JPH0232324B2 - - Google Patents

Info

Publication number
JPH0232324B2
JPH0232324B2 JP56146186A JP14618681A JPH0232324B2 JP H0232324 B2 JPH0232324 B2 JP H0232324B2 JP 56146186 A JP56146186 A JP 56146186A JP 14618681 A JP14618681 A JP 14618681A JP H0232324 B2 JPH0232324 B2 JP H0232324B2
Authority
JP
Japan
Prior art keywords
iron powder
magnetic
zinc borate
heating
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56146186A
Other languages
Japanese (ja)
Other versions
JPS5848612A (en
Inventor
Haruo Sekiguchi
Kazufuyu Sudo
Sadao Kobayashi
Nobuhiro Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56146186A priority Critical patent/JPS5848612A/en
Publication of JPS5848612A publication Critical patent/JPS5848612A/en
Publication of JPH0232324B2 publication Critical patent/JPH0232324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は強磁性鉄粉の製造方法に関し、さらに
詳しくは磁気テープ、磁気ドラム、磁気デイスク
などの高密度磁気記録媒体としての用途を有する
強磁性鉄粉の製造方法に関する。 従来、針状のα―FeOOHやα―Fe2O3のよう
なオキシ水酸化物や酸化物(以下針状のゲーサイ
ト等と略称する。)を加熱下還元して強磁性鉄粉
を製造する方法は知られている。しかし乍ら、従
来の方法では、加熱下還元するに際して原料であ
る針状のゲーサイト等の折損、破壊、さらには焼
結が不可避的に生じていた。これを改良する方法
としてホウ酸やホウ酸塩を溶解した水溶液中に酸
化物もしくはオキシ水酸化物を浸漬した後、加熱
還元して強磁性金属粉末を製造する特公昭54−
42832の方法が知られている。この方法による場
合は、ホウ酸やホウ酸塩を溶解している多量の溶
媒を蒸発除去しなければならず、多量のエネルギ
ーを必要とし、更に溶媒中に溶解しているホウ酸
やホウ酸塩は溶媒を蒸発、除去するに際して、溶
媒とともに蒸発界面へと移動し、粉体内部にホウ
酸やホウ酸塩の濃度分布が不可避的に生じ、この
濃度分布を均一にならすことなく不均一な状態で
加熱還元しなければならない等の不利益が認めら
れ、その結果としてこれは磁気特性の低下をもひ
き起こしている。 本発明はこれらの問題点を解決することを目的
としたものであり、針状のゲーサイト等の前処理
材料として硼酸亜鉛を使用することにより、高密
度磁気記録媒体として有用な鉄粉を安価に製造す
る方法を提供するものである。 すなわち本発明は、針状のゲーサイト等を還元
雰囲気中で、加熱下還元して強磁性鉄粉体を得る
に際し、該針状のゲーサイト等を硼酸亜鉛と混合
分散し、加熱還元するものであり、好ましくは、
加熱、還元する工程が(a)非還元性雰囲気下に350
℃以上に加熱する工程と、その後(b)還元性雰囲気
下に加熱し、還元する工程とよりなる鉄粉の製造
方法である。 針状のゲーサイト等の硼酸亜鉛とを混合分散さ
せるためには、らいかい機、ロール式混合機、撹
拌式混合機、ボールミルのような混合機を用いて
実施することができる。さらに、混合分散させる
にあたつて使利なことは硼酸亜鉛の水に対する溶
解度は常温で0.1重量%未満と極めて小さいので、
水を分散媒として用いることができることであ
る。水以外の媒体については、硼酸亜鉛を溶解し
ないか、又は溶解しても溶解度が1重量%に満た
ない極めて小さい溶解度を有する媒体であれば、
これらを分散媒として用いることが許される。と
いうのは、分散媒は過又は蒸散により、硼酸亜
鉛から分離されるが、溶解度が大きい場合には、
硼酸亜鉛は過に際して分散媒とともに液側に
移行したり、前記の特公昭54−42832においても
指摘した如く、蒸散に際して硼酸亜鉛の濃度分布
に不均一が生じるからである。硼酸亜鉛の添加量
は硼素と鉄の原子量比で0.05/100〜5/100であ
り、好ましくは0.2/100〜2/100の範囲である。
この範囲の下限以下では効果が顕著でなく、上限
を越える領域においては硼酸亜鉛で鉄を希釈する
ことになり磁気特性の低下をひきおこす。 本発明の強磁性鉄粉は、鉄を主体とするもので
あり、90重量%以上を含むものである。 硼酸亜鉛を混合分散された針状のゲーサイト等
は非還元剤性雰囲気下、たとえば空気中で350℃
以上、好ましくは400〜500℃に30分間〜4時間加
熱される。この加熱によつてオキシ水酸化物(α
―FeOOH)は酸化物(α―Fe2O3)へと転稼し、
硼酸亜鉛は針状のゲーサイト等となじむようであ
る。 この工程を経た後で次の還元工程に移行する
が、還元工程はH2ガス又はH2ガスを含む混合ガ
スを200〜450℃好ましくは350〜400℃で該ゲーサ
イト等に作用させる工程である。該ゲーサイト等
に対するH2ガスの供給速度は気体空間速度
(GHSV)で表示すれば、0.1〜100Nl/gr−Fe/
hr、好ましくは2〜50Nl/gr−Fe/hr範囲が適
当である。この範囲より少ない量では反応の進行
が遅く現実的ではなく、またこれより多い量では
反応器内の圧損が増大するので反応操作上必ずし
も適切とはいえない。 更に反応温度についても前記条件からはずれる
と、低温側では反応進行速度が遅く、反応完結に
長時間を要して現実的ではなくなり、高温側では
反応速度が早すぎるため不必要な粒子破損、破
壊、さらには焼結をまねきやすくなる傾向があ
る。 本発明においては、他の元素の共存、たとえば
Si、P、Al、Ni、Cr、Mn、Cu等が共存してい
ても、本発明の効果は何ら妨げられるものではな
い。 本発明の一つの特徴としては、還元温度を低下
させることができたことである。従来法によれば
還元温度を低下させると、充分な磁気特性が発現
しないが、本発明では350℃〜400℃の範囲の還元
温度でも充分な磁気性能が観察される。 また、本発明により得られる鉄粉の形態には、
高倍率の電子顕微鏡観察によれば、原料としたゲ
ーサイト等の形態を殆んど完全に保持しており、
粒子の破損、破壊、さらには粒子間の焼結のよう
な現象は殆んど観察されない。そしてこの鉄粉末
の磁気特性は例えば保磁力(Hc)でみると、粒
子の大きさや針状比で変化するが375℃で還元し
たときHc=1340(Oe)と極めて高い値を示して
いることからも優れたものであることが理解され
る。これは高密度磁気記録媒体用材料として要求
される性能を満足しており磁気テープとした後の
磁気特性もこれを裏付けるものであり、特に良分
散性の極めて実用価値の高いものである。 次に実施例をあげ本発明を具体的に説明する。 実施例 1 針状のα―FeOOH100grに対し硼酸亜鉛
(2ZnO・3B2O3・3.5H2Oとして)3grを加え、撹
拌式混合機で30分間かきまぜ、硼酸亜鉛をα―
FeOOHに分散させた。ついで加熱炉に入れ空気
の雰囲気で450±5℃の温度で2時間加熱した後
冷却し取りだした。これを高倍率の透過型電子顕
微鏡で観察したところ穴の少ないα―Fe2O3が確
認された(第1図)。別に、硼酸亜鉛を添加しな
かつたα―FeOOHを同じ条件で熱処理したもの
を観察したところ、α―FeOOHは大きい穴から
成るα―Fe2O3に転移していた(第2図)。この
ように硼酸亜鉛は熱処理の時すでにα―Fe2O3
なじむことを確認した。以上が加熱工程であり、
つぎに還元工程に移行する。加熱工程が得られた
α―Fe2O350grを反応ガス予熱器を有する内径38
mmのステンレス鋼管製反応器へ充填し、H2ガス
をGHSV=20Nl−H2/gr−Fe/hrの供給速度で
導入して、375℃で7時間還元を行なつた。還元
後N2ガスで置換して冷却したのち反応器より還
元された鉄粉をとりだしトルエン中に浸漬した。
この内の一部をホウロウ酸のバツト上に拡げてト
ルエンを蒸散させた。トルエンを蒸散させた鉄粉
(以後風乾鉄粉と称す)について磁気特性を測定
した。磁気測定は直流型の磁気履歴曲線測定器を
用いて最高磁場3.7KOeの磁場中で実施した。保
磁力(Hc)=1340Oe、飽砲磁化(σs)=171emu/
gr、角型比(σr/σs)=0.60であり、非常に優れ
た磁気特性を示すことがわかつた。これにたいし
て上記の硼酸亜鉛を添加しなかつたα―Fe2O3
同じ還元条件で鉄にまで還元した。得られた鉄粉
の磁気特性はHc=520Oe、σs=176emu/gr、
