JPH0232448B2 - - Google Patents

Info

Publication number
JPH0232448B2
JPH0232448B2 JP58075477A JP7547783A JPH0232448B2 JP H0232448 B2 JPH0232448 B2 JP H0232448B2 JP 58075477 A JP58075477 A JP 58075477A JP 7547783 A JP7547783 A JP 7547783A JP H0232448 B2 JPH0232448 B2 JP H0232448B2
Authority
JP
Japan
Prior art keywords
valve
fulcrum
cam
rocker arm
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58075477A
Other languages
Japanese (ja)
Other versions
JPS59201911A (en
Inventor
Hiroshi Moryoshi
Koji Asaumi
Toshimasu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58075477A priority Critical patent/JPS59201911A/en
Publication of JPS59201911A publication Critical patent/JPS59201911A/en
Publication of JPH0232448B2 publication Critical patent/JPH0232448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • F01L1/182Centre pivot rocking arms the rocking arm being pivoted about an individual fulcrum, i.e. not about a common shaft
    • F01L1/183Centre pivot rocking arms the rocking arm being pivoted about an individual fulcrum, i.e. not about a common shaft of the boat type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L2001/188Fulcrums at upper surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸排気弁を開閉制御する動弁系にお
いて、吸排気弁を必要時に不作動状態(閉弁状
態)にするエンジンの弁不作動装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a valve operating system that controls the opening and closing of intake and exhaust valves. Relating to an actuation device.

(従来の技術) 一般に、多気筒エンジンの場合、アイドリング
時、減速時、降坂時などのエンジンに余力のある
状態では、その一部の気筒の運転を停止させるよ
うに特定の気筒の吸排気弁の作動を停止させるこ
とが燃費向上を図る上で好ましい。
(Prior art) In general, in the case of a multi-cylinder engine, when the engine has surplus power such as when idling, decelerating, or descending a slope, the intake and exhaust of specific cylinders are stopped so that the operation of some of the cylinders is stopped. It is preferable to stop the operation of the valve in order to improve fuel efficiency.

また、低負荷用と高負荷用との2つの吸気ポー
トを備えたいわゆるデユアルインダクシヨン吸気
方式のエンジンの場合、エンジンの低負荷運転時
には低負荷用吸気ポートのみから吸気を供給する
ように該低負荷用吸気ポートを開閉する低負荷用
吸気弁のみを開閉作動させ、高負荷用吸気ポート
を開閉する高負荷用吸気弁の作動を停止させるこ
とが、低負荷用吸気ポートからの吸気によつて燃
焼室内に強力な吸気スワールを有効に生ぜしめ、
燃焼安定性の向上、燃費の向上を図る上で好まし
いことが知られている。
In addition, in the case of a so-called dual induction intake type engine that has two intake ports, one for low load and one for high load, when the engine is running at low load, intake air is supplied only from the low load intake port. It is possible to open and close only the low-load intake valve that opens and closes the load intake port, and to stop the operation of the high-load intake valve that opens and closes the high-load intake port, due to the intake air from the low-load intake port. Effectively creates a strong intake swirl within the combustion chamber,
It is known that this is preferable for improving combustion stability and fuel efficiency.

このように吸排気弁を不作動状態にする装置と
しては、従来、特公昭55−26285号公報に示され
るような機械式のものがある。
Conventionally, there is a mechanical type device as disclosed in Japanese Patent Publication No. 55-26285 as a device for rendering the intake and exhaust valves inactive.

上記機械式のものは、ロツカーアーム作動体
と、該ロツカーアーム作動体と内燃機関の弁との
間で延びるロツカーアームと、該ロツカーアーム
の運動を該弁に伝達すべくロツカーアームから揺
動する際の揺動軸線を提供する支点と、ロツカー
アームの両端の中間に配置された支点支持装置と
を有するロツカーアーム装置を備えるとともに、
上記支点上に重ねられかつ上記支点支持装置で支
点と共に浮動自在に構成された負荷伝達装置と、
上記支点支持装置に対して横方向に動いて上記負
荷伝達装置の動きを阻止する位置へ進退可能な介
在装置と、該介在装置が負荷伝達装置の動きを阻
止する位置へ移動することが可能になる方向へ該
負荷伝達装置を押す偏倚装置と、上記介在装置を
上記の負荷伝達装置運動阻止位置へ選択的に進退
せしめる作動装置とを備えてなるものである。し
かして、上記介在装置が負荷伝達装置の動きを阻
止する位置にある時には該負荷伝達装置と支点と
の浮動を防止することにより、上記ロツカーアー
ムの揺動軸線を一定位置に固定して弁を作動状態
にする一方、上記介在装置が負荷伝達装置の動き
を阻止しない位置にある時にはロツカーアーム作
動体によるロツカーアームの揺動に応答して負荷
伝達装置と支点とが上記支点支持装置上を浮動す
るのを許容することにより、ロツカーアームがロ
ツカーアーム作動体の運動を弁に伝達しないよう
にして弁を不作動状態にするものである。
The mechanical type described above includes a rocker arm operating body, a rocker arm extending between the rocker arm operating body and the valve of the internal combustion engine, and a rocker arm that swings from the rocker arm to transmit the motion of the rocker arm to the valve. and a fulcrum support device disposed intermediate both ends of the rocker arm;
a load transmission device stacked on the fulcrum and configured to be able to float together with the fulcrum in the fulcrum support device;
an intervening device that can move laterally with respect to the fulcrum support device to a position where it blocks movement of the load transfer device; and an intervening device that is movable to a position where it blocks movement of the load transfer device. The load transmitting device includes a biasing device for pushing the load transmitting device in a certain direction, and an actuating device for selectively moving the intervening device toward or away from the load transmitting device movement blocking position. When the intervening device is in a position where it prevents movement of the load transfer device, it prevents the load transfer device from floating between the fulcrum, thereby fixing the swing axis of the rocker arm at a fixed position and operating the valve. When the intervening device is in a position where it does not block the movement of the load transfer device, the load transfer device and the fulcrum are prevented from floating on the fulcrum support device in response to rocking of the rocker arm by the rocker arm operating body. The permitting prevents the rocker arm from transmitting movement of the rocker arm actuator to the valve, rendering the valve inoperative.

