JPH0232305B2 - CHITANIAKEIHIDOROZORUOFUKUMUTAIDENBOSHIZAI - Google Patents

CHITANIAKEIHIDOROZORUOFUKUMUTAIDENBOSHIZAI

Info

Publication number
JPH0232305B2
JPH0232305B2 JP1872585A JP1872585A JPH0232305B2 JP H0232305 B2 JPH0232305 B2 JP H0232305B2 JP 1872585 A JP1872585 A JP 1872585A JP 1872585 A JP1872585 A JP 1872585A JP H0232305 B2 JPH0232305 B2 JP H0232305B2
Authority
JP
Japan
Prior art keywords
titania
hydrosol
sol
alumina
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1872585A
Other languages
Japanese (ja)
Other versions
JPS61179285A (en
Inventor
Tadahiro Yoneda
Takeshi Satake
Shigefumi Kuramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1872585A priority Critical patent/JPH0232305B2/en
Publication of JPS61179285A publication Critical patent/JPS61179285A/en
Publication of JPH0232305B2 publication Critical patent/JPH0232305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は新規な無機質帯電防止剤に関する。詳
しくはチタニアヒドロゾル、チタニアゾル―アル
ミナゾル混合ヒドロゾルおよびチタニアアルミナ
複合ヒドロゾルの群より選ばれた少くとも一種の
チタニア系ヒドロゾルを含む帯電防止剤に関す
る。 合成樹脂を原料とする繊維、シート、フイルム
などの合成樹脂製品は静電気を帯び易く、それに
よる障害が種々問題となつている。本発明に開示
する無機質帯電防止剤は上記合成樹脂製品の表面
処理剤として用いることにより、湿度の影響や経
時的変化の無い優れた帯電防止効果を発揮するも
ので工業上意義のあるものである。 <従来の技術> 近年、クリーンベンチ、クリーンルームなど及
びその他の電子・電気機器、床材・壁材などの建
築用部材、衣服・シートカバーなどの繊維製品で
帯電防止を必要とする製品が急増している。その
対策として挙げられるものには合成樹脂中にカー
ボン繊維、金属粉などの導電性物質を大量に練り
込んで成型する方法もあるが、合成樹脂製品の表
面における静電気の発生、蓄積を防止する目的で
帯電防止剤による表面処理が注目され、その少量
の使用で効果があり広く適用されてきている。表
面処理の方法として大別すると、第一にカーボン
粉末、カーボン繊維、金属粉末、金属繊維、酸化
錫、酸化インジウムなどの無機酸化物微粉末等を
混入した導電性塗料を塗布して導電性を賦与する
方法、第二に四級アンモニウム塩、スルフオン酸
塩などのイオン導電性のある有機物を塗布する方
法、第三に金属アルコキシドを塗膜中で加水分解
縮合させたり(特公昭36―4740号公報明細書)、
アルミナヒドロゾル、シリカゾル(特公昭31―
6533号公報明細書)などガラス質を形成する無機
塗料等を塗布する方法、等が提案されている。し
かしながら、これらの方法は次のような欠点があ
る。即ち、 第一の方法では、処理被膜が灰色或いは黒色の
如く着色した色となると共に透明な塗膜がえられ
ない。 第二の方法では、湿度の影響を受け易く、低湿
度の雰囲気中では十分な帯電防止効果が得られな
いばかりでなく、水洗いなどによりその効果がな
くなつたり、表面がベトついたり、紫外線に不安
定で着色してくるなどの問題がある。 第三の方法では、前記第二の方法と同様に従来
低湿度の雰囲気では十分な帯電防止効果が無かつ
たり、合成樹脂表面との密着性が悪く剥離し易い
とかの問題がありアルコール類、エステル類等を
必須成分として共存せしめる等種々の工夫がなさ
れているが塗膜形成後の処理が煩雑である等の欠
点があり未だ十分とはいえない。又、四塩化チタ
ン、塩化アルミニウムなどの金属塩化物を原料と
した皮膜が帯電防止能を持つことも知られている
〔高分子、10巻、371〜373頁(1961年)〕がこの場
合透明度、膜強度などに欠点があり実用化しうる
ものができないといわれている。 <発明が解決しようとする問題点> 本発明は前述した第三の方法の範ちゆうに入る
方法であるが、従来のシリカゾル系帯電防止剤が
有している処理の煩雑さ、アルミナゾル系の樹脂
表面との密着性及び帯電防止効果の低さ及び四塩
化チタン、塩化アルミニウムを原料とした系での
透明度、膜強度が悪いなど公知の方法が持つ欠点
を解決し、低湿度でも帯電防止効果が高く、合成
樹脂表面との密着性に優れ、経時的劣化が無く、
合成樹脂表面を安定に保護しかつ処理操作が簡単
であるという特徴を有する帯電防止剤を提供しよ
うとするものである。 <問題点を解決するための手段> 本発明は上述した既存の帯電防止剤が持つ種々
の問題点を解決するために数多くの無機材料につ
いてその帯電防止効果を検討しているうちに見い
出されたもので、その特徴とするところはチタニ
アゾル、チタニアゾル―アルミナゾル混合ヒドロ
ゾル、チタニアアルミナ複合ヒドロゾルの群より
選ばれた少くとも1種のチタニア系ヒドロゾルを
