JPH0232238A - Heat measuring biosensor - Google Patents

Heat measuring biosensor

Info

Publication number
JPH0232238A
JPH0232238A JP18180188A JP18180188A JPH0232238A JP H0232238 A JPH0232238 A JP H0232238A JP 18180188 A JP18180188 A JP 18180188A JP 18180188 A JP18180188 A JP 18180188A JP H0232238 A JPH0232238 A JP H0232238A
Authority
JP
Japan
Prior art keywords
column
immobilized
carrier
enzyme
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18180188A
Other languages
Japanese (ja)
Inventor
Tatsuo Mimura
三村 龍夫
Akira Okamoto
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP18180188A priority Critical patent/JPH0232238A/en
Publication of JPH0232238A publication Critical patent/JPH0232238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To output an exact signal with simple constitution and to extend the life of immobilized active enzyme by admitting a sample fed from a liquid feed tube at an equal proportion together with a buffer soln. to the two chambers of a column. CONSTITUTION:The sample fed from the liquid feed tube 3 is admitted together with the buffer soln. at the equal proportion to the two chambers 25a, 25b of the column 25. Heat generation is caused by the reaction by the immobilized enzyme in the chamber 25a in which a carrier 22 immobilized with the enzyme, etc., having activity is packed. The specific reaction does not take place in the other chamber 25b in which a carrier 23 immobilized with the deactivated enzyme, etc., is packed. The temps. in these two chambers 25a, 25b are measured by thermistors 21a, 21b and the exacter determination of the sample in which the non-specific detection component is removed by the differential signal thereof is executed. The activity of the active enzyme immobilized to the carrier 22 in the column 25 is lost by magnetic force and, therefore, magnetic force is applied to the column 25 when the sensor is not used. The immobilized enzyme is reactivated by eliminating the magnetic force at the time of use.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発酵工業プロセスの監視、環境計測及び臨床
化学分析等に応用される熱針、fI11バイオセンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hot needle fI11 biosensor that is applied to fermentation industrial process monitoring, environmental measurement, clinical chemical analysis, and the like.

〔従来の技術〕[Conventional technology]

上記熱計測バイオセンサは多孔性ガラス、オイパーギッ
ト等の担体に固定化された酵素等の特異的選択検知素子
と、この担体を充填するカラムと、上記特異的選択検知
素子における熱変化を検知するサーミスタとからなって
おり、その従来の構成を第5図、第6図に示す。
The above thermal measurement biosensor includes a specific selective sensing element such as an enzyme immobilized on a carrier such as porous glass or Eupergit, a column packed with this carrier, and a thermistor that detects thermal changes in the specific selective sensing element. The conventional configuration is shown in FIGS. 5 and 6.

第5図に示す従来例のものはフロー形計測系のものであ
り、図中1はバッファ液2を入れるバッファ液槽、3は
先端にフィルタ4をつけてバッファ液槽1に入れた送液
チューブ、5,6はこの送液チューブ3に直列状に介装
したベリスフポンプとインジェクションバルブ、7はイ
ンジエクションバルブ6に試料を注入する試料インジェ
クタ、8は恒温槽で、この恒温槽8内に、上記送液チュ
ーブ3のインジェクションバルブ6より下流側にコイル
状に構成した熱交換部つと、送液チューブ3の下流端に
接続され、かつ酵素を固定化した担体10を充填したカ
ラム11と、カラム11内の固定化酵素の発熱量を検知
するサーミスタ12と、これを囲繞するサーミスタプロ
ーブ13とが配置されている。
The conventional example shown in Fig. 5 is a flow-type measurement system, in which 1 is a buffer tank containing a buffer solution 2, and 3 is a buffer tank 1 with a filter 4 attached to the tip. Tubes 5 and 6 are a Verisf pump and an injection valve that are connected in series to this liquid feeding tube 3, 7 is a sample injector that injects the sample into the injection valve 6, and 8 is a constant temperature bath. , a heat exchange section configured in a coil shape on the downstream side of the injection valve 6 of the liquid feeding tube 3; a column 11 connected to the downstream end of the liquid feeding tube 3 and filled with a carrier 10 on which an enzyme is immobilized; A thermistor 12 for detecting the calorific value of the immobilized enzyme in the column 11 and a thermistor probe 13 surrounding the thermistor 12 are arranged.