(発明が解決しようとする課題) しかしながら、このようなものでは、ロツカー
アーム作動体を作動させるカムシヤフトのカム面
が基準円上にあるときにのみ、負荷伝達装置の動
きを阻止する位置に介在装置を進めることができ
る余裕ができる機構である。そのため、弁不作動
状態から作動状態への切換は、カムシヤフトが一
回転する間でロツカーアーム作動体がカムシヤフ
トのカム面の基準円上に当接したときしかでき
ず、またエンジンの高回転運転時にはカムシヤフ
トも高回転しているために上記切換は困難とな
り、エンジンの低回転運転時しか切換ができない
という欠点がある。このため、特に、低負荷高回
転運転時も不作動状態とされるデユアルインダク
シヨン方式の高負荷用吸気弁に対しては適用が困
難なものであつた。
(Problem to be Solved by the Invention) However, in this type of device, the intervening device is placed at a position that prevents the movement of the load transmission device only when the cam surface of the camshaft that operates the rocker arm actuating body is on the reference circle. It is a mechanism that allows for room to advance. Therefore, the valve can only be switched from the non-operating state to the operating state when the Rocker arm operating body contacts the reference circle of the cam surface of the camshaft during one revolution of the camshaft, and when the engine is running at high speeds, the camshaft Since the engine is rotating at a high speed, it is difficult to perform the above switching, and there is a drawback that switching can only be performed when the engine is operating at low speed. For this reason, it has been particularly difficult to apply this method to a dual induction type high-load intake valve, which remains inactive even during low-load, high-speed operation.

本発明はかかる点に鑑みてなされたもので、エ
ンジンの駆動損失の増大を招くことなく、バルブ
の不作動状態から作動状態への切換を、エンジン
の低回転運転時は勿論のこと高回転運転時にもス
ムーズに行い得るエンジンの弁不作動装置を提供
することを目的とするものである。
The present invention has been made in view of the above problems, and it is possible to switch a valve from an inactive state to an active state without causing an increase in engine drive loss, not only when the engine is running at low speeds but also when the engine is running at high speeds. It is an object of the present invention to provide an engine valve deactivation device that can be operated smoothly even at times.

また、本発明は、多気筒エンジンに適用する場
合において、構造が複雑にならず、1つの制御力
でもつて各バルブの不作動状態から作動状態への
切換を行うことができるエンジンの弁不作動装置
を提供することを目的とするものである。
Furthermore, when applied to a multi-cylinder engine, the present invention does not have a complicated structure, and each valve can be switched from an inoperative state to an operating state with a single control force. The purpose is to provide a device.

(課題を解決するための手段) 本発明は、複数の気筒を有する多気筒エンジン
の弁不作動装置を前提とし、上記目的を達成する
ために、上記各気筒がそれぞれ弁不作動機構を有
し、該各弁不作動機構が、スプリングで閉方向に
常時付勢されている吸気用もしくは排気用のバル
ブと、カムシヤフトのカム面の動きをバルブに伝
達するロツカーアームと、エンジン固定部に摺動
可能に支承され上記ロツカーアームの支点を構成
する支点部材と、該支点部材の摺動方向と同一方
向に摺動可能に配設された中間部材と、上記支点
部材と中間部材との間に縮装されたスプリング部
材と、第1位置において上記中間部材をスプリン
グ部材の付勢力に抗してロツカーアーム側に押圧
して中間部材を支点部材に当接させることにより
バルブを作動状態にする第1カム面および第2位
置において上記中間部材をスプリング部材の付勢
力によつて支点部材から相対的に離隔させること
によりバルブを不作動状態にする第2カム面を有
するカムとを具備し、該各弁不作動機構のカム
が、エンジン長手方向に延びるシヤフトに、各気
筒に対応して取付けられていることを特徴とす
る。
(Means for Solving the Problems) The present invention is based on a valve deactivation device for a multi-cylinder engine having a plurality of cylinders, and in order to achieve the above object, each of the cylinders has a valve deactivation mechanism. , each valve deactivation mechanism is slidable on an intake or exhaust valve that is always biased in the closing direction by a spring, a Rocker arm that transmits the movement of the cam surface of the camshaft to the valve, and an engine fixing part. a fulcrum member that is supported by the rocker arm and constitutes a fulcrum of the rocker arm; an intermediate member that is disposed to be slidable in the same direction as the sliding direction of the fulcrum member; and a fulcrum member that is compressed between the fulcrum member and the intermediate member. a first cam surface that presses the intermediate member toward the rocker arm in the first position against the biasing force of the spring member to bring the intermediate member into contact with the fulcrum member, thereby activating the valve; a cam having a second cam surface that causes the intermediate member to be relatively separated from the fulcrum member by the biasing force of the spring member in the second position, thereby rendering the valves inoperative; each of the valves is inoperable; A feature of the mechanism is that a cam of the mechanism is attached to a shaft extending in the longitudinal direction of the engine, corresponding to each cylinder.

(作用) 弁不作動機構のカムを第1位置に位置付けたと
きには、第1カム面にて押圧された中間部材が支
点部材に当接して該支点部材をロツカーアームに
押圧せしめ、それによつて支点部材を支点として
カムシヤフトのカム面の動きに応じてロツカーア
ームが揺動し、該カム面の動きがバルブに伝達さ
れてバルブを作動状態にする。
(Operation) When the cam of the valve deactivation mechanism is positioned at the first position, the intermediate member pressed by the first cam surface contacts the fulcrum member and presses the fulcrum member against the rocker arm, thereby causing the fulcrum member to The rocker arm swings in response to the movement of the cam surface of the camshaft using the rocker arm as a fulcrum, and the movement of the cam surface is transmitted to the valve, thereby activating the valve.

一方、弁不作動機構のカムを第2位置に位置付
けたときには、第2カム面にて規制される中間部
材が支点部材から離隔して該支点部材をフローテ
イング状態とし、それによつてカムシヤフトのカ
ム面の動きに応じてロツカーアームが支点部材と
ともに浮動するのを許容し、該カム面の動きがバ
ルブに伝達されず、不作動状態になる。
On the other hand, when the cam of the valve deactivation mechanism is positioned at the second position, the intermediate member regulated by the second cam surface separates from the fulcrum member and puts the fulcrum member in a floating state, thereby causing the cam of the camshaft to float. The rocker arm is allowed to float together with the fulcrum member in response to the movement of the cam surface, and the movement of the cam surface is not transmitted to the valve, resulting in an inoperative state.

(実施例) 以下、本発明の実施例を図面に沿つて詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図および第2図は、1つの気筒に対して低
負荷用および高負荷用の2つの吸気ポートと1つ
の排気ポートとが設けられたデユアルインダクシ
ヨン吸気方式の3ポートエンジンに本発明を適用
した実施例を示す。
Figures 1 and 2 show the present invention applied to a dual-induction intake type three-port engine in which one cylinder is provided with two intake ports for low load and one for high load, and one exhaust port. An example of application is shown.