含む帯電防止剤である。 <作 用> 上記したチタニア系ヒドロゾルを含む帯電防止
剤が他の無機系のものに比べ合成樹脂表面と密着
性が良好で堅固な皮膜を形成し低湿度雰囲気下で
も十分な帯電防止効果を発揮する理由は明らかで
はないが、本発明者らは次のように考えている。
即ちチタニア系ヒドロゾル中のコロイド粒子が微
小であるため表面積が大きく、しかもコロイド粒
子表面に多数存在するチタン水酸基が化学的に活
性であるため、合成樹脂表面の僅かな吸着水を介
して強固な結合を行なうか又は合成樹脂中でしか
も表面に存在する酸素、窒素などの極性基に強吸
着することにより密着性が高いものと思われる。
又、帯電防止能については合成樹脂表面に塗布さ
れた上記コロイド微粒子が系中の水分などの溶液
が飛散すると共に粒子どうしの脱水縮合により皮
膜を形成してゆくが最終的に皮膜の断面は多孔質
となり、コロイド粒子径に応じた空間部分が存在
し、その周囲は活性なチタン水酸基が多量に分布
し、該基により強い帯電防止能が賦与されるもの
と思われる。 チタニアゾル―アルミナゾル混合ヒドロゾルは
チタニアヒドロゾルとアルミナヒドロゾルを単に
混合したものである。両者のゾルを製造する際、
チタニアヒドロゾル中のチタニアコロイド粒子は
ほぼ球形に近くなり易いのに比べアルミナヒドロ
ゾル中のアルミナコロイド粒子は羽毛状になり易
いという一般的な特徴をもつが、単に物理的な形
状だけを見れば羽毛状などいびつな形状の集合体
の方が被膜形成時粒子どうしの絡みの効果があり
強固な膜となるが、アルミナ単独の場合合成樹脂
表面との親和力が弱く、その結果剥離し易いとい
う欠点がある。チタニアゾル―アルミナゾル混合
ヒドロゾルはチタニアコロイド粒子のもつ合成樹
脂表面との強い密着性を保持しアルミナコロイド
粒子のもつ形状特異性を膜強度の向上に生かそう
とするものである。更に原子価の異なる二種の金
属を酸素原子を介して結合させて原子価の制御を
することにより相乗的な帯電防止効果が期待され
る。 チタニアアルミナ複合ヒドロゾルはゾルの製造
時に四塩化チタン、硫酸チタニル、硝酸チタニ
ル、修酸チタン、チタンテトライソプロポキシド
などのチタン化合物と、塩化アルミニウム、硝酸
アルミニウム、酢酸アルミニウム、アルミニウム
イソプロポキサイドなどのアルミニウム化合物と
の混合溶液より両成分を同時に加水分解しチタノ
キサン結合とアルミノキサン結合を分子鎖中にも
つ複合ヒドロゾルである。この場合の複合コロイ
ド粒子の形状はチタンとアルミニウムの組成比に
よつて変化するものであるが、前に述べた原子価
の異なる二種の金属の酸素原子を介しての縮合割
合を増加させることにより相乗的な帯電防止効果
を発揮することと考えられる。 これら本発明にかかるチタニアゾル―アルミナ
ゾル混合ヒドロゾル、チタニアアルミナ複合ヒド
ロゾルにおいてはその中のチタンとアルミニウム
の含有比率は、上述した理由によりチタン/(ア
ルミニウム+チタン)原子比が0.1以上、とくに
0.2以上の範囲とするのが好ましい。 以上のヒドロゾルの製法については何ら制限さ
れるものではないが、チタニアヒドロゾルの場合
例えば四塩化チタン、硫酸チタニルなどの塩を加
水分解してオルトチタン酸粒子とした後、塩化バ
リウム、塩酸などで解膠し透析により塩素イオン
等の混入不純物イオンを除去する方法か、チタン
テトライソプロポキシドの如きチタンアルコキシ
ドをアルコール溶液中で部分的に加水分解した後
安定化剤を添加し溶液として水を添加する方法な
どとりうるが、好ましくは四塩化チタン、硫酸チ
タニルなどのチタン塩水溶液を酢酸などの安定化
剤存在下にOH型陰イオン交換樹脂を用いて加水
分解する方法が工業的に有利に実施される。チタ
ニアアルミナ複合ゾルもチタニアヒドロゾルの製
法においてチタン原料にアルミニウム原料を均一
に溶解させる以外は同様に製造することができ
る。 アルミニウムヒドロゾルは従来公知の方法が適
用され、例えば特開昭59―223223号公報明細書、
特開昭59―78925号公報明細書などに記載される
方法がとりうるが市販されているものをそのまま
使用してもさしつかえない。 以上の如き方法で製造されたチタニアヒドロゾ
ル、チタニアゾル―アルミナゾル混合物、チタニ
アアルミナ複合ゾル中のコロイド粒子径は前述し
た如く微小な程帯電防止効果、密着性、膜強度は
優れたものとなり、又微小な程帯電防止処理した
後の合成樹脂が透明になるので好ましくはその平
均径として0.1μm以下のものを用いる。 本発明に開示する帯電防止剤は水を溶媒とする
もので、チタニア系ヒドロゾルとしてその中にチ
タニア系のコロイド粒子を含むものならばそれの
みで処理剤として用いた帯電防止効果が高く、合
成樹脂表面との密着性に優れたものとなるが、そ
の効果をより高める目的で場合により酢酸などの
カルボン酸類、メタノール、エタノールなどのア
ルコール類、酢酸エチル、アクリル酸メチルなど
のエステル類、エチルエーテルなどのエーテル
類、アセトンなどのケトン類、LPG,LNGなど
の低級炭化水素類や、そのハロゲン化物および
(メタ)アクリル酸、2―ヒドロキシエチル(メ
タ)アクリレート、酢酸ビニル、マレイン酸、エ
チレンオキサイドなどの反応性モノマーの単一又
は共重合体の水溶性又は乳化物を添加することが
できる。又、一般に用いられる有機性帯電防止
剤、例えば四級アンモニウム塩、陽イオン、陰イ
オン又は両性界面活性剤などの少量を付加的に添
加しても良い。 適用しうる合成樹脂はポリエチレン、ポリプロ
ピレン、ポリスチレン、ポリ塩化ビニル、ポリカ
ーボネート、ポリメチルメタクリレート、ナイロ
ン、ベークライト、エポキシ、不飽和及び飽和ポ
リエステル、ABS、ポリアミド、ポリイミド等
従来公知の樹脂である。その中で特に高分子鎖中
に酸素や窒素原子を含む樹脂がヒドロゾル中のチ
タン元素が強固に保有する水酸基と特に親和性が
大きく好ましい。その形状は板状、フイルム状、