14はサーミスタ12にリード線15にて接続したブリ
ッジ増幅器、16はレコーダである。
14 is a bridge amplifier connected to the thermistor 12 by a lead wire 15, and 16 is a recorder.

上記構成において、インジェクタバルブ6に試料インジ
ェクタ7にて注入された試料はバッファ液2にて送られ
、恒温槽8内の熱交換部9にて所定の温度に調温されて
からカラム11に流入し、ここで担体10の固定化酵素
に接触し、その後排出される。カラム11内の固定化酵
素は上記試料に応じた反応を行ない、それ14応ピて発
熱する。そしてこの発熱による温度変化をサーミスタ1
2にて検知することにより試料の定量が行なわれる。
In the above configuration, the sample injected into the injector valve 6 by the sample injector 7 is sent in the buffer solution 2, and after being adjusted to a predetermined temperature in the heat exchange section 9 in the thermostatic chamber 8, it flows into the column 11. Here, it comes into contact with the immobilized enzyme on the carrier 10, and is then discharged. The immobilized enzyme in the column 11 performs a reaction according to the sample, and generates heat in response to the reaction. Thermistor 1 detects the temperature change due to this heat generation.
The sample is quantified by detection at step 2.

一方第6図に示すものはスプリットフロー形のもので、
恒温槽内において、送液チューブ3は分岐管17にて2
つの分岐送液チューブ18a。
On the other hand, the one shown in Figure 6 is of the split flow type.
In the thermostatic chamber, the liquid feeding tube 3 is connected to the branch pipe 17.
Two branch liquid feeding tubes 18a.

18bに分岐され、各分岐送液チューブ18a。Each branch liquid feeding tube 18a is branched into 18b.

18bにペリスタポンプ19a、19bとカラム20a
、20bが接続されていると共に、各カラム20a、2
0bにサーミスタ21a。
18b with peristaltic pumps 19a, 19b and column 20a
, 20b are connected, and each column 20a, 2
Thermistor 21a is on 0b.

21bが取付けである。そして上記両力ラム20a、2
0bの一方には活性を有する酵素を固定化した担体(活
性固定化酵素)22が、また他方のカラム20bには失
活した酵素を固定化した担体(非活性固定化酵素)23
がそれぞれ充填されている。
21b is the attachment. And the double force rams 20a, 2
A carrier 22 on which an active enzyme is immobilized is on one column 0b (active immobilized enzyme), and a carrier 23 on which an inactivated enzyme is immobilized on the other column 20b (inactive immobilized enzyme).
are each filled.

この構成にあっては、送液チューブ3より送液されてき
たバッファ液と試料とは分岐管17にて2等分され、そ
れぞれ分岐送液チューブ18a、18bを通って、カラ
ム20a、20bに流入する。
In this configuration, the buffer solution and sample sent from the liquid sending tube 3 are divided into two equal parts by the branch pipe 17, and are passed through the branch liquid sending tubes 18a and 18b, respectively, to the columns 20a and 20b. Inflow.

そして活性を有する酵素を固定化した担体22が充填さ
れたカラム20aでは、この中の活性固定化酵素による
反応にて発熱し、他方のカラム20bでは、この中の酵
素は非活性なので酵素反応による特異的発熱はしない。
In the column 20a packed with the carrier 22 on which an active enzyme is immobilized, heat is generated due to the reaction of the active immobilized enzyme therein, and in the other column 20b, heat is generated due to the enzyme reaction because the enzyme therein is inactive. No specific fever.