1はシリンダヘツド(エンジン固定部)で、燃
焼室を構成する気筒2が形成されており、この気
筒2には、低負荷用および高負荷用の1対の吸気
ポート3a,3bがそれぞれ並行して開口し、ま
た、吸気ポート3a,3bに対向して排気ポート
4が開口するように設けられている。低負荷用吸
気ポート3aは吸気流速を速めるために通路面積
が比較的小さく絞られて形成され、かつ気筒2内
で吸気のスワールを形成するように湾曲形成され
ている。一方、高負荷用吸気ポート3bは吸気の
充填効率を高めるために通路面積が比較的大きく
形成されている。また、低負荷用および高負荷用
吸気ポート3a,3bの気筒2への開口部には各
吸気ポート3a,3bがそれぞれ所定のタイミン
グで開閉する低負荷用および高負荷用の吸気弁5
a,5bが配設されている。一方、排気ポート4
の気筒2への開口部には排気ポート4を所定のタ
イミングで開閉する排気弁6が配設されており、
各吸気弁5a,5bと排気弁6とはV形状に配置
されている。気筒2のほぼ14中央上部に臨まし
て点火プラグ7が設けられている。
Reference numeral 1 denotes a cylinder head (engine fixed part), which forms a cylinder 2 constituting a combustion chamber, and this cylinder 2 has a pair of intake ports 3a and 3b for low load and high load, respectively, in parallel. Further, an exhaust port 4 is provided to open opposite the intake ports 3a and 3b. The low-load intake port 3a is formed with a relatively narrow passage area to increase the intake flow rate, and is curved so as to form a swirl of intake air within the cylinder 2. On the other hand, the high-load intake port 3b is formed to have a relatively large passage area in order to increase intake air filling efficiency. In addition, at the openings of the low-load and high-load intake ports 3a and 3b to the cylinder 2, each intake port 3a and 3b has an intake valve 5 for low-load and high-load use that opens and closes at predetermined timing, respectively.
a and 5b are arranged. On the other hand, exhaust port 4
An exhaust valve 6 that opens and closes the exhaust port 4 at a predetermined timing is disposed at the opening to the cylinder 2.
Each intake valve 5a, 5b and exhaust valve 6 are arranged in a V shape. A spark plug 7 is provided facing approximately the upper center of the cylinder 2 .

シリンダヘツド1の上部には、低負荷用および
高負荷用吸気弁5a,5bと排気弁6とを開閉制
御するロツカーアーム式オーバーヘツドカム機構
よりなる動弁機構8が配設されている。この動弁
機構8は、シリンダヘツド1の中心線方向に延び
エンジンのクランクシヤフト(図示せず)によつ
て回転駆動される単一のカムシヤフト9を有し、
しかしてこのカムシヤフト9には各吸気弁5a,
5bおよび排気弁6に対応するカム面9aが形成
されている。また、各弁5a,5b,6に対し
て、バルブガイド10に摺動可能に支承された各
弁5a,5b,6を閉弁方向すなわち上方に付勢
するバルブスプリング11と、一端が対応するカ
ムシヤフト9のカム面9aに、他端が各弁5a,
5b,6のバルブステム5s,6sにそれぞれ当
接してカム面9aの動きを各弁5a,5b,6に
伝達する揺動可能なロツカーアーム12と、シリ
ンダヘツド1に固定された支持部材14の嵌挿孔
14a,14b内に上下方向に摺動可能に嵌挿保
持され、半球面状に形成された先端部13aがロ
ツカーアーム12の中間部に形成された球面凹部
12aに嵌合当接してロツカーアーム12の支点
を構成する支点部材13とが設けられ、それで、
カムシヤフト9の回転によりロツカーアーム12
が支点部材13の先端部13aを支点として揺動
することにより各弁5a,5b,6が開閉される
ようになつている。支持部材14の嵌挿孔14a
は排気弁6側および低負荷用吸気弁5a側であつ
て上部が有底である一方、嵌挿孔14bは高負荷
用吸気弁5b側であつて上下に貫通している(第
4図参照)。また、支持部材14は、カムシヤフ
ト9の軸受を構成する各カムキヤツプ14cと一
体に形成されボルト114によつてシリンダヘツ
ド1に固定されている(第3図参照)。なお、支
持部材14は両側にカムキヤツプ部14cと嵌挿
孔14a,14bを設けた筒状部を連結する補強
リブ14eを有する。各ロツカーアーム12は、
バルブステム5s,6sとの当接部に、係合を保
証するためにバルブステム5s,6sのカムシヤ
フト9の軸方向両側に突出部12cを有する。
A valve operating mechanism 8 comprising a rocker arm type overhead cam mechanism for controlling the opening and closing of low-load and high-load intake valves 5a, 5b and an exhaust valve 6 is disposed above the cylinder head 1. This valve train 8 has a single camshaft 9 that extends in the direction of the center line of the cylinder head 1 and is rotationally driven by a crankshaft (not shown) of the engine.
However, the camshaft 9 has each intake valve 5a,
5b and a cam surface 9a corresponding to the exhaust valve 6 is formed. Further, one end of each valve 5a, 5b, 6 corresponds to a valve spring 11 that biases each valve 5a, 5b, 6 slidably supported by a valve guide 10 in the valve closing direction, that is, upwardly. On the cam surface 9a of the camshaft 9, the other end is connected to each valve 5a,
A swingable rocker arm 12 that contacts the valve stems 5s and 6s of the cylinder heads 5b and 6, respectively, and transmits the movement of the cam surface 9a to the respective valves 5a, 5b and 6, and a support member 14 fixed to the cylinder head 1 are fitted. The rocker arm 12 is fitted into and held in the insertion holes 14a and 14b so as to be slidable in the vertical direction, and the hemispherical tip portion 13a is fitted into and abutted on the spherical recess 12a formed in the intermediate portion of the rocker arm 12. A fulcrum member 13 is provided, which constitutes a fulcrum of the
The rotation of the camshaft 9 causes the rocker arm 12 to rotate.
The valves 5a, 5b, and 6 are opened and closed by swinging about the tip 13a of the fulcrum member 13 as a fulcrum. Fitting hole 14a of support member 14
are on the exhaust valve 6 side and the low-load intake valve 5a side, and are bottomed at the top, while the insertion hole 14b is on the high-load intake valve 5b side and penetrates vertically (see Fig. 4). ). Further, the support member 14 is formed integrally with each cam cap 14c constituting the bearing of the camshaft 9, and is fixed to the cylinder head 1 by a bolt 114 (see FIG. 3). The support member 14 has reinforcing ribs 14e on both sides that connect a cam cap portion 14c and a cylindrical portion provided with insertion holes 14a and 14b. Each Rotsuker arm 12 is
The valve stems 5s, 6s have protrusions 12c on both sides of the camshaft 9 in the axial direction to ensure engagement at the contact portions with the valve stems 5s, 6s.

