern is formed on the same wafer as the target integrated circuit or on a different wafer, and these are measured to evaluate the yield for each technological element. This method was also used (see "Kondo et al., Journal of the Institute of Electronics and Communication Engineers, Vol. 62, No. 4, p. 393, April 1978"). An example of a conventional yield evaluation TEG pattern is shown in FIG. FIG. 5(a) is a pattern diagram showing an example of a pattern for measuring disconnection of the wiring and short-circuit or leakage between the lines when the wiring passes orthogonally over a step. Further, FIG. 5(b) is a pattern diagram showing a structure in which lower layer wiring and upper layer wiring are connected in multiple stages through contact holes, and is used to evaluate the yield of contact connection.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来例においては、以下に掲げる欠点を有し
ていた。
Such conventional examples had the following drawbacks.

■ 1チツプ内で各種の評価をするためには、限られた
チップ面積の中で領域を配分する必要があるが、そのた
め、一つの評価項目に対して割り当てられる面積は小さ
くなる。例えば第5図(alの場合、配線の総延長は約
20mmであった。一方、例えば256にビットスタテ
ィックRAM(256KSRAM)の場合を例にとると
、第1層目アルミニウム配線の総延長は2.8mとなる
。ここで配線が断線しない歩留りYは次式で表わされる
とする。
(2) In order to perform various evaluations within one chip, it is necessary to allocate areas within the limited chip area, but as a result, the area allocated to one evaluation item becomes small. For example, in the case of FIG. 5 (al), the total length of the wiring was approximately 20 mm.On the other hand, if we take the case of a 256-bit static RAM (256KSRAM) as an example, the total length of the first layer aluminum wiring is approximately 20 mm. .8 m.Here, it is assumed that the yield Y at which the wiring does not break is expressed by the following equation.

Y=exp  (−D−L) ここで、Dは欠陥率、Lは配線長である。256KSR
AMの歩留りが、重要なマスク層6層における断線・シ
ョートで決まるとし、評価時点での歩留りレベルが10
%であるとして、各要素毎の歩留りを均等配分すると約
83%となる。各要素毎の歩留りY−83%の場合、D
=6.6X 10−5/ m mであるから、上記TE
Gの場合は、その歩留りYT=99.9%となる。−枚
のウェハで45チツプ(10mm口、4インチウェハ)
得られるとすると、10ツト(ウェハ25枚)での不良
品は1〜2個となり、歩留り評価精度が著しく悪くなっ
てしまう。さらに歩留りレベルが上がると全く評価不能
となってしまう。このような状況は第5図(b)の場合
もほとんど同様である。
Y=exp (-D-L) Here, D is the defect rate and L is the wiring length. 256KSR
Assuming that AM yield is determined by disconnections and shorts in six important mask layers, the yield level at the time of evaluation was 10.
%, and if the yield for each element is equally distributed, it will be about 83%. If the yield for each element is Y-83%, D
= 6.6X 10-5/mm, so the above TE
In the case of G, the yield YT is 99.9%. - 45 chips per wafer (10mm opening, 4 inch wafer)
If this is possible, the number of defective products in 10 wafers (25 wafers) will be 1 to 2, and the accuracy of yield evaluation will be extremely poor. If the yield level increases further, it becomes completely impossible to evaluate. This situation is almost the same in the case of FIG. 5(b).

〔課題を解決するための手段〕[Means to solve the problem]

このような課題を解決するために本発明は、単位回路の
繰返しからなる集積回路装置の歩留り評価方法において
、回路構成素子が配設された集積回路装置を所定規模に
分割し、分割された集積回路装置部分毎に配線層の接続
、配線層の線間り−ク、配線層間のリークの歩留りを評
価し、歩留りの結果から集積回路装置の歩留りを求める
ようにしたものである。
In order to solve these problems, the present invention provides a method for evaluating the yield of integrated circuit devices consisting of repeating unit circuits, in which an integrated circuit device in which circuit components are arranged is divided into predetermined scales, and the divided integrated circuits are The yield of connections between wiring layers, leaks between wiring layers, and leaks between wiring layers is evaluated for each circuit device part, and the yield of the integrated circuit device is determined from the yield results.