繊維状もしくは成形体などいかなる形状でも良
い。 本発明の帯電防止剤を用いて実際に合成樹脂の
帯電防止処理を行なうに際してはスプレー、デイ
ツピング、バーコーター、アプリケータ、ハケ塗
りなど従来公知の方法が適用しうる。このように
して合成樹脂表面に帯電防止剤の塗膜を形成させ
た後、風乾、200℃までの加熱乾燥、室温での減
圧乾燥などにより合成樹脂表面との密着性を高
め、かつ大きな膜強度を有する帯電防止被膜が形
成される。 次に実施例を掲げて本発明を更に詳しく説明す
る。 実施例 1 硫酸チタニル(TiOSO4・2H2O)59gを55℃
の温水600mlに溶解させた後該溶液を10℃に冷却
し28%アンモニア水50mlを添加し水酸化チタンを
沈澱させた。その沈澱物を過後800mlの純水で
水洗し水酸化チタンのケーキをえた。上記でえた
ケーキを氷冷された500mlガラスビーカーに仕込
み、かき混ぜながら濃硝酸53gを徐々に滴下し水
酸化チタンを解膠して透明チタニアゾル液とし
た。この透明液をセロフアン透析膜内に入れ5重
量%酢酸水溶液で3時間の透析を行ない対イオン
の硝酸イオンを酢酸イオンに置換し安定で不純物
含量の少ないチタニアヒドロゾルをえた。このゾ
ル中の組成はチタニアがTiO2で換算して8.5重量
%、酢酸が4.8重量%、NO3が1.0重量%、SO2- 4
100ppmであり、コロイドの粒子径は透過型電子
顕微鏡で観測すると20〜40Åであつた。又、この
ゾルは室温で3ケ月放置後もゲル化、増粘せず安
定であつた。厚さ50μmのポリエチレンテレフタ
レート樹脂(以後PETと略す)フイルムに上で
えたチタニアヒドロゾルをバーコーター8番によ
り塗布し、一夜風乾又は120℃熱風乾燥させて
PETフイルム上にチタニアの被膜を形成させた。
これらの皮膜はX線回析の結果いずれも非晶質で
あつた。 被膜処理されたPET表面の表面固有抵抗、製
膜性、膜強度を測定した。その結果を表―1に示
す。なお、それぞれの測定方法は下記の通りであ
る。 ・表面固有抵抗―YHP‐4329A high resistance
meter 16008A resistivity cell(横河ヒユ
ーレツトパツカード社製)を用い25℃、相
対湿度30%で測定した。 ・製膜性―塗布膜の均質性を目視して4段階に分
けて評価した。 ◎…均質性非常に良好 〇…ほとんど均質である △…均質でない部分が割に多い ×…皮膜を形成しない ・膜強度―密着性をごばん目剥離試験JIS‐
K5400 6.15により規定された方法に準じ
てゴバン目を作成し、その表面に粘着テー
プをはりつけ、それを急激にはがしたあと
のゴバン目における塗膜の残存数を測定し
た。 実施例 2 実施例1でえたチタニアヒドロゾルとアルミナ
ヒドロゾル(日産化学社製アルミナゾル‐200粒
子径100×1000Å)をチタン/アルミニウム=
1/1(原子比)となるように混合しチタニアヒ
ドロゾル―アルミナヒドロゾル混合物をえた。 実施例1においてチタニアゾルの替りに上記の
混合ゾル、PETフイルムの替りにポリメチルメ
タクリレート樹脂(PMMA)板を用いた他は同
様に行ない表―1の結果をえた。 実施例 3 四塩化チタン(チタン含量16.8重量%)28g及
び硝酸アルミニウム(Al(NO33・9H2O)110g
を7重量%酢酸水溶液600mlに添加し均一溶液と
した。次いで該液中にイオン交換基を予じめOH
型に転化させた陰イオン交換樹脂(アンバーライ
ト IRA 68…ロームアンドハース社製)470gを
加え25℃で1分間接触させた後イオン交換樹脂を
別しチタニアアルミナ複合ヒドロゾルを製造し
た。この複合ゾルの組成はTi/Al=1/3(原子
比)でチタニア―アルミナ複合コロイドがTiO2
―Al2O3に換算して3.2重量%でCl-は0.7重量%、
NO- 3は1.0重量%であり、酢酸は5.3重量%であつ
た。複合コロイドの粒子径は50〜150Å×500〜
1000Åの不定形状であつた。 実施例1においてチタニアゾルの替りに上記で
えた複合ゾルを又、PETフイルムの替りにポリ
カーボネート(PC)板を用いた他は実施例1と
同様に行ない下記の表―1の結果をえた。 実施例 4 実施例3と同様にしてTi/Al=3/1(原子
比)の複合ゾルをえ、その複合ゾルを用いて塗膜
を形成させた以外は同様に行ない下記の表―1の
結果をえた。 比較例 1 実施例2で用いたアルミナヒドロゾルのみを帯
電防止剤として用いた他は実施例1と同様に行な
い下記の表―1に示す測定結果をえた。 比較例 2 チタンテトライソプロポキシドのエタノール溶
液(TiO2換算チタン含量8重量%)を実施例1
と同様にPETフイルム上に塗布し風乾したとこ
ろゲル化白濁し製膜性、膜強度とも非常に悪い結
果であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel inorganic antistatic agent. Specifically, the present invention relates to an antistatic agent containing at least one titania-based hydrosol selected from the group of titania hydrosol, titania sol-alumina sol mixed hydrosol, and titania alumina composite hydrosol. Synthetic resin products such as fibers, sheets, and films made from synthetic resins are easily charged with static electricity, and the damage caused by this has become