さらに、動弁機構8の排気弁6側においては、
支点部材13内に油圧タペツト15が摺動可能に
配設されている。この油圧タペツト15は、その
上端が嵌挿孔14aの底部に当接する一方、下端
が支点部材13の内部中央に上方に突出して形成
されたロツド部13bに当接し、スプリング16
により上方(嵌挿孔14a底部側)に付勢され、
それで、油圧タペツト15により支点部材13が
ロツカーアーム12側に追従性よく押圧されてバ
ルブクリアランスの発生を防止するようになつて
いる。また、動弁機構8の低負荷用吸気弁5a側
においても、支持部材14に対して排気弁6側と
同様に構成されている。
Furthermore, on the exhaust valve 6 side of the valve mechanism 8,
A hydraulic tappet 15 is slidably disposed within the fulcrum member 13. The upper end of the hydraulic tappet 15 contacts the bottom of the insertion hole 14a, and the lower end contacts the rod portion 13b formed in the center of the fulcrum member 13 so as to protrude upward, and the spring 16
is urged upward (to the bottom side of the insertion hole 14a),
Therefore, the fulcrum member 13 is pressed toward the rocker arm 12 side with good followability by the hydraulic tappet 15, thereby preventing the occurrence of valve clearance. Furthermore, the low-load intake valve 5a side of the valve mechanism 8 is configured in the same manner as the exhaust valve 6 side with respect to the support member 14.

一方、上記動弁機構8の高負荷用吸気弁5b側
においては、上下に貫通した嵌挿孔14bに摺動
可能に嵌挿された支点部材13に対して、この支
点部材13の摺動方向と同一方向に摺動可能に嵌
挿された中間部材17と、この中間部材17と支
点部材13との間に縮装されたスプリング部材1
8と、支持部材14上に回転可能に支承され中間
部材17に当接するカム部材19とが配設されて
いる。
On the other hand, on the high-load intake valve 5b side of the valve operating mechanism 8, the sliding direction of the fulcrum member 13 is An intermediate member 17 is slidably inserted in the same direction as the spring member 1, and a spring member 1 is compressed between the intermediate member 17 and the fulcrum member 13.
8 and a cam member 19 rotatably supported on the support member 14 and abutting the intermediate member 17.

上記カム部材19は、第1位置において中間部
材17をスプリング部材18の付勢力に抗してロ
ツカーアーム12側すなわち下方に押圧して中間
部材17を支点部材13のロツド部13b上端に
当接せしめる第1カム面20aおよび第2位置に
おける中間部材17をスプリング部材18の付勢
力によつて支点部材13から離隔させる第2カム
面20bを有するカム20と、このカム20が嵌
挿支持されエンジン長手方向に延びるシヤフト2
1と、このシヤフト21の周囲に巻装され、一端
がシヤフト21に嵌着され他端がカム20の切欠
き20cに係止され、カム20を中間部材17の
押圧方向(第1図において反時計方向)に弾性係
合するスプリング22と、カム20およびシヤフ
ト21にそれぞれ固定されている1対のピン2
3,24とにより構成されている。また、各気筒
2に対応してカム20が嵌挿された上記シヤフト
21は、シリンダヘツド1に固定されたロツカー
アームカバー1aの上部に、軸受部121で回転
可能に支承されている(第5図a,b参照)。
The cam member 19 presses the intermediate member 17 toward the rocker arm 12 side, that is, downwardly, against the biasing force of the spring member 18 in the first position, thereby bringing the intermediate member 17 into contact with the upper end of the rod portion 13b of the fulcrum member 13. A cam 20 having a first cam surface 20a and a second cam surface 20b that separates the intermediate member 17 at the second position from the fulcrum member 13 by the biasing force of the spring member 18, and the cam 20 is fitted and supported and extends in the longitudinal direction of the engine. Shaft 2 extending to
1 is wound around the shaft 21, one end is fitted onto the shaft 21, the other end is locked in the notch 20c of the cam 20, and the cam 20 is moved in the pressing direction of the intermediate member 17 (in the opposite direction in FIG. 1). a spring 22 that is elastically engaged in a clockwise direction), and a pair of pins 2 that are fixed to the cam 20 and the shaft 21, respectively.
3 and 24. Further, the shaft 21, into which the cam 20 is fitted corresponding to each cylinder 2, is rotatably supported by a bearing 121 on the upper part of the rocker arm cover 1a fixed to the cylinder head 1. (See Figure 5 a, b).

上記カム部材19のカム20は、エンジンの高
負荷運転時に、駆動機構(図示省略)によつてシ
ヤフト21が回転され上記第1位置に位置付けら
れると、カム20の第1カム面20aに中間部材
17を介して押圧された支点部材13がロツカー
アーム12に押圧され、それによつて支点部材1
3を支点としてロツカーアーム12が揺動し、カ
ムシヤフト9のカム面9aの動きを高負荷用吸気
弁5bに伝達し、この高負荷用吸気弁5bを作動
状態とする(第6図参照)。後述の第2位置から
この第1位置に移行する場合、移行の初期もしく
は移行の途中において、ロツカーアーム12がカ
ムシヤフト9のカムにより上昇位置(第6図鎖線
参照)にあり、カム部材19のカム20にて中間
部材17を押圧するのにかなりの力を要するとき
には、シヤフト21からカム20に伝達される回
転力はスプリング22に吸収され、ロツカーアー
ム12が下降位置、すなわちカム面9aの基準円
上に当接する状態(第6図実線参照)になつたと
き、カム20が第1位置に完全に回動するように
なつている。したがつて、この切替りの途中にお
いてカム面9aのカム部にロツカーアーム12が
当接する場合、高負荷用吸気弁5bは正常作動時
のリフト量よりも小さなリフト量で開弁する。
When the shaft 21 is rotated by a drive mechanism (not shown) and positioned at the first position during high-load operation of the engine, the cam 20 of the cam member 19 contacts the first cam surface 20a of the cam 20 with the intermediate member. The fulcrum member 13 pressed through the rocker arm 17 is pressed against the rocker arm 12, whereby the fulcrum member 1
3 as a fulcrum, the rocker arm 12 swings, transmitting the movement of the cam surface 9a of the camshaft 9 to the high-load intake valve 5b, and puts the high-load intake valve 5b into an operating state (see FIG. 6). When transitioning from the second position described later to the first position, the rocker arm 12 is in the raised position (see the chain line in FIG. 6) by the cam of the camshaft 9 at the beginning of the transition or during the transition, and the cam 20 of the cam member 19 When a considerable force is required to press the intermediate member 17, the rotational force transmitted from the shaft 21 to the cam 20 is absorbed by the spring 22, and the rocker arm 12 is moved to the lowered position, that is, on the reference circle of the cam surface 9a. When the cam 20 comes into contact (see the solid line in FIG. 6), the cam 20 is completely rotated to the first position. Therefore, when the rocker arm 12 comes into contact with the cam portion of the cam surface 9a during this switching, the high-load intake valve 5b opens with a lift amount smaller than the lift amount during normal operation.