σr/σs=0.34であり、本発明に比して、磁気特性
が極めて低下していることがわかつた。高倍率の
電子顕微鏡で観察した結果、本発明においては鉄
粉に還元された後も依然として針状性が保持され
ていたのに対して、比較のための例によつた鉄粉
は焼結状態で観察され、もはや針状性は保持され
ていなかつた。 実施例 2 本実施例は、B/Fe=0.2/100において、加熱
条件を400℃、2時間とした例である。その他の
条件は実施例1と同じである。すなわち針状のα
―FeOOH100gに対し硼酸亜鉛1.2grを加え撹拌
式混合機で30分間かきまぜ硼酸亜鉛をα―
FeOOHに分散させた。これを加熱炉に入れ空気
の雰囲気で400±5℃で2時間加熱した後とりだ
した。 加熱工程で得られたα―Fe2O350grを実施例1
と同様の反応器で還元した。得られた鉄粉の磁気
特性を測定したところHc=1100Oe、σs
152emu/gr、σr/σs=0.54であり、高密度磁気記
録材料として充分な性能を有していた。 実施例 3 本実施例はB/Fe=2/100において加熱条件
を500℃2時間とした例である。針状のα―
FeOOH100grにたいし、硼酸亜鉛11.2grと低電導
度水1000grを加え、らいかい機で1時間混合し
た。ついでNo.5C紙(東洋ロ紙製品名)を用い
て吸引ろ過した後乾燥機に入れ、150℃で10時間
乾燥して水分を蒸散させた後、加熱炉に入れ空気
の雰囲気で500±5℃で2時間加熱した後とりだ
した。加熱工程で得られたα―Fe2O350grを実施
例1と同様の反応器に入れ、H2ガスをGHSV=
20Hl−H2/gr−Fe/hrの供給速度で導入して、
400℃で5時間還元した。実施例1に準じて風乾
して得た鉄粉の磁気特性についてはHc=
1290Oe、σs=162emu/gr、σr/σs=0.58であつ
た。本実施例で得た鉄粉は経日変化による磁気特
性の低下が非常に少ないものであつた。 実施例 4〜8 第1表に示した原料及び条件で実施して得た鉄
粉について、第1表にあわせ述べられている磁気
特性を得た。第1表以外の諸条件は実施例1及び
3に準じた。
The present invention relates to a method for producing ferromagnetic iron powder, and more particularly to a method for producing ferromagnetic iron powder that has applications as high-density magnetic recording media such as magnetic tapes, magnetic drums, and magnetic disks. Conventionally, ferromagnetic iron powder has been produced by reducing acicular oxyhydroxides and oxides such as α-FeOOH and α-Fe 2 O 3 (hereinafter referred to as acicular goethite, etc.) under heating. There are known ways to do this. However, in the conventional method, breakage, destruction, and even sintering of the raw material, such as needle-shaped goethite, inevitably occurred during reduction under heating. As a method to improve this, ferromagnetic metal powder was produced by immersing an oxide or oxyhydroxide in an aqueous solution containing boric acid or a borate, and then reducing it by heating.
42832 methods are known. In this method, a large amount of the solvent in which boric acid and borate are dissolved must be removed by evaporation, which requires a large amount of energy, and the boric acid and borate dissolved in the solvent must be removed by evaporation. When the solvent is evaporated and removed, it moves with the solvent to the evaporation interface, and a concentration distribution of boric acid and borate inevitably occurs inside the powder, and this concentration distribution is not made uniform and becomes non-uniform. Disadvantages have been recognized, such as having to be heated and reduced at a temperature, and as a result, this also causes a decrease in magnetic properties. The present invention aims to solve these problems, and by using zinc borate as a pre-treatment material for acicular goethite, iron powder useful as high-density magnetic recording media can be produced at low cost. The present invention provides a method for manufacturing. That is, the present invention involves mixing and dispersing acicular goethite with zinc borate and reducing the ferromagnetic iron powder by heating in a reducing atmosphere to obtain ferromagnetic iron powder. and preferably,
The heating and reducing process is (a) 350°C under a non-reducing atmosphere.
This is a method for producing iron powder, which comprises a step of heating to a temperature above .degree. C., and then (b) a step of heating and reducing in a reducing atmosphere. Mixing and dispersing needle-shaped goethite and other zinc borate can be carried out using a mixer such as a miller, a roll mixer, a stirring mixer, or a ball mill. Furthermore, what is useful when mixing and dispersing zinc borate is that the solubility of zinc borate in water is extremely low at room temperature, less than 0.1% by weight.
Water can be used as a dispersion medium. Regarding media other than water, if the medium does not dissolve zinc borate or has extremely low solubility of less than 1% by weight even if zinc borate is dissolved,
It is permitted to use these as dispersion media. This is because the dispersion medium is separated from zinc borate by perfusion or transpiration, but if the solubility is large,