また、単位回路の繰返しからなる集積回路装置において
、回路構成素子が配設された集積回路を歩留り評価が可
能な規模に分割し、分割された集積回路装置部分上に配
線層の接続、配線層の線間リーク、配線層間のリークの
歩留りが測定できるようにパターンを形成したものであ
る。
In addition, in integrated circuit devices consisting of repeating unit circuits, the integrated circuit in which circuit components are arranged is divided into a scale that allows for yield evaluation, and wiring layers are connected and wiring layers are connected on the divided integrated circuit device parts. A pattern is formed so that the yield of leakage between lines and between wiring layers can be measured.

〔作用〕[Effect]

本発明においては、歩留りが評価可能レベルに達し、歩
留り評価が可能となり、問題点がどの技術要素にあるか
を明確化できる。
In the present invention, the yield reaches an evaluable level, it becomes possible to evaluate the yield, and it is possible to clarify which technical element has a problem.

〔実施例〕〔Example〕

本発明は、歩留りを評価しようとする記憶回路装置もし
くは論理回路装置の配線より下層の部分はそのまま用い
、これを歩留り評価が可能な適度な規模に分割し、その
上部に専用の配線層を形成し、歩留りに寄与する技術要
素毎の歩留り評価を可能とするものである。
The present invention uses the lower layer of the wiring of a memory circuit device or logic circuit device whose yield is to be evaluated as is, divides it into an appropriate size that allows yield evaluation, and forms a dedicated wiring layer above it. This enables yield evaluation for each technical element that contributes to yield.

次に、本発明の特徴と従来技術との差異について述べる
。本発明の特徴とするところは、単位回路の繰返しから
なる集積回路装置の歩留り評価において、トランジスタ
、ダイオード、キャパシタ、抵抗等の回路構成素子が配
設された上記集積回路装置を所定規模に分割し、分割さ
れた集積回路装置部分毎に配線層の接続、配線層の線間
リーク、配線層間のリークの歩留りを評価し、上記歩留
り結果から集積回路装置の歩留りを求める方法、および
そのためのテストエレメントグループ(TEG)を提供
することにある。従来技術においては、歩留りを評価し
ようとする集積回路装置の下地パターンをそのまま用い
、さらに、歩留りが大きく変動しても歩留り評価を可能
とするように規模を分割するという考え方はなく、目的
とする集積回路そのものの歩留り評価をするか、もしく
は独立に専用の各要素毎の比較的小規模のTEGを設計
し、これを一つのチップに搭載し評価を行なっていた。
Next, the features of the present invention and the differences from the prior art will be described. The present invention is characterized in that, in the yield evaluation of integrated circuit devices consisting of repeated unit circuits, the integrated circuit devices in which circuit components such as transistors, diodes, capacitors, and resistors are arranged are divided into predetermined scales. , a method for evaluating the yield of connections between wiring layers, leakage between wiring layers, and leakage between wiring layers for each divided integrated circuit device part, and determining the yield of an integrated circuit device from the above yield results, and a test element therefor. Group (TEG). In conventional technology, the underlying pattern of the integrated circuit device for which the yield is to be evaluated is used as is, and there is no concept of dividing the scale so that it is possible to evaluate the yield even if the yield fluctuates greatly. Either the yield of the integrated circuit itself was evaluated, or a relatively small-scale TEG was independently designed for each element, and this was mounted on a single chip and evaluated.

本発明の実施例においては、256にビットMO3型ス
タティックランダムアクセスメモリ (256KSRA
M)の歩留りの評価法、並びにその時に用いる評価用T
EGについて詳細に述べる。
In the embodiment of the present invention, 256-bit MO3 type static random access memory (256KSRA
M) yield evaluation method and evaluation T used at that time
EG will be described in detail.

ここで、MOSメモリの歩留りは、全体のほとんどを占
めるセルでの以下の各項目の歩留りによってほぼ決定さ
れると考えて良い。すなわち、■接合領域:接合リーク ■ゲート領域:ゲート絶縁膜す−ク ■ワード線;断線もしくはショート ■ビット線:断線もしくはショート である。
Here, it can be considered that the yield of a MOS memory is almost determined by the yield of each of the following items in cells, which account for most of the total. That is, (1) junction region: junction leak; (2) gate region: gate insulating film; (2) word line; disconnection or short; (2) bit line: disconnection or short.