一方、エンジンの低負荷運転時には、シヤフト
21のピン24にてカム20のピン23が押圧さ
れてカム20が回転して第2位置となり、そのと
き、カム20の第2カム面20bにて規制される
中間部材17と支点部材13とが離隔して、支点
部材13が中間部材17を介してフローテイング
状態となることにより、カムシヤフト9のカム面
9aの動きに応じてロツカーアーム12および支
点部材13が浮動し、高負荷用吸気弁5bにカム
面9bの動きが伝わらず、高負荷用吸気弁5bを
不作動状態にするようにし、本発明に係る弁不作
動機構Aを構成している。
On the other hand, during low load operation of the engine, the pin 23 of the cam 20 is pressed by the pin 24 of the shaft 21, and the cam 20 rotates to the second position. The intermediate member 17 and the fulcrum member 13 are separated from each other, and the fulcrum member 13 is placed in a floating state via the intermediate member 17, so that the rocker arm 12 and the fulcrum member 13 are moved in accordance with the movement of the cam surface 9a of the camshaft 9. floats, the movement of the cam surface 9b is not transmitted to the high-load intake valve 5b, and the high-load intake valve 5b is rendered inoperative, thereby forming a valve inoperation mechanism A according to the present invention.

続いて、上記中間部材17の構造を、第6図乃
至第8図に沿つて詳細に説明する。
Next, the structure of the intermediate member 17 will be explained in detail with reference to FIGS. 6 to 8.

中間部材17は油圧タペツト構造であつて、上
部にカム部材19からの押圧力を受ける受圧部2
5aおよび側部に支点部材13内を摺動する筒状
摺動部25bを有する有底円筒状の第1部材25
と、この第1部材25内に液密的に摺動可能に嵌
合され、底部に支点部材13のロツド部13bと
当接する押圧部26aおよび中央部に連通孔26
bが設けられた仕切壁部26cを有し、かつこの
仕切壁部26cによつて底部(押圧部26a)と
の間に油溜り室26dが画成された有底円筒状の
第2部材26とからなる。この第1部材25の内
面と第2部材26の仕切壁部26cとによつて油
室27が画成されているとともに、該第2部材2
6の仕切壁部26c上方(油室27側)には、連
通孔26bに対向する位置にチエツクボール28
aとスプリング28bとからなり、油溜り室26
dから連通孔26bを通じて油室27へオイルが
流入するのを許容するチエツクバルブ28が設け
られている。支点部材13の周壁には、支持部材
14内に形成されオイルポンプ(図示せず)に連
通するオイル通路14dと対向する位置に第1連
通孔13cが設けられ、第1部材25の摺動部2
5bには、第1連通孔13cと対向する位置に第
2連通孔25cが設けられ、また第2部材26の
周壁には、第2連通孔25cと対向し油溜り室2
6dに開口する第3連通孔26eが設けられてい
る。よつて、第2部材26の油溜り室26dは、
第3連通孔26e、第2連通孔25cおよび第1
連通孔13cを通じてオイル通路14dに連通す
る。また、第1部材25の下部内周壁には、第2
部材26を抜け止めする抜止め部材29が設けら
れている。
The intermediate member 17 has a hydraulic tappet structure, and has a pressure receiving part 2 at the upper part that receives the pressing force from the cam member 19.
5a and a cylindrical first member 25 with a bottom, which has a cylindrical sliding part 25b that slides inside the fulcrum member 13 on the side thereof.
The first member 25 is slidably fitted in a liquid-tight manner, and has a pressing portion 26a that contacts the rod portion 13b of the fulcrum member 13 at the bottom and a communication hole 26 at the center.
The second member 26 has a bottomed cylindrical shape and has a partition wall portion 26c provided with a pressure point b, and an oil reservoir chamber 26d is defined between the partition wall portion 26c and the bottom portion (pressing portion 26a). It consists of. An oil chamber 27 is defined by the inner surface of the first member 25 and the partition wall portion 26c of the second member 26.
A check ball 28 is provided above the partition wall 26c (on the oil chamber 27 side) at a position facing the communication hole 26b.
a and a spring 28b, the oil sump chamber 26
A check valve 28 is provided to allow oil to flow into the oil chamber 27 through the communication hole 26b. A first communication hole 13c is provided in the peripheral wall of the fulcrum member 13 at a position facing an oil passage 14d formed in the support member 14 and communicating with an oil pump (not shown), and the first communication hole 13c 2
5b is provided with a second communication hole 25c at a position facing the first communication hole 13c, and a second communication hole 25c is provided in the peripheral wall of the second member 26 at a position opposite to the second communication hole 25c.
A third communication hole 26e that opens at 6d is provided. Therefore, the oil reservoir chamber 26d of the second member 26 is
The third communication hole 26e, the second communication hole 25c and the first
It communicates with the oil passage 14d through the communication hole 13c. Further, on the lower inner circumferential wall of the first member 25, a second
A retaining member 29 for retaining the member 26 is provided.

したがつて、オイルポンプより支持部材14内
に形成されたオイル通路14dに圧送されたオイ
ルは、第1乃至第3連通孔13c、25c,26
eを通じて油溜り室26dに供給される。
Therefore, the oil pumped by the oil pump into the oil passage 14d formed in the support member 14 flows through the first to third communication holes 13c, 25c, 26.
The oil is supplied to the oil reservoir chamber 26d through e.

カム部材19が第1位置にあるとき、中間部材
17が支点部材13から離れると、油溜り室26
dのオイルが連通孔26bおよびチエツクバルブ
28を通過して油室27に流入し、第2部材26
は第1部材25から離れるように摺動する。それ
によつて、中間部材17が全体的に伸長し、第1
部材25の受圧部25aがカム20の第1カム面
20aに当接した状態で第2部材26の押圧部2
6aが支点部材13のロツド部13b上端に当接
すると、油室27の圧力が上昇して油室27への
オイルの流入が停止する。この油室27に流入し
たオイルは、中間部材17が支持部材13のロツ
ド部13bによつて下方から押圧されてもチエツ
クバルブ28の作用により油溜り室26dに逆流
しないから中間部材17が縮化することはなく、
中間部材17は支点部材13との当接状態を確実
に維持する。
When the cam member 19 is in the first position, when the intermediate member 17 separates from the fulcrum member 13, the oil reservoir chamber 26
The oil of d passes through the communication hole 26b and the check valve 28, flows into the oil chamber 27, and flows into the second member 26.
slides away from the first member 25. Thereby, the intermediate member 17 is entirely expanded, and the first
With the pressure receiving part 25a of the member 25 in contact with the first cam surface 20a of the cam 20, the pressing part 2 of the second member 26
When the rod 6a comes into contact with the upper end of the rod portion 13b of the fulcrum member 13, the pressure in the oil chamber 27 increases and the flow of oil into the oil chamber 27 is stopped. Even if the intermediate member 17 is pressed from below by the rod portion 13b of the support member 13, the oil flowing into the oil chamber 27 does not flow back into the oil reservoir chamber 26d due to the action of the check valve 28, so that the intermediate member 17 is compressed. There's nothing to do,
The intermediate member 17 reliably maintains the state of contact with the fulcrum member 13.