This is because zinc borate migrates to the liquid side together with the dispersion medium during evaporation, and as pointed out in the above-mentioned Japanese Patent Publication No. 54-42832, unevenness occurs in the concentration distribution of zinc borate during transpiration. The amount of zinc borate added is in the range of 0.05/100 to 5/100, preferably 0.2/100 to 2/100, in terms of the atomic weight ratio of boron to iron.
Below the lower limit of this range, the effect is not significant, and above the upper limit, iron is diluted with zinc borate, causing a decline in magnetic properties. The ferromagnetic iron powder of the present invention is mainly composed of iron and contains 90% by weight or more. Needle-shaped goethite etc. mixed and dispersed with zinc borate are heated at 350°C in a non-reducing atmosphere, for example in air.
Above, it is preferably heated to 400 to 500°C for 30 minutes to 4 hours. This heating produces oxyhydroxide (α
-FeOOH) is converted into oxide (α-Fe 2 O 3 ),
Zinc borate seems to be compatible with needle-shaped goethite. After this step, the next reduction step is carried out, and the reduction step is a step in which H 2 gas or a mixed gas containing H 2 gas is applied to the goethite at 200 to 450°C, preferably 350 to 400°C. be. The supply rate of H 2 gas to the goethite etc. is 0.1 to 100Nl/gr-Fe/ if expressed in gas hourly space velocity (GHSV).
hr, preferably in the range of 2 to 50 Nl/gr-Fe/hr. If the amount is less than this range, the reaction progresses slowly and is not practical, and if the amount is more than this range, the pressure drop in the reactor increases, so it is not necessarily suitable for reaction operation. Furthermore, if the reaction temperature deviates from the above conditions, the reaction progresses at a low temperature and takes a long time to complete, making it unrealistic. At a high temperature, the reaction speed is too fast, resulting in unnecessary particle damage and destruction. Furthermore, it tends to easily lead to sintering. In the present invention, coexistence of other elements, e.g.
Even if Si, P, Al, Ni, Cr, Mn, Cu, etc. coexist, the effects of the present invention are not hindered in any way. One feature of the present invention is that the reduction temperature can be lowered. According to the conventional method, if the reduction temperature is lowered, sufficient magnetic properties are not developed, but in the present invention, sufficient magnetic properties are observed even at a reduction temperature in the range of 350°C to 400°C. In addition, the form of iron powder obtained by the present invention includes:
According to high-magnification electron microscopy, it almost completely retains the morphology of the raw material, such as goethite.
Phenomena such as particle breakage, destruction, and even sintering between particles are hardly observed. The magnetic properties of this iron powder, for example, in terms of coercive force (Hc), vary depending on the particle size and acicular ratio, but when reduced at 375°C, it shows an extremely high value of Hc = 1340 (Oe). It is understood that it is an excellent product. This material satisfies the performance required as a material for high-density magnetic recording media, and the magnetic properties after making it into a magnetic tape also support this, and it has particularly good dispersibility and is of extremely high practical value. Next, the present invention will be specifically explained with reference to Examples. Example 1 3 gr of zinc borate (as 2ZnO・3B 2 O 3・3.5H 2 O) was added to 100 gr of needle-shaped α-FeOOH, and the mixture was stirred for 30 minutes using a stirring mixer to convert the zinc borate into α-