この両力ラム20a、20bの温度を両サーミスタ21
a。
Both thermistors 21
a.

21bで計測し、その差分信号を得ることにより上記試
料の定量がなされる。
21b, and the sample is quantified by obtaining the difference signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記第5図に示すフロー型計測系にあっては、シングル
形と呼ばれ、その製作、構成が容易である反面、ベース
ラインのドリフトが大きく、計測結果の精度は恒温槽8
の温度制御能に大きく依存しており、計ハ1結果の精度
に問題があった。
The flow type measurement system shown in Fig. 5 above is called a single type, and although it is easy to manufacture and configure, it has a large baseline drift and the accuracy of the measurement results is limited to 8.
There was a problem with the accuracy of the measurement results, as the measurement depended heavily on the temperature control ability of the meter.

一方、第6図に示すスプリットフロー形計測系にあって
は、ベースラインのドリフト、非特異的熱等を除いたよ
り正確な計測結果を得ることができるが、この系の場合
、部品点数が増加して構成が複雑となり、コスト高とな
る。またカラム20a、20bを通過するバッファ液の
速度を略等しく制御せねばならず、操作性に欠ける。
On the other hand, with the split flow measurement system shown in Figure 6, more accurate measurement results can be obtained by eliminating baseline drift, non-specific heat, etc., but this system requires an increased number of parts. This results in a complicated configuration and high cost. Furthermore, the speed of the buffer solution passing through the columns 20a and 20b must be controlled approximately equally, which results in a lack of operability.

さらに上記熱計測バイオセンサにおいて、活性固定化酵
素の寿命は短い場合があり、このため従来は活性酵素を
固定化した担体を充填したカラムを、不使用時はいちい
ち取り外して冷蔵して保存しなければならず、計測器の
使用の度にカラムを着脱する煩雑さがあり、また冷蔵保
存が不可能な場所では早期に酵素が失活してしまうとい
う問題があった。
Furthermore, in the thermal measurement biosensor mentioned above, the lifespan of the active immobilized enzyme may be short, and for this reason, conventionally, the column filled with the carrier on which the active enzyme is immobilized must be removed and refrigerated when not in use. In addition, there was the problem that it was complicated to attach and detach the column each time the measuring instrument was used, and that the enzyme deactivated early in places where refrigerated storage was not possible.

本発明は上記のことにかんがみなされたもので、シング
ル形のフロー型計測系と路間等の簡易な構成でもって、
スプリントフロー形と同等の性能、すなわち、ベースラ
インのドリフト等を除去できて正確な信号を出力でき、
さらに活性固定化酵素を冷蔵することなくこれの寿命を
延長することができるようにした熱計測バイオセンサを
提1共することを目的とするものである。
The present invention has been made in consideration of the above, and has a single flow type measurement system and a simple configuration between roads, etc.
It has the same performance as the sprint flow type, that is, it can remove baseline drift and output accurate signals.
Furthermore, it is an object of the present invention to provide a thermal measurement biosensor that can extend the life of the active immobilized enzyme without refrigeration.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明に係る熱計all+
バイオセンサは、担体に固定化された酵素等の特異的選
択検知素子と、この担体を充填すると共に、バッファ液
と共に試料を送液する送液チューブに接続したカラムと
、カラム内の発熱による温度変化を検出するサーミスタ
とからなる熱針Δ11バイオセンサにおいて、上記カラ
ムを隔壁により送液方向に平行の2つの部屋に分離し、
一方の部屋に活性を有する酵素等を固定化した担体を充
填し、他方の部屋に失活した酵素等を固定化した担体を
充填し、上記カラムのそれぞれの部屋の外側にサーミス
タを取付けた構成となっている。
In order to achieve the above object, the thermometer all+ according to the present invention
A biosensor consists of a specific selective detection element such as an enzyme immobilized on a carrier, a column that is filled with the carrier and connected to a liquid delivery tube that delivers the sample together with a buffer solution, and a temperature sensor that generates heat within the column. In the thermal needle Δ11 biosensor consisting of a thermistor that detects changes, the column is separated into two chambers parallel to the liquid feeding direction by a partition,
One chamber is filled with a carrier on which an active enzyme, etc. is immobilized, the other chamber is filled with a carrier on which an inactivated enzyme, etc. is immobilized, and a thermistor is attached to the outside of each chamber of the column. It becomes.