本発明においては、コンタクトホール形成を行なう直前
まではMOSメモリと同一プロセスにより製造し、コン
タクトホール以降の工程を上記各項目が評価できるパタ
ーンを別途用意して行なう。
In the present invention, the semiconductor memory device is manufactured by the same process as the MOS memory until immediately before the contact hole is formed, and the steps after the contact hole are performed by separately preparing a pattern that can evaluate each of the above items.

このとき、256にピントの領域を歩留り評価がしやす
いように領域を適度に分割する。本実施例では、256
Kを64に領域3個、16に領域3個に分割した。残り
はパッドまでの引出し領域としている。この様子を第1
図に示す。第1図において、10はパッド、Am  B
l、C1,A2゜B2.C2は領域を示す。64におよ
び16にの各領域は以下の3種(領域A1およびA2、
領域B1およびB2、領域C1およびC2)に分かれる
At this time, the area in focus at 256 is divided appropriately to facilitate yield evaluation. In this example, 256
K was divided into 64 and 3 regions and 16 and 3 regions. The rest is a drawer area up to the pad. This situation is the first
As shown in the figure. In FIG. 1, 10 is a pad, Am B
l, C1, A2°B2. C2 indicates an area. Each area in 64 and 16 is of the following three types (area A1 and A2,
It is divided into regions B1 and B2 and regions C1 and C2).

まず、領域A1およびA2について説明する。First, areas A1 and A2 will be explained.

第2図(alはメモリセルの第1層のアルミニウム(A
ll)を基に作成したもので、ワード線20の断線、電
源線21の断線およびANIの線間り−クを評価できる
ようになっている。第2図(blはメモリセルの第2層
のアルミニウム(A#2)を基に作成したもので、ビッ
ト線22の断線、アース線23の断線およびA7!2の
線間す〜りを評価できるようになっている。
Figure 2 (al is the first layer of aluminum (A
ll), and is designed to evaluate disconnections in the word line 20, disconnections in the power supply line 21, and leaks between ANI lines. Figure 2 (bl is created based on the second layer of aluminum (A#2) of the memory cell, and evaluates the disconnection of the bit line 22, the disconnection of the ground wire 23, and the gap between the lines of A7!2. It is now possible to do so.

次に、領域B1およびB2について説明する。Next, regions B1 and B2 will be explained.

第3図+alは同様にメモリセルのAnを示したもので
、ワード線30の断線評価が可能で、またアルミニウム
層間リーク評価のためのAj71電極を成している。第
3図(blはアルミニウム層間リーク評価のためのAβ
2電極を成している。第3図(c)にAnとA12の平
面上の重なりの様子を示し、第3図(d)に第1層のア
ルミニウム(,6/21)31と第2層のアルミニウム
(A#2)32の断面での重なりの様子を示す。
FIG. 3 +al similarly shows An of the memory cell, which enables evaluation of disconnection of the word line 30 and forms the Aj71 electrode for evaluation of leakage between aluminum layers. Figure 3 (bl is Aβ for evaluating leakage between aluminum layers)
It forms two electrodes. Figure 3(c) shows how An and A12 overlap on the plane, and Figure 3(d) shows the first layer of aluminum (,6/21) 31 and the second layer of aluminum (A#2). 32 is shown in the cross section.

次に、領域C1およびC2について説明する。Next, regions C1 and C2 will be explained.

第4図(a)はAllのパターンを示したもので、同図
(C1に示すようにゲート40、p゛接合41およびn
ウェル42に接続され、上記各項目のリークが評価可能
となっている。第4図(b)は、コンタクトホール以降
の工程における配線の接続を示したものである。
FIG. 4(a) shows the pattern of All, in which the gate 40, p junction 41 and n
It is connected to the well 42, and leakage of each of the above items can be evaluated. FIG. 4(b) shows the interconnection in the process after the contact hole.