さらに、第1部材25の受圧部25aにはリリ
ーフ孔25dが設けられているとともに、受圧部
25aの下方(油室27)には、一部を受圧部2
5a上方に突出せしめてリリーフ孔25dに着座
可能なボール30aとこのボール30aを着座方
向に付勢するスプリング30bとからなるリリー
フ弁30が配設されている。また、カム部材19
には、第1位置に位置付けられたときに受圧部2
5aに当接する第1カム面20aにボール30a
の受圧部25a上方への突出を許容する凹所20
dが設けられている。これによつて、第6図に示
すようにカム部材19が第1位置にあるとき(高
負荷用吸気弁5bの作動状態時)には、凹所20
dによつてボール30aの上方への突出が許容さ
れ、リリーフ弁30を閉弁状態に維持してリリー
フ孔25dが閉成されていることにより、中間部
材17の支点部材13への当接維持機能が確保さ
れることになる。
Furthermore, a relief hole 25d is provided in the pressure receiving part 25a of the first member 25, and a part of the pressure receiving part 25a is provided below the pressure receiving part 25a (oil chamber 27).
A relief valve 30 is provided, which includes a ball 30a that projects upward from the relief hole 25a and can be seated in the relief hole 25d, and a spring 30b that biases the ball 30a in the seating direction. In addition, the cam member 19
When the pressure receiving part 2 is positioned at the first position,
A ball 30a is attached to the first cam surface 20a that contacts the ball 5a.
A recess 20 that allows the pressure receiving part 25a to protrude upward.
d is provided. As a result, when the cam member 19 is in the first position as shown in FIG. 6 (when the high-load intake valve 5b is in the operating state), the recess 20
d allows the ball 30a to protrude upward, and by keeping the relief valve 30 in the closed state and closing the relief hole 25d, the intermediate member 17 is maintained in contact with the fulcrum member 13. Functionality will be ensured.

一方、第8図に示すようにカム部材19が第2
位置にあるとき(高負荷用吸気弁5bの不作動状
態時)には、カム20の第2カム面20bによつ
てボール30aが下方に押し下げられ、リリーフ
弁30が開弁してリリーフ孔25dが開放される
ことにより、油室27内のオイルがリリーフ孔2
5dから流出し油室27の圧力がリリーフされ
る。すなわち、中間部材17はカム部材19が第
2位置にあるときには、第8図のごとく、最大伸
長状態(第1部材25がスプリング部材18によ
る付勢力により上昇してカム部材19に当接し、
第2部材26が抜止め部材29に当接した状態)
にあるが、油室27内のオイルがリリーフ孔25
dを介して流出可能な状態にある。このことによ
つて、カム部材19の第2位置から第1位置への
切換時(高負荷用吸気弁5bの不作動状態から作
動状態への切換時)には、中間部材17が最大伸
長状態で支点部材13に当接しても容易に収縮す
るから、油圧が作用したままの最大伸長状態で当
接する場合に生じる、支点が通常位置よりも下降
して高負荷用吸気弁5bが不用意に開弁するのを
防止するようにしている。
On the other hand, as shown in FIG.
When the ball 30a is in the position (when the high-load intake valve 5b is inactive), the second cam surface 20b of the cam 20 pushes the ball 30a downward, and the relief valve 30 opens to open the relief hole 25d. is opened, the oil in the oil chamber 27 flows into the relief hole 2.
5d, and the pressure in the oil chamber 27 is relieved. That is, when the cam member 19 is in the second position, the intermediate member 17 is in the maximum extension state (the first member 25 rises due to the urging force of the spring member 18 and contacts the cam member 19, as shown in FIG. 8).
state in which the second member 26 is in contact with the retaining member 29)
However, the oil in the oil chamber 27 is leaking from the relief hole 25.
It is in a state where it can flow out via d. As a result, when the cam member 19 is switched from the second position to the first position (when the high-load intake valve 5b is switched from the non-operating state to the operating state), the intermediate member 17 is in the maximum extension state. Even if the fulcrum member 13 is brought into contact with the fulcrum member 13, it will easily contract, so if the fulcrum member 13 comes into contact with the fulcrum member 13 in its maximum extension state, the fulcrum will be lowered from its normal position and the high-load intake valve 5b will be inadvertently moved. This is to prevent the valve from opening.

なお、第6図乃至第8図において、13d,1
3eは支点部材13内に洩出したオイルを支点部
材13の先端部13dとロツカーアーム12の球
面凹部12aとの間に供給されるように支点部材
13に設けられたオイル孔、12bはロツカーア
ーム12の球面凹部12aに設けられた排油孔で
ある。
In addition, in FIGS. 6 to 8, 13d, 1
3e is an oil hole provided in the fulcrum member 13 so that oil leaked into the fulcrum member 13 is supplied between the tip 13d of the fulcrum member 13 and the spherical recess 12a of the rocker arm 12; 12b is an oil hole provided in the rocker arm 12; This is an oil drain hole provided in the spherical recess 12a.

次に、上記実施例の作用について説明する。 Next, the operation of the above embodiment will be explained.

エンジンの低負荷運転時には、カム部材19は
第8図の如く第2位置を取ることにより弁不作動
機構Aが働いて高負荷用吸気弁5bが不作動状態
になる。高負荷用吸気弁5bはそのバルブスプリ
ング11によつて閉弁状態に保持され、高負荷用
吸気ポート3bを閉じている。また、低負荷用吸
気弁5aは動弁機構8によつて通常通り開閉制御
される。そのため、吸気は低負荷用吸気ポート3
aのみから行われ、吸気流速を速めて気筒2内に
吸気の強いスワールを生ぜしめることにより、低
負荷運転時の燃焼安定性および燃焼性能が向上す
る。
During low-load operation of the engine, the cam member 19 assumes the second position as shown in FIG. 8, whereby the valve deactivation mechanism A operates and the high-load intake valve 5b becomes deactivated. The high-load intake valve 5b is held in a closed state by its valve spring 11, thereby closing the high-load intake port 3b. Further, the low-load intake valve 5a is controlled to open and close by the valve operating mechanism 8 as usual. Therefore, intake port 3 for low load
The combustion stability and combustion performance during low-load operation are improved by increasing the intake air flow rate and creating a strong intake air swirl in the cylinder 2.