Dispersed in FeOOH. Then, it was placed in a heating furnace and heated in an air atmosphere at a temperature of 450±5°C for 2 hours, then cooled and taken out. When this was observed using a high-magnification transmission electron microscope, α-Fe 2 O 3 with few holes was confirmed (Figure 1). Separately, when α-FeOOH without zinc borate was heat-treated under the same conditions, it was found that α-FeOOH had transformed into α-Fe 2 O 3 consisting of large holes (Figure 2). In this way, it was confirmed that zinc borate is already compatible with α-Fe 2 O 3 during heat treatment. The above is the heating process,
Next, proceed to the reduction step. Heating process obtained α-Fe 2 O 3 50gr inner diameter 38 with reaction gas preheater
A reactor made of a stainless steel tube of 2 mm was filled, and H 2 gas was introduced at a feed rate of GHSV=20 Nl−H 2 /gr−Fe/hr, and reduction was carried out at 375° C. for 7 hours. After reduction, the reactor was purged with N 2 gas and cooled, and then the reduced iron powder was taken out from the reactor and immersed in toluene.
A portion of this was spread over a vat of boronic acid to evaporate toluene. The magnetic properties of iron powder from which toluene had been evaporated (hereinafter referred to as air-dried iron powder) were measured. Magnetic measurements were carried out using a DC type magnetic hysteresis curve measuring device in a magnetic field with a maximum magnetic field of 3.7 KOe. Coercive force (Hc) = 1340Oe, saturation magnetization (σ s ) = 171emu/
gr, squareness ratio (σ rs ) = 0.60, and it was found that it exhibited very excellent magnetic properties. On the other hand, α-Fe 2 O 3 to which no zinc borate was added was reduced to iron under the same reducing conditions. The magnetic properties of the obtained iron powder are Hc = 520Oe, σ s = 176emu/gr,
It was found that σ rs =0.34, and the magnetic properties were extremely deteriorated compared to the present invention. As a result of observation using a high-magnification electron microscope, it was found that the iron powder of the present invention still maintained its acicularity even after being reduced to iron powder, whereas the iron powder of the comparative example was in a sintered state. It was observed that the acicularity was no longer maintained. Example 2 This example is an example in which B/Fe=0.2/100 and the heating conditions were 400° C. for 2 hours. Other conditions are the same as in Example 1. That is, the needle-like α
-Add 1.2g of zinc borate to 100g of FeOOH and stir for 30 minutes with a stirring mixer to α-
Dispersed in FeOOH. This was placed in a heating furnace and heated at 400±5°C for 2 hours in an air atmosphere, and then taken out. Example 1 α-Fe 2 O 3 50gr obtained in the heating process
Reduction was carried out in the same reactor. When the magnetic properties of the obtained iron powder were measured, Hc = 1100 Oe, σ s =
152 emu/gr, σ rs = 0.54, and had sufficient performance as a high-density magnetic recording material. Example 3 This example is an example in which B/Fe=2/100 and the heating condition was 500° C. for 2 hours. Needle-like α-
To 100gr of FeOOH, 11.2gr of zinc borate and 1000gr of low conductivity water were added and mixed for 1 hour using a sieve machine. Then, after suction filtration using No. 5C paper (Toyoro paper product name), put it in a dryer and dry it at 150℃ for 10 hours to evaporate moisture, then put it in a heating furnace and dry it at 500±5 in an air atmosphere. After heating at ℃ for 2 hours, it was taken out. 50gr of α-Fe 2 O 3 obtained in the heating process was placed in the same reactor as in Example 1, and H 2 gas was heated to GHSV=
Introduced at a feed rate of 20Hl−H 2 /gr−Fe/hr,
Reduction was performed at 400°C for 5 hours. Regarding the magnetic properties of iron powder obtained by air drying according to Example 1, Hc=
1290 Oe, σ s = 162 emu/gr, σ rs = 0.58. The iron powder obtained in this example showed very little deterioration in magnetic properties due to aging. Examples 4 to 8 The magnetic properties described in Table 1 were obtained for iron powders obtained using the raw materials and conditions shown in Table 1. Conditions other than those in Table 1 were the same as in Examples 1 and 3.