a variety of problems. The inorganic antistatic agent disclosed in the present invention exhibits an excellent antistatic effect that is not affected by humidity or changes over time when used as a surface treatment agent for the above synthetic resin products, and is of industrial significance. . <Conventional technology> In recent years, there has been a rapid increase in the number of products requiring antistatic properties such as clean benches, clean rooms, other electronic and electrical equipment, building materials such as flooring and wall materials, and textile products such as clothing and seat covers. ing. As a countermeasure, there is a method of kneading large amounts of conductive substances such as carbon fiber and metal powder into synthetic resin and molding it, but the purpose is to prevent the generation and accumulation of static electricity on the surface of synthetic resin products. Surface treatment with antistatic agents has attracted attention, and its use in small amounts is effective and has been widely applied. The surface treatment methods can be roughly divided into two: First, conductive paint mixed with carbon powder, carbon fiber, metal powder, metal fiber, fine powder of inorganic oxide such as tin oxide, indium oxide, etc. is applied to make the surface conductive. The second method is to apply ionically conductive organic substances such as quaternary ammonium salts and sulfonate salts, and the third method is to hydrolyze and condense metal alkoxides in the coating film (Japanese Patent Publication No. 36-4740). Publication specification),
Alumina hydrosol, silica sol (Special Publication 1969-
A method of applying an inorganic paint or the like that forms a glassy substance has been proposed, such as (Japanese Patent No. 6533 specification). However, these methods have the following drawbacks. That is, in the first method, the treated film becomes colored, such as gray or black, and a transparent coating film cannot be obtained. The second method is easily affected by humidity, and not only does it not have a sufficient antistatic effect in a low-humidity atmosphere, but it also loses its effectiveness after washing with water, the surface becomes sticky, and it is susceptible to ultraviolet rays. There are problems such as instability and coloring. Similar to the second method, the third method conventionally has problems such as not having a sufficient antistatic effect in a low-humidity atmosphere, and poor adhesion to the synthetic resin surface and easy peeling. Various attempts