一方、エンジンの高負荷運転時には、カム部材
19が第6図の如く第1位置を取ることにより弁
不作動機構Aが働かず、高負荷用吸気弁5bは低
負荷用吸気弁5aとともに作動状態となつて、動
弁機構8によつて開閉制御される。このことによ
り、吸気は低負荷用吸気ポート3aとともに高負
荷用吸気ポート3bからも行われ、その結果、吸
気の充填効率が高められて高負荷運転時の出力向
上が図られる。
On the other hand, during high load operation of the engine, the cam member 19 takes the first position as shown in FIG. Opening and closing are controlled by the valve mechanism 8. As a result, air is taken in from the high-load intake port 3b as well as the low-load intake port 3a, and as a result, the filling efficiency of the intake air is increased and the output during high-load operation is improved.

このように、デユアルインダクシヨン吸気シス
テムが、別個の開閉弁を設けることなく、高負荷
用吸気弁5bそのものを弁不作動機構Aにて作動
と不作動状態とにすることによつて得られるの
で、構造を簡略なものとすることができ、また低
負荷運転時には高負荷用吸気弁5bが不作動状態
におかれるので、エンジンの駆動損失を低減させ
ることができる。
In this way, the dual induction intake system can be obtained by activating and inactivating the high-load intake valve 5b itself using the valve deactivation mechanism A, without providing a separate on-off valve. The structure can be simplified, and since the high-load intake valve 5b is kept inactive during low-load operation, engine drive loss can be reduced.

また、弁不作動機構Aは、ロツカーアーム12
の支点を構成する支点部材13を、カム部材19
の支点部材13の摺動方向と同一方向の進退によ
つて中間部材17を介して直接支点状態とフロー
テイング状態とに変化させるものであるので、高
負荷用吸気弁5bを不作動状態から作動状態へ切
換えるとき、またはその逆の切換えのとき、カム
シヤフト9が複数回の回転を行う間に亘つて切換
を行うことが可能となる。よつて、上記切換をエ
ンジンの低回転運転時、高回転運転時にかかわら
ず常にスムーズに行うことができる。
In addition, the valve inoperation mechanism A includes the Rocker arm 12.
The fulcrum member 13 constituting the fulcrum of the cam member 19
By moving back and forth in the same direction as the sliding direction of the fulcrum member 13, the fulcrum state and the floating state are directly changed via the intermediate member 17, so the high-load intake valve 5b can be activated from the inactive state. When switching to the state or vice versa, it is possible to perform the switching over multiple revolutions of the camshaft 9. Therefore, the above switching can always be carried out smoothly regardless of whether the engine is operating at low speed or high speed.

しかし、高負荷用吸気弁5bの不作動状態のと
きには、上記中間部材17は、カムシヤフアト9
のカム面9aの動きに応じてロツカーアーム12
とともに浮動する支点部材13とはスプリング部
材18を介して離間して応動することがないの
で、中間部材17として前述のごとき油圧タペツ
ト構造体を用いてもポンピング作用をすることは
なく、したがつてエンジンの駆動損失の低減化に
有利である。
However, when the high-load intake valve 5b is inactive, the intermediate member 17
According to the movement of the cam surface 9a of the
Since the fulcrum member 13, which floats with the intermediate member 17, is separated from the fulcrum member 13 via the spring member 18 and does not respond, even if a hydraulic tappet structure as described above is used as the intermediate member 17, no pumping action is performed. This is advantageous in reducing engine drive loss.

なお、本発明は上記実施例に限定されるもので
はなく、その他の種々の変形例をも包含するもの
である。すなわち、例えば、上記実施例では、弁
不作動機構Aをデユアルインダクシヨン吸気方式
における高負荷用吸気弁5bに対して適用した例
を示したが、本発明は多気筒エンジンの特定気筒
の運転を停止させるべく吸排気弁を不作動状態に
する場合にも適用可能である。
Note that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. That is, for example, in the above embodiment, an example was shown in which the valve deactivation mechanism A was applied to the high-load intake valve 5b in a dual induction intake system, but the present invention also applies to the operation of a specific cylinder of a multi-cylinder engine. It can also be applied to the case where the intake and exhaust valves are brought into an inoperable state in order to be stopped.

また、上記実施例では、ロツカーアーム12は
一端がカムシヤフト9に、他端がバルブステム5
s,6sにそれぞれ当接し、その中間部を支点と
して揺動するタイプのものについて述べたが、本
発明は一端を支点として、他端をバルブステムに
当接させ、その中間部をカムシヤフトに当接させ
るようにしたロツカーアーム方式にも適用できる
ものである。
Further, in the above embodiment, the rocker arm 12 has one end connected to the camshaft 9 and the other end connected to the valve stem 5.
s and 6s, respectively, and swings using the intermediate part as a fulcrum, the present invention has one end as a fulcrum, the other end in contact with the valve stem, and the intermediate part in contact with the camshaft. It can also be applied to a Rocker arm system in which the arms are brought into contact with each other.

さらに、上記実施例では、中間部材17を前述
のごとき油圧タペツト構造体としたが、単にブロ
ツク体を用いても差支えない。しかしながら、上
記油圧タペツト構造体の方が、弁の作動状態時に
中間部材17の支点部材13に対する当接維持
性、追従性が良好で、バルブクリアランスを可及
的に小さく抑制することができ、バルブ駆動騒音
の低減化に有利である。
Further, in the above embodiment, the intermediate member 17 is a hydraulic tappet structure as described above, but a simple block body may also be used. However, the above-mentioned hydraulic tappet structure has better ability to maintain contact between the intermediate member 17 and the fulcrum member 13 and to follow the valve when the valve is in operation, and can suppress the valve clearance as small as possible. This is advantageous in reducing driving noise.

(発明の効果) 以上述べたように、本発明によれば、ロツカー
アームの支点を構成する支点部材を中間部材を介
して弁不作動機構のカムによつて直接支点状態と
フローテイング状態とに変化させることができる
ので、簡単な構造でもつて、バルブの作動状態と
不作動状態との切換を、低回転運転時はもちろん
のこと高回転運転時でもスムーズに行うことがで
き、またポンピング作用がないので、エンジン駆
動損失の低減化を図ることができる。
(Effects of the Invention) As described above, according to the present invention, the fulcrum member constituting the fulcrum of the rocker arm is directly changed between the fulcrum state and the floating state by the cam of the valve deactivation mechanism via the intermediate member. Even with a simple structure, the valve can be smoothly switched between the operating state and the inactive state, not only during low-speed operation but also during high-speed operation, and there is no pumping effect. Therefore, it is possible to reduce engine drive loss.