【表】【table】

【表】 実施例 9 実施例1で得られた磁性鉄粉25grを25%熱可塑
性ポリウレタン樹脂のメチルエチルケトン溶液
10gr、メチルエチルケトン38gr、シリコン系添加
剤0.05grとともにステンレス製容器に入れ、アル
ミナ製ビーズを分散用媒体としてペイントコンデ
イシヨナーで8時間処理してミルベースとした。
このミルベースにさらに該ポリウレタン樹脂のメ
チルエチルケトン溶液を10gr追加し、さらにメチ
ルエチルケトンを加えて粘度を調整し、磁性塗料
とした。この磁性塗料を12μm厚さの強化ポリエ
チレンテレフタレートフイルムにブレードコータ
ーを用いて、乾燥後の磁性層の厚みが約4μmに
なるように塗布し、磁界を通して磁性粉の配向を
行なつた後、熱風乾燥を行ない、カレンダーロー
ルを通して平滑化を行なつて評価用テープを得
た。このテープの磁性特性はHc=1305Oe、Br/
Be=0.83、配向度2.5という極めて良好な値を示
した。Br−Bs、配向度が高いのは鉄に還元され
るまで針状性が保持されており、磁性鉄粉が分散
性にすぐれていることを示すものである。硼酸亜
鉛で処理するとこの分散性にすぐれる磁性粉が得
られる。本発明者の別の発明である酸化硼素によ
る処理に比して実に25%も配向度が向上した。 比較例 1 針状のα―FeOOH100grに対し、0.5wt%のほ
う酸溶液1000grを加え、らいかい機で1時間混合
し吸引濾過した。吸引濾過した濾液は、500gで
あり、濾液中のほう酸の分析をICPにより行つた
ところ、添加した該ほう酸溶液とほぼ同様の濃度
であり、濾過によりほう酸がかなり流失している
ことがわかつた。その後乾燥機に入れ、150℃で
10時間乾燥して水分を蒸散させた後、加熱炉に入
れ空気雰囲気下で450℃で2時間加熱した後取り
出した。これを実施例1と同様に高倍率の透過型
電子顕微鏡で観察したところ、かなりの部分が添
付図面第2図に近い状態であり、多数の大きな穴
が観察された。すなわち、ほう酸の被着は、粒子
全体に渡つて均一かつ充分には行われていないこ
とが確認された。加熱工程で得られたα―
Fe2O350grを実施例1と同様の方法で、375℃で
7時間還元を行つた。実施例1に準じて風乾して
得た鉄粉の磁気特性については、Hc=858Oe、
σs=165emu/g、σr/σs〕0.45であり、磁気記録
用磁性鉄粉としてはまつたく適性にかけるもので
あつた。特にHcが858Oeであり、コンパクトカ
セツトのオーデイオメタルテープ用の鉄粉体の
Hcの規格値1100〜1300Oeには到底達しない値で
あることは非常な問題である。該磁性鉄粉を高倍
率の透過型電子顕微鏡で観察したところやはり部
分的に焼結していることが確認された。乾燥工程
でほう酸が不可避的に粒子表面をマイグレーシヨ
ンし実質的に著しく不均一になつた為と推定され
た。 得られた該磁性鉄を実施例9と同様の方法によ
り評価用磁気テープを作成した。このテープの磁
気特性は、Hc=815Oe、Br/Bs=0.68、配向度
=1.22であり配向性にも乏しいものであつた。す
なわち、乾燥時におけるほう酸の不可避的なマイ
グレーシヨンにより、本比較例の鉄粉体は、部分
的に焼結が激しく進行した為、Hcが不合格であ
るのみならず、テープ作成に当たつて非常に重要
な因子たる配向特性についても大幅に劣る結果で
あることがわかつた。 比較例 2 ほう酸の濃度を1wt%とし、比較例1に対して
濃度を濃くしたほう酸溶液500gと針状α―
FeOOHをらいかい機で混合した。粘性の高い粘
土状で混合する結果となつた。得られたペースト
を濾過せずそのまま乾燥機に入れ、150℃で10時
間乾燥して水分を蒸散させた後、比較例1と同様
に加熱し、その後還元した。風乾後の得られた磁
性鉄粉の特性は、Hc=928Oe、σs=155emu/g、
σr/σs=0.45であり、磁気記録用磁性鉄粉として
きわめて適性に欠けるものであつた。すなわち、
得られた鉄粉は、特にHcがオーデイオ用メタル
の規格値より依然として大幅に低く、産業上の利
用可能性は全くない。次いで実施例9の方法で該
磁性鉄粉で評価用磁気テープを作成した。このテ
ープの磁気特性は、Hc=870Oe、Br/Bs=0.68、
配向度=1.22であり、テープ化に当たつて重要な
因子たる配向性も非常に乏しいものであつた。混
合溶媒量を低下した為、濾過による流失は実質的
に抑えられるものの、乾燥時のほう酸の不可避的
なマイグレーシヨンにより粒子の焼結が激しく進
行した為に磁気特性は勿論不合格であり、わけて
もテープ化に当たつて非常に重要な因子たる、配
向特性も大幅に劣る結果であることがわかつた。 比較例 3 針状α―FeOOH100grに対し0.5wt%の硝酸亜
鉛の水溶液1000grを加え、らいかい機で1時間混
合し吸引濾過した。吸引濾過した濾液は、500g
であり、濾液中の亜鉛の分析をICPにより行つた
ところ、添加した該硝酸亜鉛とほぼ同じ濃度であ
り、濾過によりかなりの硝酸亜鉛が流失してい
た。その後乾燥機に入れ150℃で10時間乾燥して
水分を蒸散させた後、比較例1と同様の方法の方
法で加熱、還元、風乾し磁性鉄粉を得た。該磁性
鉄の磁気特性は、Hc=870Oe、σs=53emu/g、
σr/σs=0.43であり、磁気記録用磁性鉄粉として
は全く適性に欠けるものであつた。Hcが870Oe
しかないためメタル用の鉄粉としては使用するこ
とができない。該磁性鉄粉と実施例9と同様の方
法により評価用磁気テープを作成した。このテー
プの磁気特性は、Hc=825Oe、Br/Bs=0.65、
配向度=1.19であり配向性にも乏しいことが判つ
た。すなわち、乾燥時における硝酸亜鉛のマイグ
レーシヨンにより粒子の焼結が起こり、磁気特性
Hcはもちろん不合格であり、またテープ化に当
たつて非常に重要な因子たる配向特性についても
きわめて劣る結果であり、産業上の利用可能性は
ないことがわかつた。 以上比較例1〜比較例3に示したとおり、公知
技術におけるほう酸の如き易水溶性のほう酸(化
合物)を利用したのでは、これが濾過に溶解して
被着されずに無駄に逃散するのみならず、より本
質的な問題は、濾過を行うと行わないにかかわら
ず、乾燥の際不可避的にほう酸等が粒子表面をマ
イグレートして仕舞い、結局製品鉄粉の磁気特
性、特にHcの著しい低下を惹起し、メタルテー
プ用鉄粉の規格値である1100〜1300Oeには到底
達せず、メタルテープにおける産業上の利用可能
性は全くないことがわかる。
[Table] Example 9 25g of magnetic iron powder obtained in Example 1 was added to a 25% methyl ethyl ketone solution of thermoplastic polyurethane resin.
The mixture was placed in a stainless steel container with 10 gr of methyl ethyl ketone, 38 gr of methyl ethyl ketone, and 0.05 gr of silicone additive, and treated with a paint conditioner using alumina beads as a dispersion medium for 8 hours to obtain a mill base.
To this mill base, 10 gr of a solution of the polyurethane resin in methyl ethyl ketone was added, and methyl ethyl ketone was further added to adjust the viscosity to obtain a magnetic paint. This magnetic paint was applied to a 12 μm thick reinforced polyethylene terephthalate film using a blade coater so that the thickness of the magnetic layer after drying would be approximately 4 μm, the magnetic powder was oriented through a magnetic field, and then dried with hot air. The tape was smoothed by passing it through a calender roll to obtain a tape for evaluation. The magnetic properties of this tape are Hc=1305Oe, Br/