have been made to coexist with esters and the like as essential components, but they have drawbacks such as complicated processing after coating film formation, and are still not satisfactory. It is also known that films made from metal chlorides such as titanium tetrachloride and aluminum chloride have antistatic properties [Kobunshi, Vol. 10, pp. 371-373 (1961)]; However, it is said that it cannot be put into practical use due to drawbacks such as film strength. <Problems to be Solved by the Invention> The present invention is a method that falls within the scope of the third method described above, but it has problems with the complicated processing of conventional silica sol-based antistatic agents and the problems of alumina sol-based antistatic agents. This solves the drawbacks of known methods, such as poor adhesion to the resin surface and antistatic effect, as well as poor transparency and film strength in systems made from titanium tetrachloride and aluminum chloride, and achieves antistatic effect even at low humidity. , has excellent adhesion to synthetic resin surfaces, and does not deteriorate over time.
The object of the present invention is to provide an antistatic agent that stably protects the surface of a synthetic resin and is easy to process. <Means for Solving the Problems> The present invention was discovered while investigating the antistatic effects of many inorganic materials in order to solve the various problems of the existing antistatic agents mentioned above. Its feature is that it is an antistatic agent containing at least one titania hydrosol selected from the group of titania sol, titania sol-alumina sol mixed hydrosol, and titania alumina composite hydrosol. <Function> The antistatic agent containing the titania-based hydrosol described above has better adhesion to the synthetic resin surface than other inorganic agents, forms a firm film, and exhibits sufficient antistatic effect even in a low-humidity atmosphere. Although the reason for this is not clear, the present inventors think as follows.
In other words, since the colloidal particles in the titania-based hydrosol are minute, the surface area is large, and the titanium hydroxyl groups present in large numbers on the surface of the colloidal particles are chemically active, resulting in strong bonding through a small amount of adsorbed water on the surface of the synthetic resin. It is thought that the adhesion is high due to strong adsorption to polar groups such as oxygen and nitrogen present in the synthetic resin and on the surface.