上記各TEGについて直流印加時の絶縁抵抗を測定し、
各々の歩留りを評価することにより、目的とする256
KSRAMの歩留りを推定することができる。
Measure the insulation resistance of each TEG above when DC is applied,
By evaluating each yield, the target 256
The yield of KSRAM can be estimated.

なお、上記説明は256KSRAMについて述べたもの
であるが、マスクスライスLSI、スタンダードセル方
式の論理LSI等比較的規則性のあるパターンのLSI
に対しても同様に適用できる。
The above explanation is for 256KSRAM, but it is also applicable to LSIs with relatively regular patterns such as mask slice LSIs and standard cell type logic LSIs.
The same applies to

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、歩留り評価が可能な規模
に分割することにより、歩留りが評価可能レヘルに達し
、歩留り評価が可能となる効果がある。また、各技術要
素毎に分割された評価を行なうことにより、問題点がど
の技術要素にあるかを明確化できる効果がある。従って
、LSIの開発の期間短縮、効率化が可能となる。
As explained above, the present invention has the effect that by dividing the product into a scale that allows yield evaluation, the yield reaches an evaluable level and yield evaluation becomes possible. Furthermore, by conducting separate evaluations for each technical element, it is possible to clarify which technical element has a problem. Therefore, it is possible to shorten the period of LSI development and improve efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の全体構成図、第2図は本発明
の実施例の領域A1およびA2の部分の4ビット分の配
線パターン図、第3図は本発明の実施例の領域B1およ
びB2部分の4ビット分の配線パターン並びに配線の重
なり具合を示すパターン図、第4図は本発明の実施例の
01およびC2部分の4ビット分の配線パターン並びに
そのゲート電極、拡散層への接続を示すパターン図、第
5図は従来の配線接続並びにコンタクト多段接続歩留り
評価TEGを示すパターン図である。 IO・・・パッド、20.30・・・ワード線、21・
・・電源線、22・・・ビット線、23・・・アース線
、31・・・第1層アルミニウム、32・・・第2層ア
ルミニウム、40・・・ゲート電極、41・・・n゛拡
散層、42・・・nウェル。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIG. 2 is a wiring pattern diagram for 4 bits in areas A1 and A2 of the embodiment of the present invention, and FIG. 3 is an area of the embodiment of the present invention. A pattern diagram showing the wiring pattern for 4 bits in the B1 and B2 portions and the overlapping state of the wiring, FIG. FIG. 5 is a pattern diagram showing conventional wiring connection and contact multi-stage connection yield evaluation TEG. IO...Pad, 20.30...Word line, 21.
...Power supply line, 22...Bit line, 23...Earth wire, 31...First layer aluminum, 32...Second layer aluminum, 40...Gate electrode, 41...n゛Diffusion layer, 42...n well.

Claims (2)

【特許請求の範囲】[Claims] (1)単位回路の繰返しからなる集積回路装置の歩留り
評価方法において、トランジスタ、ダイオード、キャパ
シタ、抵抗等の回路構成素子が配設された前記集積回路
装置を歩留り評価が可能な規模に分割し、分割された集
積回路装置部分毎に配線層の接続、配線層の線間リーク
、配線層間のリークの歩留りを評価し、前記歩留りの結
果から集積回路装置の歩留りを求めることを特徴とする
集積回路装置の評価方法。
(1) In a method for evaluating the yield of an integrated circuit device consisting of repeating unit circuits, the integrated circuit device in which circuit constituent elements such as transistors, diodes, capacitors, and resistors are arranged is divided into sizes capable of evaluating the yield; An integrated circuit characterized in that the yield of connections between wiring layers, leakage between wiring layers, and leakage between wiring layers is evaluated for each divided integrated circuit device part, and the yield of the integrated circuit device is determined from the yield results. How to evaluate equipment.
(2)単位回路の繰返しからなる集積回路装置において
、トランジスタ、ダイオード、キャパシタ、抵抗等の回
路構成素子が配設された前記集積回路を歩留り評価が可
能な規模に分割し、分割された前記集積回路装置部分上
に配線層の接続、配線層の線間リーク、配線層間のリー
クの歩留りが測定できるようにパターンを形成したこと
を特徴とする集積回路装置評価用半導体装置。
(2) In an integrated circuit device consisting of repeating unit circuits, the integrated circuit in which circuit components such as transistors, diodes, capacitors, and resistors are arranged is divided into a scale that allows yield evaluation, and the divided integrated circuit is 1. A semiconductor device for evaluating an integrated circuit device, characterized in that a pattern is formed on a circuit device portion so that the yield of connections between wiring layers, leakage between wiring layers, and leakage between wiring layers can be measured.
JP63150144A 1988-06-20 1988-06-20 Method for evaluating integrated circuit device and semiconductor device for evaluating integrated circuit device Expired - Fee Related JPH0691149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150144A JPH0691149B2 (en) 1988-06-20 1988-06-20 Method for evaluating integrated circuit device and semiconductor device for evaluating integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150144A JPH0691149B2 (en) 1988-06-20 1988-06-20 Method for evaluating integrated circuit device and semiconductor device for evaluating integrated circuit device