It showed extremely good values of Be=0.83 and degree of orientation 2.5. The high degree of orientation of Br-Bs indicates that the acicularity is maintained until it is reduced to iron, indicating that the magnetic iron powder has excellent dispersibility. When treated with zinc borate, a magnetic powder with excellent dispersibility can be obtained. The degree of orientation was actually improved by 25% compared to treatment with boron oxide, which is another invention of the present inventors. Comparative Example 1 1000g of 0.5wt% boric acid solution was added to 100gr of needle-shaped α-FeOOH, mixed for 1 hour using a sieve machine, and filtered by suction. The amount of the suction-filtered filtrate was 500 g, and when the boric acid in the filtrate was analyzed by ICP, it was found that the concentration was almost the same as that of the added boric acid solution, and it was found that a considerable amount of boric acid was washed away by the filtration. Then put it in the dryer at 150℃.
After drying for 10 hours to evaporate moisture, it was placed in a heating furnace and heated at 450°C for 2 hours in an air atmosphere, then taken out. When this was observed using a high-magnification transmission electron microscope in the same manner as in Example 1, a considerable portion was found to be in a state similar to that shown in FIG. 2 of the attached drawings, and many large holes were observed. In other words, it was confirmed that the deposition of boric acid was not uniform and sufficient over the entire particle. α- obtained in the heating process
50g of Fe 2 O 3 was reduced in the same manner as in Example 1 at 375°C for 7 hours. Regarding the magnetic properties of the iron powder obtained by air drying according to Example 1, Hc = 858 Oe,
σ s =165 emu/g, σ rs ] 0.45, making it highly suitable as a magnetic iron powder for magnetic recording. In particular, Hc is 858 Oe, and iron powder for compact cassette audio metal tape is used.
It is a serious problem that the Hc value is far from reaching the standard value of 1100 to 1300 Oe. When the magnetic iron powder was observed with a high magnification transmission electron microscope, it was confirmed that it was also partially sintered. It is presumed that this is because boric acid inevitably migrated onto the particle surface during the drying process, making it substantially non-uniform. A magnetic tape for evaluation was prepared using the obtained magnetic iron in the same manner as in Example 9. The magnetic properties of this tape were Hc = 815 Oe, Br/Bs = 0.68, degree of orientation = 1.22, and the orientation was poor. In other words, due to the inevitable migration of boric acid during drying, the iron powder of this comparative example was partially sintered, so it not only failed in Hc, but also failed when making the tape. It was also found that the results were significantly inferior in terms of orientation properties, which are a very important factor. Comparative Example 2 The concentration of boric acid was 1wt%, and 500 g of a boric acid solution with a higher concentration than Comparative Example 1 and needle-like α-
FeOOH was mixed in a sieve machine. The result was a highly viscous clay-like mixture. The resulting paste was put into a dryer without being filtered, dried at 150° C. for 10 hours to evaporate water, heated in the same manner as in Comparative Example 1, and then reduced. The properties of the magnetic iron powder obtained after air drying are: Hc = 928Oe, σ s = 155emu/g,