In addition, regarding the antistatic ability, the colloidal particles applied to the surface of the synthetic resin form a film through dehydration and condensation between the particles while water and other solutions in the system scatter, but ultimately the cross section of the film is porous. It is thought that there is a space corresponding to the colloid particle size, around which a large amount of active titanium hydroxyl groups are distributed, and these groups provide a strong antistatic ability. The titania sol-alumina sol mixed hydrosol is simply a mixture of titania hydrosol and alumina hydrosol. When producing both sols,
The titania colloid particles in titania hydrosol tend to be nearly spherical, while the alumina colloid particles in alumina hydrosol tend to be feather-shaped, but if we look only at their physical shape, Aggregates with irregular shapes such as feathers are more effective in entangling the particles during film formation, resulting in a stronger film, but alumina alone has a weak affinity with the synthetic resin surface, resulting in easy peeling. There is. The titania sol-alumina sol mixed hydrosol maintains the strong adhesion of titania colloid particles to the synthetic resin surface and utilizes the shape specificity of alumina colloid particles to improve film strength. Furthermore, a synergistic antistatic effect is expected by controlling the valences by bonding two metals with different valences via oxygen atoms. Titania alumina composite hydrosol is produced by using titanium compounds such as titanium tetrachloride, titanyl sulfate, titanyl nitrate, titanium oxalate, and titanium tetraisopropoxide, and aluminum such as aluminum chloride, aluminum nitrate, aluminum acetate, and aluminum isopropoxide. It is a composite hydrosol that simultaneously hydrolyzes both components from a mixed solution of the compound and has titanoxane bonds and aluminoxane bonds in the molecular chain. In this case, the shape of the composite colloidal particles changes depending on the composition ratio of titanium and aluminum, but it is possible to increase the condensation rate of the two metals with different valences through the oxygen atoms mentioned above. It is thought that this results in a synergistic antistatic effect. In these titania sol-alumina sol mixed hydrosols and titania alumina composite hydrosols according to the present invention, the content ratio of titanium and aluminum therein is such that the titanium/(aluminum + titanium) atomic ratio is 0.1 or more, especially for the reasons mentioned above.
The range is preferably 0.2 or more. There are no restrictions on the method for producing the above hydrosol, but in the case of titania hydrosol, for example, salts such as titanium tetrachloride and titanyl sulfate are hydrolyzed to form orthotitanic acid particles, and then barium chloride, hydrochloric acid, etc. Either by peptizing and removing contaminating impurity ions such as chloride ions by dialysis, or by partially hydrolyzing titanium alkoxide such as titanium tetraisopropoxide in an alcohol solution, adding a stabilizer and adding water as a solution. Preferably, a method in which an aqueous solution of a titanium salt such as titanium tetrachloride or titanyl sulfate is hydrolyzed using an OH-type anion exchange resin in the presence of a stabilizer such as acetic acid is industrially advantageous. be done. The titania alumina composite sol can also be produced in the same manner as the titania hydrosol, except that the aluminum raw material is uniformly dissolved in the titanium raw material. Conventionally known methods are applied to aluminum hydrosol, for example, the method described in JP-A-59-223223,
The method described in JP-A-59-78925 can be used, but commercially available methods may also be used as they are. As mentioned above, the smaller the colloid particle size in the titania hydrosol, titania sol-alumina sol mixture, and titania alumina composite sol produced by the above method, the better the antistatic effect, adhesion, and film strength. Since the synthetic resin becomes transparent after antistatic treatment, it is preferable to use a synthetic resin having an average diameter of 0.1 μm or less. The antistatic agent disclosed in the present invention uses water as a solvent, and if it contains titania-based colloidal particles as a titania-based hydrosol, it alone has a high antistatic effect when used as a treatment agent, and it can be used as a treatment agent for synthetic resins. It has excellent adhesion to the surface, but in order to further enhance the effect, in some cases carboxylic acids such as acetic acid, alcohols such as methanol and ethanol, esters such as ethyl acetate and methyl acrylate, ethyl ether, etc. ethers, ketones such as acetone, lower hydrocarbons such as LPG and LNG, their halides, and (meth)acrylic acid, 2-hydroxyethyl (meth)acrylate, vinyl acetate, maleic acid, ethylene oxide, etc. Water-soluble or emulsified mono- or copolymers of reactive monomers can be added. Small amounts of commonly used organic antistatic agents such as quaternary ammonium salts, cationic, anionic or amphoteric surfactants may also be added. Applicable synthetic resins include conventionally known resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polycarbonate, polymethyl methacrylate, nylon, Bakelite, epoxy, unsaturated and saturated polyesters, ABS, polyamide, and polyimide. Among these, resins containing oxygen or nitrogen atoms in their polymer chains are particularly preferred because they have a particularly high affinity with the hydroxyl groups strongly held by the titanium element in the hydrosol. Its shape is plate-like, film-like,
It may be in any shape such as fibrous or molded body. When actually antistatically treating a synthetic resin using the antistatic agent of the present invention, conventionally known methods such as spraying, dipping, bar coater, applicator, and brushing can be applied. After forming a coating film of antistatic agent on the synthetic resin surface in this way, it is air-dried, heated to 200℃, dried under reduced pressure at room temperature, etc. to improve the adhesion to the synthetic resin surface and increase the film strength. An antistatic coating is formed. Next, the present invention will be explained in more detail with reference to Examples. Example 1 59g of titanyl sulfate (TiOSO 4.2H 2 O) at 55℃
After dissolving the solution in 600 ml of hot water, the solution was cooled to 10° C., and 50 ml of 28% ammonia water was added to precipitate titanium hydroxide. The precipitate was washed with 800 ml of pure water to obtain a titanium hydroxide cake. The cake obtained above was placed in an ice-cooled 500 ml glass beaker, and while stirring, 53 g of concentrated nitric acid was gradually added dropwise to peptize the titanium hydroxide and form a transparent titania sol solution. This transparent liquid was placed in a cellophane dialysis membrane and dialyzed for 3 hours against a 5% by weight acetic acid aqueous solution to replace the counter ion nitrate ion with acetate ion, yielding a stable titania hydrosol with a low impurity content. The composition of this sol is 8.5% by weight of titania (calculated as TiO2 ), 4.8% by weight of acetic acid, 1.0% by weight of NO3 , and 1.0% by weight of SO2-4 .