また、カムを用いた弁不作動機構にて、バルブ
の不作動状態と作動状態との切換を行うことにし
ているため、多気筒エンジンであつても、エンジ
ン長手方向に延びるシヤフトを1本設け、該シヤ
フトに各気筒に対応してカムを設けることによつ
て、簡単な構造で、しかも1つの制御力でもつて
全気筒のバルブの作動状態と不作動状態との切換
動作を行うことができる。
In addition, since a valve deactivation mechanism using a cam is used to switch the valve between the deactivated state and the activated state, even if the engine is a multi-cylinder engine, a single shaft extending in the longitudinal direction of the engine is required. By providing a cam on the shaft corresponding to each cylinder, it is possible to switch the valves of all cylinders between the operating state and the non-operating state with a simple structure and with one control force. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明をデユアルインダクシヨン吸気方
式に適用した実施例を例示するもので、第1図は
デユアルインダクシヨン方式エンジンの縦断側面
図、第2図は同模式平面図、第3図は第2図の
−線に沿う断面図、第4図はロツカーアームカ
バーを取外した状態の同平面図、第5図aはロツ
カーアームカバーを取付けた状態の第4図と同様
の図、第5図bは第5図aのV−V線に沿う要部
断面図、第6図は高負荷用吸気弁の作動状態にお
ける第1図の弁不作動機構部分の要部拡大図、第
7図は第6図の中間部材の拡大詳細図、第8図は
高負荷用吸気弁の不作動状態における第6図と同
様の図である。 1……シリンダヘツド、5a,5b……吸気
弁、6……排気弁、9……カムシヤフト、9a…
…カム面、12……ロツカーアーム、13……支
点部材、14……支持部材、15……油圧タペツ
ト、17……中間部材、18……スプリング部
材、20……カム。
The drawings illustrate an embodiment in which the present invention is applied to a dual-induction type engine. 4 is a plan view of the rocker arm cover removed, FIG. 5a is a similar view to FIG. 4 with the rocker arm cover attached, and Figure b is a sectional view of the main part taken along line V-V in Figure 5a, Figure 6 is an enlarged view of the main part of the valve inoperation mechanism in Figure 1 in the operating state of the high-load intake valve, and Figure 7 6 is an enlarged detailed view of the intermediate member shown in FIG. 6, and FIG. 8 is a view similar to FIG. 6 when the high-load intake valve is in an inoperative state. 1...Cylinder head, 5a, 5b...Intake valve, 6...Exhaust valve, 9...Camshaft, 9a...
... cam surface, 12 ... rocker arm, 13 ... fulcrum member, 14 ... support member, 15 ... hydraulic tappet, 17 ... intermediate member, 18 ... spring member, 20 ... cam.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の気筒を有するエンジンにおいて、上記
各気筒がそれぞれ弁不作動機構を有し、該各弁不
作動機構が、スプリングで閉方向に常時付勢され
ている吸気用もしくは排気用のバルブと、カムシ
ヤフトのカム面の動きをバルブに伝達するロツカ
ーアームと、エンジン固定部に摺動可能に支承さ
れ上記ロツカーアームの支点を構成する支点部材
と、該支点部材の摺動方向と同一方向に摺動可能
に配設された中間部材と、上記支点部材と中間部
材との間に縮装されたスプリング部材と、回転可
能に支承され第1位置において上記中間部材をス
プリング部材の付勢力に抗してロツカーアーム側
に押圧して中間部材を支点部材に当接させること
によりバルブを作動状態にする第1カム面および
第2位置において上記中間部材をスプリング部材
の付勢力によつて支点部材から相対的に離隔させ
ることによりバルブを不作動状態にする第2カム
面を有するカムとを具備し、該各弁不作動機構の
カムが、エンジン長手方向に延びるシヤフトに、
各気筒に対応して取付けられていることを特徴と
するエンジンの弁不作動装置。
1. In an engine having a plurality of cylinders, each cylinder has a valve deactivation mechanism, and each valve deactivation mechanism has an intake or exhaust valve that is constantly biased in the closing direction by a spring; A rocker arm that transmits the movement of the cam surface of the camshaft to the valve, a fulcrum member that is slidably supported on the engine fixed part and constitutes a fulcrum of the rocker arm, and a fulcrum member that is slidable in the same direction as the sliding direction of the fulcrum member. an intermediate member disposed, a spring member compressed between the fulcrum member and the intermediate member; and a spring member rotatably supported and in a first position, the intermediate member is moved toward the rocker arm side against the biasing force of the spring member. At the first cam surface and the second position, the intermediate member is pressed against the fulcrum member to put the valve in the actuated state, and the intermediate member is relatively separated from the fulcrum member by the biasing force of the spring member. a cam having a second cam surface for disabling the valve, the cam of each valve disabling mechanism being mounted on a shaft extending in the longitudinal direction of the engine;
An engine valve deactivation device characterized in that it is installed corresponding to each cylinder.
JP58075477A 1983-04-28 1983-04-28 Device making engine valve inoperative Granted JPS59201911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075477A JPS59201911A (en) 1983-04-28 1983-04-28 Device making engine valve inoperative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075477A JPS59201911A (en) 1983-04-28 1983-04-28 Device making engine valve inoperative

Publications (2)

Publication Number Publication Date
JPS59201911A JPS59201911A (en) 1984-11-15
JPH0232448B2 true JPH0232448B2 (en) 1990-07-20

Family

ID=13577413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075477A Granted JPS59201911A (en) 1983-04-28 1983-04-28 Device making engine valve inoperative

Country Status (1)

Country Link
JP (1) JPS59201911A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237559B1 (en) 2000-03-29 2001-05-29 Ford Global Technologies, Inc. Cylinder deactivation via exhaust valve deactivation and intake cam retard
DE10220692A1 (en) * 2002-05-10 2003-11-20 Hydraulik Ring Gmbh Valve stroke control for internal combustion engines of motor vehicles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188017A (en) * 1983-03-08 1984-10-25 Mazda Motor Corp Valve resting mechanism in engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188017A (en) * 1983-03-08 1984-10-25 Mazda Motor Corp Valve resting mechanism in engine

Also Published As

Publication number Publication date
JPS59201911A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
JPH036801Y2 (en)
JPH0250283B2 (en)
JPH06101437A (en) Valve system of engine
JPH0258445B2 (en)
JPH0233849B2 (en)
JPH0232448B2 (en)
JPH0259287B2 (en)
JPH0550565B2 (en)
JPH0243004B2 (en)
JPH0347408B2 (en)
JPS62131907A (en) Valve drive device for engine
KR100521510B1 (en) Separation type cam shaft structure
JPH0232449B2 (en)
JPH0417706A (en) Valve actuating device of engine
JP3590970B2 (en) Variable valve train for internal combustion engines
JPH0212247Y2 (en)
JPH0218245Y2 (en)
JPS6119912A (en) Poppet valve device for internal-combustion engine
JPH0472969B2 (en)
EP0908604B1 (en) Variable valve timing mechanism
JPH0472970B2 (en)
JPH03271511A (en) Variable timing valve system
JPH03151509A (en) Variable valve timing-type valve device
JPS60116809A (en) Valve non-operating device of engine
JPH0218247Y2 (en)