また、上記活性を有する酵素等を固定化した担体を充填
したカラムの外側に、磁力の作用をON、OFF可能に
した磁気発生素子を配設した構成となっている。
Furthermore, a magnetism generating element capable of turning on and off the effect of magnetic force is disposed on the outside of the column filled with a carrier on which enzymes and the like having the above-mentioned activity are immobilized.

〔作 用〕[For production]

送液チューブから送液されてきた試料はバッファ液と共
にカラムの両部屋に等分に流入し、活性を有する酵素等
を固定化した担体が充填された部屋では、この中の固定
化活性酵素による反応にて発熱し、他方の失活した酵素
等を固定化した担体を充填した部屋では特異的な発熱は
せず、この両部屋の温度がサーミスタにて計測され、そ
の差分信号にて非特異的検知骨を除いたより正確な試料
の定量がなされる。
The sample sent from the liquid sending tube flows equally into both chambers of the column along with the buffer solution. Heat is generated during the reaction, and in the other chamber filled with a carrier immobilized with inactivated enzymes, there is no specific heat generation, and the temperature in both chambers is measured with a thermistor, and the difference signal is used to detect non-specific heat. A more accurate quantification of the sample excluding target bone is performed.

また、カラム内担体に固定化された固定化酵素は磁力に
よりその活性が失なわj1不使用時には上記カラムに磁
力をかけ、使用時には磁力をなくして固定化酵素を復活
させる。
Furthermore, since the immobilized enzyme immobilized on the carrier within the column loses its activity due to magnetic force, when the column is not in use, a magnetic force is applied to the column, and when in use, the magnetic force is removed to restore the immobilized enzyme.

〔実 施 例〕〔Example〕

本発明の実施例を第1図から第4図に基づいて説明する
。なおこの実施例の説明において、第5図、第6図に示
す従来例のものと同一構成のものは同一符号を付して説
明を省略する。
Embodiments of the present invention will be described based on FIGS. 1 to 4. In the description of this embodiment, the same components as those of the conventional example shown in FIGS. 5 and 6 are given the same reference numerals, and the description thereof will be omitted.

第1図は第1の発明の実施例を示すもので、図中25は
送液チューブ3の先端に接続するカラムであり、このカ
ラム25はこれの断面を横切る隔壁26にて2等分され
ていて、バッファ液の通液方向と平行に2つの部屋25
a、25bが構成されている。そしてこの両部屋25a
FIG. 1 shows an embodiment of the first invention. In the figure, 25 is a column connected to the tip of the liquid feeding tube 3, and this column 25 is divided into two by a partition wall 26 that crosses the cross section of the column. There are two chambers 25 parallel to the direction of buffer solution flow.
a and 25b are configured. And these rooms 25a
.

25bの上流側が上記送液チューブ3に、また下流側が
サーミスタプローブ27にそれぞれ等断面積で接続され
ている。また上記両部!25a。
The upstream side of 25b is connected to the liquid feeding tube 3, and the downstream side is connected to the thermistor probe 27 with equal cross-sectional areas. Also both parts above! 25a.