σ rs =0.45, making it extremely unsuitable as a magnetic iron powder for magnetic recording. That is,
The obtained iron powder, especially in Hc, is still significantly lower than the standard value for audio metals, and has no industrial applicability. Next, a magnetic tape for evaluation was prepared using the magnetic iron powder according to the method of Example 9. The magnetic properties of this tape are Hc=870Oe, Br/Bs=0.68,
The degree of orientation was 1.22, and the orientation, which is an important factor in making a tape, was also very poor. Although the amount of mixed solvent was reduced, the loss due to filtration was substantially suppressed, the sintering of the particles progressed violently due to the inevitable migration of boric acid during drying, so the magnetic properties were of course unacceptable. It was also found that the orientation properties, which are a very important factor when making a tape, were also significantly inferior. Comparative Example 3 To 100 gr of acicular α-FeOOH, 1000 gr of a 0.5 wt% aqueous solution of zinc nitrate was added, mixed for 1 hour using a sieve machine, and filtered by suction. The filtrate after suction filtration is 500g.
When zinc in the filtrate was analyzed by ICP, it was found to be approximately the same concentration as the added zinc nitrate, and a considerable amount of zinc nitrate was washed away by filtration. Thereafter, it was placed in a dryer and dried at 150° C. for 10 hours to evaporate water, followed by heating, reduction, and air drying in the same manner as in Comparative Example 1 to obtain magnetic iron powder. The magnetic properties of the magnetic iron are: Hc = 870Oe, σ s = 53emu/g,
σ rs =0.43, and it was completely unsuitable as a magnetic iron powder for magnetic recording. Hc is 870Oe
It cannot be used as iron powder for metals. A magnetic tape for evaluation was prepared using the magnetic iron powder and the same method as in Example 9. The magnetic properties of this tape are Hc=825Oe, Br/Bs=0.65,
The degree of orientation was 1.19, and it was found that the orientation was poor. In other words, migration of zinc nitrate during drying causes sintering of the particles, which deteriorates the magnetic properties.
Of course, it failed in terms of Hc, and the orientation properties, which are a very important factor in making tape, were also extremely poor, and it was found that there was no industrial applicability. As shown in Comparative Examples 1 to 3 above, if a readily water-soluble boric acid (compound) such as boric acid is used in the known technology, it will only dissolve in the filtration and escape in vain without being deposited. The more fundamental problem is that regardless of whether filtration is performed or not, boric acid and other substances inevitably migrate to the particle surface during drying, resulting in a significant decrease in the magnetic properties of the product iron powder, especially Hc. It can be seen that the standard value of iron powder for metal tapes of 1100 to 1300 Oe cannot be reached, and that there is no industrial applicability for metal tapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硼酸亜鉛で処理したα―FeOOH粒子
の加熱工程を経た後の粒子構造に関する透過型電
子顕微鏡写真(100000倍)である。第2図は未処
理のα―FeOOH粒子の加熱工程を経た後の粒子
構造に関する透過型電子顕微鏡写真(100000倍)
である。
Figure 1 is a transmission electron micrograph (100,000x magnification) of the particle structure of α-FeOOH particles treated with zinc borate after the heating process. Figure 2 is a transmission electron micrograph (100,000x magnification) of the particle structure of untreated α-FeOOH particles after the heating process.
It is.