The particle size of the colloid was 20 to 40 Å when observed with a transmission electron microscope. Furthermore, this sol remained stable without gelling or thickening even after being left at room temperature for 3 months. The titania hydrosol obtained above was applied to a polyethylene terephthalate resin (hereinafter abbreviated as PET) film with a thickness of 50 μm using a No. 8 bar coater, and air-dried overnight or with hot air at 120°C.
A titania film was formed on PET film.
As a result of X-ray diffraction, these films were all found to be amorphous. The surface resistivity, film formability, and film strength of the coated PET surface were measured. The results are shown in Table-1. In addition, each measurement method is as follows.・Surface specific resistance - YHP-4329A high resistance
Measurement was performed at 25° C. and relative humidity of 30% using meter 16008A resistivity cell (manufactured by Yokogawa Heuretsu Patscard Co., Ltd.).・Film forming property - The homogeneity of the coating film was visually observed and evaluated in four stages. ◎…Very good homogeneity〇…Almost homogeneous △…Relatively many areas that are not homogeneous×…Does not form a film ・Film strength - Adhesiveness was tested using a square peel test JIS-
A cross-section was prepared according to the method specified in K5400 6.15, an adhesive tape was attached to the surface of the cross-section, and after the adhesive tape was rapidly peeled off, the number of coatings remaining on the cross-section was measured. Example 2 The titania hydrosol and alumina hydrosol (Nissan Chemical Co., Ltd. Alumina Sol-200 particle size 100 x 1000 Å) obtained in Example 1 were mixed with titanium/aluminum =
They were mixed at a 1/1 (atomic ratio) to obtain a titania hydrosol-alumina hydrosol mixture. Example 1 was carried out in the same manner as in Example 1, except that the above mixed sol was used instead of the titania sol, and a polymethyl methacrylate resin (PMMA) plate was used instead of the PET film, and the results shown in Table 1 were obtained. Example 3 28 g of titanium tetrachloride (titanium content 16.8% by weight) and 110 g of aluminum nitrate (Al(NO 3 ) 3.9H 2 O)
was added to 600 ml of a 7% by weight acetic acid aqueous solution to form a homogeneous solution. Next, add ion exchange groups to the solution in advance by adding OH
470 g of an anion exchange resin (Amberlite IRA 68, manufactured by Rohm and Haas) which had been converted into a mold was added and allowed to contact at 25° C. for 1 minute, and then the ion exchange resin was separated to produce a titania alumina composite hydrosol. The composition of this composite sol is Ti/Al = 1/3 (atomic ratio), and the titania-alumina composite colloid is TiO 2
-Calculated as Al 2 O 3 , it is 3.2% by weight, and Cl - is 0.7% by weight.
NO - 3 was 1.0% by weight and acetic acid was 5.3% by weight. The particle size of the composite colloid is 50~150Å x 500~
It had an irregular shape of 1000 Å. Example 1 was carried out in the same manner as in Example 1, except that the composite sol obtained above was used instead of the titania sol and a polycarbonate (PC) plate was used instead of the PET film, and the results shown in Table 1 below were obtained. Example 4 A composite sol of Ti/Al=3/1 (atomic ratio) was obtained in the same manner as in Example 3, and a coating film was formed using the composite sol. I got the results. Comparative Example 1 The same procedure as in Example 1 was carried out except that only the alumina hydrosol used in Example 2 was used as an antistatic agent, and the measurement results shown in Table 1 below were obtained. Comparative Example 2 An ethanol solution of titanium tetraisopropoxide (titanium content 8% by weight in terms of TiO 2 ) was prepared in Example 1.
When it was similarly applied onto a PET film and air-dried, it turned into a gel and became cloudy, resulting in very poor film formability and film strength. 【table】

Claims (1)

【特許請求の範囲】 1 チタニアヒドロゾル、チタニアゾル―アルミ
ナゾル混合ヒドロゾルおよびチタニアアルミナ複
合ヒドロゾルの群より選ばれた少くとも1種のチ
タニア系ヒドロゾルを含むことを特徴とする帯電
防止剤。 2 該ヒドロゾル中のコロイド粒子の平均径が
0.1μm以下であることを特徴とする特許請求の範
囲1記載の帯電防止剤。
[Scope of Claims] 1. An antistatic agent characterized by containing at least one titania hydrosol selected from the group of titania hydrosol, titania sol-alumina sol mixed hydrosol, and titania alumina composite hydrosol. 2 The average diameter of colloidal particles in the hydrosol is
The antistatic agent according to claim 1, wherein the antistatic agent has a particle size of 0.1 μm or less.
JP1872585A 1985-02-04 1985-02-04 CHITANIAKEIHIDOROZORUOFUKUMUTAIDENBOSHIZAI Expired - Lifetime JPH0232305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1872585A JPH0232305B2 (en) 1985-02-04 1985-02-04 CHITANIAKEIHIDOROZORUOFUKUMUTAIDENBOSHIZAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1872585A JPH0232305B2 (en) 1985-02-04 1985-02-04 CHITANIAKEIHIDOROZORUOFUKUMUTAIDENBOSHIZAI

Publications (2)

Publication Number Publication Date
JPS61179285A JPS61179285A (en) 1986-08-11
JPH0232305B2 true JPH0232305B2 (en) 1990-07-19

Family

ID=11979639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1872585A Expired - Lifetime JPH0232305B2 (en) 1985-02-04 1985-02-04 CHITANIAKEIHIDOROZORUOFUKUMUTAIDENBOSHIZAI

Country Status (1)

Country Link
JP (1) JPH0232305B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750436B2 (en) * 2010-05-14 2015-07-22 株式会社Kri Modified metal oxide sol
KR101814312B1 (en) * 2013-11-15 2018-01-02 가부시키가이샤 유포 코포레숀 Thermoplastic resin film, label-attached hollow molded container, adhesive film, label, and film for printing use
CN110139829B (en) * 2016-12-02 2023-10-13 埃科莱布美国股份有限公司 Polyaluminium salts and their use in the preparation of high purity colloidal aluminum-silica composite particles and zeolites

Also Published As

Publication number Publication date
JPS61179285A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
US6200680B1 (en) Fine zinc oxide particles, process for producing the same, and use thereof
US4882133A (en) Method for producing a flaky material
JP4526153B2 (en) Photocatalyst carrying structure, process for producing the same, and composition for forming an intermediate layer
JPS6337142B2 (en)
JP4846088B2 (en) Titanium oxide-containing photocatalyst coating liquid, production method thereof, and titanium oxide photocatalyst structure
JPH0686571B2 (en) Antibacterial / conductive composition and antibacterial / conductive resin composition
JPS61283629A (en) Plastic composite material
JPH0232305B2 (en) CHITANIAKEIHIDOROZORUOFUKUMUTAIDENBOSHIZAI
JP5877708B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
TW575523B (en) Inorganic film-forming coating composition and inorganic film-forming method by use of the same
JPH07100611B2 (en) Method for producing modified titania sol
JP4868636B2 (en) Structure comprising a photocatalyst
US6284364B1 (en) Silicate-containing sheet
JPH0546848B2 (en)
JP4693965B2 (en) Photocatalyst carrying structure and photocatalyst layer forming composition
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JPH06650B2 (en) Titanium oxide / cerium oxide composite sol and transparent thin film formed from this sol
Textor Modification of textile surfaces using the sol-gel technique
JPH0232306B2 (en) CHITANIAHIDOROZORUOFUKUMUSEIDENZAI
JPS6112734A (en) Manufacture of coated plastic molded article having excellent abrasion resisance
JPH036275A (en) Method for treating and modifying the surface of base material
JPH059317A (en) Production of resin molding with gas barrier property imparted thereto
JPH04279675A (en) Reflection preventing coating compound
JP3228650B2 (en) Antistatic paint and substrate with antistatic coating
JP3233758B2 (en) Antistatic coating composition for plastics