Publications (2)

Publication Number Publication Date
JPH023255A true JPH023255A (en) 1990-01-08
JPH0691149B2 JPH0691149B2 (en) 1994-11-14

Family

ID=15490457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150144A Expired - Fee Related JPH0691149B2 (en) 1988-06-20 1988-06-20 Method for evaluating integrated circuit device and semiconductor device for evaluating integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0691149B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307148A (en) * 1990-04-05 1994-04-26 Hitachi, Ltd. Fluorescence detection type electrophoresis apparatus
DE10206150B4 (en) * 2001-08-24 2009-06-18 Promos Technologies, Inc. Process line internal detection device for defects in self-aligned contacts and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307148A (en) * 1990-04-05 1994-04-26 Hitachi, Ltd. Fluorescence detection type electrophoresis apparatus
DE10206150B4 (en) * 2001-08-24 2009-06-18 Promos Technologies, Inc. Process line internal detection device for defects in self-aligned contacts and method for producing the same

Also Published As

Publication number Publication date
JPH0691149B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5977558A (en) Testchip design for process analysis in sub-micron DRAM fabrication
US5594273A (en) Apparatus for performing wafer-level testing of integrated circuits where test pads lie within integrated circuit die but overly no active circuitry for improved yield
US3983479A (en) Electrical defect monitor structure
Mangir Sources of failures and yield improvement for VLSI and restructurable interconnects for RVLSI and WSI: Part I—Sources of failures and yield improvement for VLSI
KR100476900B1 (en) Semiconductor integrated circuit device with test element group circuit
WO2001037322A2 (en) System and method for product yield prediction using a logic characterization vehicle
US6614049B1 (en) System LSI chip having a logic part and a memory part
Carlson et al. Future trends in wafer scale integration
US20170154687A1 (en) Sram-like ebi structure design and implementation to capture mosfet source-drain leakage eariler
US5898706A (en) Structure and method for reliability stressing of dielectrics
US5561373A (en) Method and device for detecting electrostatic stress applied to a product semiconductor device during each production process
EP1284499B1 (en) Semiconductor wafer for in-process testing an integrated circuit and corresponding manufacturing method
US6307162B1 (en) Integrated circuit wiring
US8648592B2 (en) Semiconductor device components and methods
US6950355B2 (en) System and method to screen defect related reliability failures in CMOS SRAMS
JPH09115972A (en) Array for testing of semiconductor element and test method
JPH023255A (en) Evaluation method for integrated circuit device and semiconductor device for integrated circuit device evaluation
US5448179A (en) Screening of conductors and contacts on microelectronic devices
Hess et al. Passive multiplexer test structure for fast and accurate contact and via fail-rate evaluation
IE53794B1 (en) Large scale integration semiconductor device having monitor element and method of manufacturing the same
CN105144360B (en) Method and apparatus for monitoring semiconductor fabrication
Khare et al. SRAM-based extraction of defect characteristics
Arora et al. Interconnect characterization of X architecture diagonal lines for VLSI design
JP3531863B2 (en) Wafer-level integrated circuit structure and method for manufacturing the same
Doong et al. Design and simulation of addressable failure site test structure for IC process control monitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees