JPH0232281A - High frequency signal processing circuit for target tracking device - Google Patents

High frequency signal processing circuit for target tracking device

Info

Publication number
JPH0232281A
JPH0232281A JP18425188A JP18425188A JPH0232281A JP H0232281 A JPH0232281 A JP H0232281A JP 18425188 A JP18425188 A JP 18425188A JP 18425188 A JP18425188 A JP 18425188A JP H0232281 A JPH0232281 A JP H0232281A
Authority
JP
Japan
Prior art keywords
antenna
processing circuit
signal processing
frequency signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18425188A
Other languages
Japanese (ja)
Inventor
Katsuhiko Aoki
青木 克比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18425188A priority Critical patent/JPH0232281A/en
Publication of JPH0232281A publication Critical patent/JPH0232281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To reduce the size and weight of the tracking device by using a plane antenna by providing at least four patch antennas, three hybrid circuits, a circuit which connects them, and three microstrip-coaxial converter. CONSTITUTION:The device consists of the patch antennas 1a-1d corresponding to a four-horn type horn, output terminals 3a-3c, for a sum signal SIGMA, a difference signal DELTAAz in a depression-directional plane, and a difference signal DELTAEl in an elevation-directional plane which are generated by rat race circuits 2a-2b corresponding to the hybrid circuits, coaxial outputs 4a-4c, and a signal processing circuit 5. The difference signals become zero in the peak direction of the sum signal and are inverted in phase in the left and right directions from the front, and the direction of an error can be detected by comparing the amplitudes and phases of the difference signals DELTAAz and DELTAEl to obtain the device which can obtain a tracking error signal for directing the antenna to a target. For example, this device is fitted on the reverse surface of the sub-reflecting mirror of, for example, a Cassegrain antenna to easily pickup a target such as an artificial satellite.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は衛星通信用地球局アンテナの追尾用アンテナ
装置における高周波信号処理回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high frequency signal processing circuit in a tracking antenna device for an earth station antenna for satellite communication.

〔従来の技術〕[Conventional technology]

第4図は例えば文献「アンテナ工学ハンドブック、電子
通信学会績、オーム社」の「アレーアンテナJ 5.8
.3モノパルス給電回路、P、225に示された従来の
4ホ一ンモノパルス追尾方式による目標追尾装置のうち
のいわゆるコンパレータとよばれる高周波信号処理回路
を示し、第5図はそのホーン部を示す。
Figure 4 shows, for example, "Array Antenna J 5.8" in the document "Antenna Engineering Handbook, IEICE Report, Ohmsha".
.. A high frequency signal processing circuit called a so-called comparator is shown in a conventional target tracking device using a four-horn monopulse tracking method shown in 3-Monopulse Power Supply Circuit, P, 225, and FIG. 5 shows its horn section.

両図において、la、lb、kc、ldは同一形状のホ
ーン、2aは第1のハイブリッド(HYBl)、2bは
第2のハイブリッド(HYB2)、3a、3b、3cは
モノパルス出力であり、3aは4つのホーンの出力の和
信号出力、3bはAz面(俯角方向)内の差信号出力、
3cはE1面(仰角方向)内の差信号出力である。
In both figures, la, lb, kc, and ld are horns of the same shape, 2a is the first hybrid (HYBl), 2b is the second hybrid (HYB2), 3a, 3b, and 3c are monopulse outputs, and 3a is the The sum signal output of the outputs of the four horns, 3b is the difference signal output in the Az plane (depression angle direction),
3c is a difference signal output in the E1 plane (elevation angle direction).

次に動作について説明する。Next, the operation will be explained.

ホーンA、B、C,Dで受信された電波はHYBlで(
A±B)、(C±D)の4つの合成出力となり、さらに
HYB 2で合成され、(A+B)+ (C十D) 、
すなわち4つのホーンの和信号(Σ)は出力ボート3a
から、(A+B)−(C+D)、すなわちAz面内の差
信号(ΔAz)は出カボート3bから、さらに(A−B
)+ (C−D)ミ(A+C)−(B+D) 、すなわ
ち、81面内の差信号ΔElは出力ポート3cからそれ
ぞれ得られる。
The radio waves received by horns A, B, C, and D are HYBL (
There are four composite outputs: A±B) and (C±D), which are further synthesized by HYB 2, resulting in (A+B)+(C+D),
In other words, the sum signal (Σ) of the four horns is output from the output port 3a.
Therefore, (A+B)-(C+D), that is, the difference signal (ΔAz) in the Az plane, is transmitted from the output port 3b and further from (A-B
)+(C-D)mi(A+C)-(B+D), that is, the difference signal ΔEl within the 81 plane is obtained from the output port 3c.

−iにこのような4ホ一ンモノパルス追尾方弐を用いる
場合、ホーンとしては第5図のような正方形開口の角錐
ホーンを、またHYBとしてはMagic−Tを使用し
た立体回路(導波管回路)を用い、高周波信号処理回路
を構成することが一般的である。
-i, when using such a four-horn monopulse tracking method, a pyramidal horn with a square aperture as shown in Figure 5 is used as the horn, and a three-dimensional circuit (waveguide circuit) using Magic-T is used as the HYB. ) to construct a high-frequency signal processing circuit.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の4ホ一ンモノパルス追尾方式による目標追尾装置
の高周波信号処理回路は以上のように構成されているの
で、小型、軽量化が困難であり、例えばカセグレンアン
テナの副反射鏡の裏面に、追尾用アンテナ装置として使
用するとか、折りたたみ形アンテナのアンテナ背面に同
様の目的で使用する場合、取付が不可能であるなどの問
題点があった。
The high-frequency signal processing circuit of a target tracking device using the conventional 4-horn monopulse tracking method is configured as described above, so it is difficult to make it smaller and lighter. When used as an antenna device or for similar purposes on the back of a folding antenna, there are problems such as the impossibility of attachment.

この発明は上記のような問題点を解消するためになされ
たもので、平面アンテナにより小型で、かつ軽量の、4
ホ一ンモノパルス追尾方式の原理を利用した高周波信号
処理回路を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and uses a flat antenna to create a small and lightweight 4
The purpose of this study is to obtain a high-frequency signal processing circuit that utilizes the principle of the single-monopulse tracking method.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る目標追尾装置の高周波信号処理回路は、
マイクロストリップ線路による4個のパッチアンテナと
、マイクロストリップ線路による3個のラフトレース回
路と、このラフトレース回路の出力を同軸変換する同軸
出力回路とがら構成したものである。
The high frequency signal processing circuit of the target tracking device according to the present invention includes:
It consists of four patch antennas using microstrip lines, three rough trace circuits using microstrip lines, and a coaxial output circuit that converts the output of the rough trace circuits to coaxial.

〔作用〕[Effect]

この発明にがかる4ホ一ンモノパルス追尾方式の高周波
信号処理回路では、平面アンテナからなる小型、軽量の
装置により、第7図に示すように差信号は和信号のピー
ク方向で零になり、また、正面から左右方向には位相が
反転し、ΔAz、ΔEI!の振幅・位相を比較すること
により、誤差の方向を検出でき、アンテナを目標方向に
指向させるための追尾誤差信号を得ることができるもの
が得られる。特に和信号Σで正規化した誤差信号ΔAz
、ΔElは和信号の主ビーム近傍では直線的に変化する
In the four-horn monopulse tracking high-frequency signal processing circuit according to the present invention, the difference signal becomes zero in the direction of the peak of the sum signal, as shown in FIG. The phase is reversed in the left and right direction from the front, and ΔAz, ΔEI! By comparing the amplitude and phase of the signals, the direction of the error can be detected, and a tracking error signal for directing the antenna toward the target can be obtained. In particular, the error signal ΔAz normalized by the sum signal Σ
, ΔEl change linearly near the main beam of the sum signal.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図はこの発明の一実施例による目標追尾
のための追尾用アンテナ装置における高周波信号処理回
路を示し、図において、la、lb。
1 and 2 show a high frequency signal processing circuit in a tracking antenna device for target tracking according to an embodiment of the present invention, and in the figures, la and lb.