Claims (1)

【特許請求の範囲】 1 鉄を主体とするオキシ水酸化物又は酸化物を
還元雰囲気中で加熱下還元して強磁性鉄粉末を得
るに際し、該オキシ水酸化物又は酸化物を硼酸亜
鉛と乾式で混合分散するか、または硼酸亜鉛を実
質的に溶解しない分散媒を用いて硼酸亜鉛と混合
分散して加熱還元することを特徴とする強磁性鉄
粉の製造方法。 2 加熱還元する工程が、(a)非還元性雰囲気下に
350℃以上に加熱する工程と、(b)還元性雰囲気下
に加熱して還元する工程とより成る特許請求の範
囲第1項記載の方法。
[Scope of Claims] 1. When obtaining ferromagnetic iron powder by reducing an iron-based oxyhydroxide or oxide under heating in a reducing atmosphere, the oxyhydroxide or oxide is dry-processed with zinc borate. 1. A method for producing ferromagnetic iron powder, which comprises mixing and dispersing zinc borate, or mixing and dispersing zinc borate using a dispersion medium that does not substantially dissolve zinc borate, and then heating and reducing the mixture. 2 The process of thermal reduction is performed under (a) a non-reducing atmosphere;
The method according to claim 1, comprising the steps of heating to 350° C. or higher, and (b) reducing by heating in a reducing atmosphere.
JP56146186A 1981-09-18 1981-09-18 Production of ferromagnetic iron powder Granted JPS5848612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146186A JPS5848612A (en) 1981-09-18 1981-09-18 Production of ferromagnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146186A JPS5848612A (en) 1981-09-18 1981-09-18 Production of ferromagnetic iron powder

Publications (2)

Publication Number Publication Date
JPS5848612A JPS5848612A (en) 1983-03-22
JPH0232324B2 true JPH0232324B2 (en) 1990-07-19

Family

ID=15402076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146186A Granted JPS5848612A (en) 1981-09-18 1981-09-18 Production of ferromagnetic iron powder

Country Status (1)

Country Link
JP (1) JPS5848612A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848611A (en) * 1981-09-18 1983-03-22 Mitsui Toatsu Chem Inc Production of ferromagnetic iron powder
JPH03194905A (en) * 1989-12-22 1991-08-26 Ishihara Sangyo Kaisha Ltd Manufacture of magnetic metal powder for magnetic recording

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272354A (en) * 1975-12-12 1977-06-16 Hitachi Maxell Method of making ferromagnetic metal powder
JPS5457459A (en) * 1977-09-27 1979-05-09 Basf Ag Ferromagnetic metal particles based on iron and prodution
JPS5573803A (en) * 1978-11-25 1980-06-03 Hitachi Maxell Ltd Production of magnetic alloy powder
JPS5625908A (en) * 1979-08-10 1981-03-12 Toda Kogyo Corp Preparation of magnetic grain powder consisting of needle crystal alloy of iron and cobalt
JPS56139606A (en) * 1980-04-01 1981-10-31 Tdk Corp Production of metallic magnetic powder
JPS57116715A (en) * 1981-01-10 1982-07-20 Hitachi Maxell Ltd Manufacture of metallic magnetic powder
JPS5848611A (en) * 1981-09-18 1983-03-22 Mitsui Toatsu Chem Inc Production of ferromagnetic iron powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272354A (en) * 1975-12-12 1977-06-16 Hitachi Maxell Method of making ferromagnetic metal powder
JPS5457459A (en) * 1977-09-27 1979-05-09 Basf Ag Ferromagnetic metal particles based on iron and prodution
JPS5573803A (en) * 1978-11-25 1980-06-03 Hitachi Maxell Ltd Production of magnetic alloy powder
JPS5625908A (en) * 1979-08-10 1981-03-12 Toda Kogyo Corp Preparation of magnetic grain powder consisting of needle crystal alloy of iron and cobalt
JPS56139606A (en) * 1980-04-01 1981-10-31 Tdk Corp Production of metallic magnetic powder
JPS57116715A (en) * 1981-01-10 1982-07-20 Hitachi Maxell Ltd Manufacture of metallic magnetic powder
JPS5848611A (en) * 1981-09-18 1983-03-22 Mitsui Toatsu Chem Inc Production of ferromagnetic iron powder

Also Published As

Publication number Publication date
JPS5848612A (en) 1983-03-22

Similar Documents

Publication Publication Date Title
JPS6228489B2 (en)
JP2739600B2 (en) Method of processing ferromagnetic metal powder and method of manufacturing magnetic recording medium
JPH0232324B2 (en)
JPS608605B2 (en) Oxidation treatment method for metal magnetic powder for magnetic recording media
JPH0230361B2 (en)
US4469506A (en) Production process of ferromagnetic iron powder
US4481253A (en) Process for preparing ferromagnetic metal powder and a magnetic recording medium including the powder
US4469507A (en) Production process of ferromagnetic iron powder
JPS6411577B2 (en)
US4272285A (en) Process for producing magnetic metal powders
EP0265189A2 (en) Acicular magnetic iron oxide particles, process for preparing the same, and magnetic recording media using such particles
EP0326165A2 (en) Iron Carbide fine particles and a process for preparing the same
JPH04228502A (en) Acicular metallic iron fine particle containing carbon, its production and magnetic paint composition and magnetic recording medium containing the particle
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JPS6028050B2 (en) magnetic recording medium
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JPH0568843B2 (en)
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JPH0374809A (en) Processing method of ferromagnetic metal powder and magnetic recording medium
JPH03171601A (en) Ferromagnetic metal powder and magnetic recording medium
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS61229305A (en) Manufacture of magnetic metal powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2005259929A (en) Ferromagnetic metal powder and magnetic recording medium involving it
JPS596502A (en) Manufacture of improved ferromagnetic iron powder