lc、Idは4ホーンに相当する4つのパッチアンテナ
、2aは第1のハイブリッド、2bは第2のハイブリッ
ド、3a、3b、3cはそれぞれ和信号Σ、差信号ΔA
z、差信号ΔElの出力端であり、4a、4b、4cは
同軸出力である。5は上記4つのパッチアンテナ、3つ
のラフトレース回路および3つの同軸出力を存したマイ
クロストリップ線路を使用したモノパルス追尾による高
周波信号処理回路であり、51は地板である。第3図は
マイクロストリップ線路から同軸線路への変換を示した
ものである。
lc and Id are four patch antennas corresponding to four horns, 2a is the first hybrid, 2b is the second hybrid, 3a, 3b, and 3c are the sum signal Σ and the difference signal ΔA, respectively.
z is an output terminal for the difference signal ΔEl, and 4a, 4b, and 4c are coaxial outputs. 5 is a monopulse tracking high frequency signal processing circuit using a microstrip line having the above-mentioned four patch antennas, three rough trace circuits and three coaxial outputs, and 51 is a ground plane. FIG. 3 shows the conversion from a microstrip line to a coaxial line.

このようなパッケージ化されたモノパルス信号処理回路
を、例えば第8図のようにカセグレンアンテナの副反射
鏡6の裏面にとりつければ、衛星などの目標捕捉が容易
にできる。
If such a packaged monopulse signal processing circuit is attached to the back surface of the sub-reflector 6 of the Cassegrain antenna, as shown in FIG. 8, for example, targets such as satellites can be easily captured.

第6図はこの発明の原理・外観を示す構成図であり、l
a、lb、、lc、ldは第5図のホーンA、B、C,
Dに相当するパッチアンテナ、2aはラフトレース回路
で第1のハイブリッドHYB1に相当するもの、2bは
同じくラフトレース回路で第2のハイブリッドHYB2
に相当するものである。2Cは原理的には2bのような
ハイブリッドに置き換え可能であるが、ここでは回路を
単純にするため単なる合成器を用いている。
FIG. 6 is a configuration diagram showing the principle and appearance of this invention.
a, lb, lc, ld are horns A, B, C, in Fig. 5.
Patch antenna corresponding to D, 2a is a rough trace circuit and corresponds to the first hybrid HYB1, 2b is also a rough trace circuit and corresponds to the second hybrid HYB2
This corresponds to Although 2C can in principle be replaced with a hybrid like 2b, a simple synthesizer is used here to simplify the circuit.

第7図は本実施例により得られる出力の指向特性を示し
、第8図は本発明の第1の適用例であるパラボラアンテ
ナに本高周波信号処理回路を装着した例を示す図である
。第7図の放射パターン8は第8図のパラボラアンテナ
の開口6からの放射パターンに相当しており、この放射
パターンは一般には4つのバッチアンテナ5からの和信
号バタ−ン3aに比べ、非常にビーム幅が狭い。従って
可搬形、移動形のアンテナを用いて臨時的に衛星通信回
線を設定する場合、このようにビーム幅が狭い高利得の
アンテナはど、衛星の初期捕捉に上記のような追尾アン
テナ装置を使用する必要があるものである。
FIG. 7 shows the directivity characteristics of the output obtained by this embodiment, and FIG. 8 is a diagram showing an example in which the present high-frequency signal processing circuit is attached to a parabolic antenna, which is the first application example of the present invention. The radiation pattern 8 in FIG. 7 corresponds to the radiation pattern from the aperture 6 of the parabolic antenna in FIG. The beam width is narrow. Therefore, when temporarily setting up a satellite communication line using a portable or mobile antenna, it is necessary to use a tracking antenna device like the one above for initial acquisition of the satellite. It is something that needs to be done.

ここで、上記追尾アンテナ装置を構成するには、前記の
モノパルス追尾による高周波信号処理回路のほかに、衛
星通信では通常の追尾受信装置とよばれる低雑音増幅器
(LNA) 、周波数変換器(D/C)および振幅・位
相検出器(DEM)が必要である。
Here, in order to configure the above-mentioned tracking antenna device, in addition to the above-mentioned high-frequency signal processing circuit using monopulse tracking, a low-noise amplifier (LNA), which is called a normal tracking receiving device in satellite communication, and a frequency converter (D/ C) and an amplitude and phase detector (DEM) are required.

なお、第8図の適用例において、副反射鏡7と主反射鏡
6は、所要の精度内で設定されていることが必要である
。この精度が所要の性能を満足していない場合、主反射
tIL6からの放射パターンと副反射鏡5からの放射パ
ターンのビーム軸のズレが大きくなり、いかにモノパル
スにより追尾してもビームの軸ズレのため初期捕捉の役
に立たないことは明らかである。
In the application example shown in FIG. 8, the sub-reflecting mirror 7 and the main reflecting mirror 6 need to be set within a required precision. If this accuracy does not satisfy the required performance, the beam axis deviation between the radiation pattern from the main reflector tIL6 and the radiation pattern from the sub-reflector 5 will become large, and no matter how much monopulse tracking is used, the beam axis deviation will continue. Therefore, it is clear that it is not useful for initial acquisition.

第9図はやはり可搬形アンテナの衛星初期捕捉に用いた
本発明の他の適用例を示し、これは折りたたみ形式のア
ンテナに適用した例である。すなわち、モノパルス信号
処理回路5をアンテナ主反射鏡6の背面に取付け、アン
テナ展開前に該モノパルス信号処理回路5を予め衛星方
向に向ける。
FIG. 9 shows another application example of the present invention in which a portable antenna is used for initial acquisition of a satellite, and this is an example in which the invention is applied to a foldable antenna. That is, the monopulse signal processing circuit 5 is attached to the back of the antenna main reflector 6, and the monopulse signal processing circuit 5 is previously directed toward the satellite before the antenna is deployed.

そして、衛星の初期捕捉が終わった後にアンテナを展開
し、衛星通信回線を設定する。なお、上記モノパルス信
号処理回路5はアンテナ背面でなくともアンテナの鏡軸
方向を示す位置に取付けてもよく、上記と同様の効果が
得られる。
After the initial acquisition of the satellite is completed, the antenna is deployed and a satellite communication line is set up. It should be noted that the monopulse signal processing circuit 5 may be installed at a position indicating the mirror axis direction of the antenna instead of at the back of the antenna, and the same effect as described above can be obtained.

また、上記実施例ではモノパルス信号処理回路を補助的
に使用するようにした追尾用アンテナ装置について示し
たが、前記のモノパルス追尾方式による高周波信号処理
回路は第10図の本発明の第3の適用例に示すように、
カセグレンアンテナ(グレゴリアンアンテナ)の−次放
射器、パラボラの一次放射器自体に用いることもでき、
これにより追尾機能付のアンテナ装置を得ることができ
る。この場合、従来の立体回路(導波管回路)によるモ
ノパルス追尾方式による高周波信号処理回路に比し大幅
な小型・軽量化が図れるという利点を有する。
Furthermore, although the above embodiment has shown a tracking antenna device in which a monopulse signal processing circuit is used auxiliarily, the high frequency signal processing circuit using the monopulse tracking method described above is a third application of the present invention shown in FIG. As shown in the example,
It can also be used as the −order radiator of a Cassegrain antenna (Gregorian antenna), or the parabolic primary radiator itself.
This makes it possible to obtain an antenna device with a tracking function. In this case, it has the advantage of being significantly smaller and lighter than a high-frequency signal processing circuit using a monopulse tracking method using a conventional three-dimensional circuit (waveguide circuit).

なお、本発明実施例の和信号端子は追尾基準信号端子と
してのみならず、通信用信号端子としても動作させるこ
とができる。
Note that the sum signal terminal of the embodiment of the present invention can be operated not only as a tracking reference signal terminal but also as a communication signal terminal.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、モノパルス追尾方式に
よる高周波信号処理回路をマイクロストリップ線路等を
用いて平面アンテナ化するようにしたので、装置を小型
かつ軽量にでき、さらには装置を安価にでき、またパッ
ケージ化されたものが得られる効果がある。
As described above, according to the present invention, the high-frequency signal processing circuit using the monopulse tracking method is made into a planar antenna using a microstrip line, etc., so the device can be made smaller and lighter, and furthermore, the device can be made cheaper. , there is also the effect of obtaining a packaged product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による目標追尾装置の高周
波信号処理回路の正面図、第2図は同後面図、第3図は
同断面図、第4図はこの発明および従来例の原理説明図
、第5図は従来の4ホーンの例の高周波信号処理回路を
示す図、第6図はこの発明の原理・外観を示す図、第7
図は本発明の詳細な説明するための各出力の指向特性を
示す図、第8図は本発明のパラボラアンテナへの第1の
適用例を示す図、第9図は本発明の折りたたみアンテナ
への第2の適用例を示す図、第10図は本発明をカセグ
レンアンテナの一次放射器へ適用した第3の適用例を示
す図である。 la、lb、lc、ldは4つのバッチアンテナ、2a
は第1のハイブリッド、2bは第2のハイブリッド、3
a、3b、3cはそれぞれ和信号Σ、差信号ΔAz、差
信号ΔElの出力端、4a。 4b、4cは同軸出力、5は高周波信号処理回路、6は
主反射鏡、7は副反射鏡である。 なお、図中同一符号は同一、又は相当部分を示す。
FIG. 1 is a front view of a high-frequency signal processing circuit of a target tracking device according to an embodiment of the present invention, FIG. 2 is a rear view of the same, FIG. 3 is a sectional view of the same, and FIG. 4 is a principle of the present invention and a conventional example. Explanatory drawings: FIG. 5 is a diagram showing a conventional four-horn example high-frequency signal processing circuit; FIG. 6 is a diagram showing the principle and external appearance of the present invention; FIG.
The figure is a diagram showing the directivity characteristics of each output for detailed explanation of the present invention, Figure 8 is a diagram showing a first example of application to a parabolic antenna of the present invention, and Figure 9 is a diagram showing a first application example of the present invention to a folding antenna. FIG. 10 is a diagram showing a third application example in which the present invention is applied to a primary radiator of a Cassegrain antenna. la, lb, lc, ld are four batch antennas, 2a
is the first hybrid, 2b is the second hybrid, 3
a, 3b, and 3c are output terminals of the sum signal Σ, difference signal ΔAz, and difference signal ΔEl, respectively, and 4a. 4b and 4c are coaxial outputs, 5 is a high frequency signal processing circuit, 6 is a main reflecting mirror, and 7 is a sub reflecting mirror. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)マイクロストリップ線路で構成された少なくとも
4個のパッチアンテナと、 少なくとも3個のハイブリッド回路と、 上記4個のパッチアンテナと上記少なくとも3個のハイ
ブリッド回路とを接続する接続回路と、上記ハイブリッ
ド回路の出力を同軸出力に変換する少なくとも3個のマ
イクロストリップ−同軸変換器とを備えたことを特徴と
するモノパルス追尾方式による目標追尾装置の高周波信
号処理回路。
(1) at least four patch antennas configured with microstrip lines, at least three hybrid circuits, a connection circuit connecting the four patch antennas and the at least three hybrid circuits, and the hybrid A high-frequency signal processing circuit for a target tracking device using a monopulse tracking method, comprising at least three microstrip-to-coaxial converters that convert the output of the circuit into a coaxial output.
JP18425188A 1988-07-22 1988-07-22 High frequency signal processing circuit for target tracking device Pending JPH0232281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18425188A JPH0232281A (en) 1988-07-22 1988-07-22 High frequency signal processing circuit for target tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18425188A JPH0232281A (en) 1988-07-22 1988-07-22 High frequency signal processing circuit for target tracking device

Publications (1)

Publication Number Publication Date
JPH0232281A true JPH0232281A (en) 1990-02-02

Family

ID=16150039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18425188A Pending JPH0232281A (en) 1988-07-22 1988-07-22 High frequency signal processing circuit for target tracking device

Country Status (1)

Country Link
JP (1) JPH0232281A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609691A1 (en) * 1993-01-19 1994-08-10 National Starch and Chemical Investment Holding Corporation Dissipative curing and coating composition for concrete
US7151568B2 (en) 2000-03-15 2006-12-19 Omron Corporation Displacement sensor
JP2009200908A (en) * 2008-02-22 2009-09-03 Nippon Telegr & Teleph Corp <Ntt> Tracking antenna
US8447254B2 (en) 2009-06-08 2013-05-21 Thrane and Thrane A/S Receiver and a method of receiving a signal
GB2516302A (en) * 2012-10-25 2015-01-21 Cambium Networks Ltd Reflector arrangement for attachment to a wireless communications terminal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609691A1 (en) * 1993-01-19 1994-08-10 National Starch and Chemical Investment Holding Corporation Dissipative curing and coating composition for concrete
US7151568B2 (en) 2000-03-15 2006-12-19 Omron Corporation Displacement sensor
JP2009200908A (en) * 2008-02-22 2009-09-03 Nippon Telegr & Teleph Corp <Ntt> Tracking antenna
US8447254B2 (en) 2009-06-08 2013-05-21 Thrane and Thrane A/S Receiver and a method of receiving a signal
GB2516302A (en) * 2012-10-25 2015-01-21 Cambium Networks Ltd Reflector arrangement for attachment to a wireless communications terminal

Similar Documents

Publication Publication Date Title
EP1543585B1 (en) Real-time, cross-correlating millimetre-wave imaging system
JP2014502084A (en) Antenna system
JPH0232281A (en) High frequency signal processing circuit for target tracking device
Garcia-Marin et al. Diffusion-bonded W-band monopulse array antenna for space debris radar
Dubovitskiy Practical design considerations for sparse antenna array using reflector antenna with continuously adjustable phase Center displacement
Muppala et al. Dynamic dual-reflector antennas for high-resolution real-time SAR imaging
US11158951B2 (en) Antipodal vivaldi antenna systems
US6243047B1 (en) Single mirror dual axis beam waveguide antenna system
Costes et al. Microwave humidity sounder (MHS) antenna
JP2644236B2 (en) RF sensor
JPH073688Y2 (en) Antenna device
Botha Offset reflector with a non-focal phased array feed for space applications
Antón et al. High resolution techniques for fast acquisition of satellite signals
JPH01233381A (en) Radar
JPH03270303A (en) Phased array type radio wave reflector
JPS62193402A (en) Reflection mirror antenna system
Cooley et al. Reflector and Reflectarray Architectures with Parabolic Cylinder Optics and Phased Array Feeds
JPH0783210B2 (en) Mono pulse tracking antenna
Suchkov et al. Narrow-Beam Waveguide Antenna for Surface Movement Radar
EP4342028A1 (en) Multimode feed for a reflector antenna of a monopulse tracking system
Viskum et al. Dual offset shaped reflectors optimized for gain and XPD performance
JPH0232605A (en) Array antenna
Hightower et al. A space-fed phased array for surveillance from space
CN117634115A (en) Miniaturized antenna array method
Jamnejad et al. Reflector antenna systems for the high altitude MMIC sounding radiometer (HAMSR)