25bのそれぞれの下流側の外側にはサーミスタ21a
、21bが取付けである。上記カラム25の両部屋25
a、25bの一方の部屋25aには活性を有する酵素を
固定化した担体22が、また他方の部屋25bには失活
酵素を固定化した担体23がそれぞれ充填しである。
A thermistor 21a is installed on the outside of each downstream side of 25b.
, 21b is the attachment. Both rooms 25 in column 25 above
One of the chambers 25a and 25b is filled with a carrier 22 on which an active enzyme is immobilized, and the other chamber 25b is filled with a carrier 23 on which an inactivated enzyme is immobilized.

なお上記カラム25及びサーミスタ21a。Note that the above-mentioned column 25 and thermistor 21a.

21bは従来例と同様に図示しない恒温槽内に配置され
、また送液チューブ3の上流側は恒温槽内に配置される
熱交換部に接続されている。
21b is placed in a constant temperature bath (not shown) as in the conventional example, and the upstream side of the liquid feeding tube 3 is connected to a heat exchange section placed in the constant temperature bath.

さらに、2つのサーミスタ21a、21bはそれぞれブ
リッジ増幅器に接続されて両出力が増幅され、差分信号
が得られるようになっている。
Further, the two thermistors 21a and 21b are each connected to a bridge amplifier so that both outputs are amplified to obtain a differential signal.

上記構成において、送液チューブ3より送液されてきた
バッファ液と試料とはカラム25の両部屋25a、25
bへ2等分されて流入する。
In the above configuration, the buffer solution and sample sent from the liquid sending tube 3 are transferred to both chambers 25a and 25 of the column 25.
It is divided into two parts and flows into b.

そして活性を有する酵素を固定化した担体22が充填さ
れた部屋25aでは、この中の活性固定化酵素による反
応にて発熱し、また失活酵素を固定化した担体23が充
填された他方の部屋25bでは、この中の酵素は非活性
なので特異的な発熱はしない。そしてこの両部屋25a
In the chamber 25a filled with the carrier 22 on which the active enzyme is immobilized, heat is generated due to the reaction of the active immobilized enzyme therein, and in the other chamber filled with the carrier 23 on which the inactivated enzyme is immobilized. In 25b, the enzyme within it is inactive and therefore does not generate a specific heat generation. And these rooms 25a
.

25bのそれぞれの温度を両サーミスタ21a。25b and both thermistors 21a.

21bにて計測し、その差分信号得、これにより上記試
料の定量がなされる。
21b, a difference signal is obtained, and the above-mentioned sample is quantified.

上記作用は実質的に第6図に示す従来例同様の作用をす
る。
The above operation is substantially similar to the conventional example shown in FIG.

第3図、第4図は第2の発明の実施例を示すもので、第
5図で示すカラム11の外側に、これを囲繞する形状の
磁石27をその磁力がON。
3 and 4 show an embodiment of the second invention, in which a magnet 27 having a shape surrounding the column 11 shown in FIG. 5 is placed on the outside and its magnetic force is turned on.

OFFできるように配設する。この磁石27は第3図に
示すように永久磁石にて半円筒磁石28a、28bを作
り、これをカラム11の周囲に着脱自在に取付けるか、
またはカラム11のまわりに電源に接続したコイル29
を配置し、このコイル29の電流をON、OFFするこ
とによりコイル29によりカラム11に作用する磁力を
ON、OFFするようにしてもよい。またこのコイルの
場合、カラム11の外Ji[に埋め込んでもよい。
Arrange it so that it can be turned off. As shown in FIG. 3, this magnet 27 can be made by making semi-cylindrical magnets 28a and 28b using permanent magnets and attaching these semi-cylindrical magnets around the column 11 in a detachable manner, or
or coil 29 connected to the power supply around column 11.
The magnetic force acting on the column 11 by the coil 29 may be turned on or off by arranging the coil 29 and turning on or off the current of this coil 29. Further, in the case of this coil, it may be embedded outside the column 11.

この構成において、磁石27にてカラム11に磁力を作
用させると、このカラム11内の固定化酵素は活性化が
失なわれ、また磁石を除去すると再び活性化する。
In this configuration, when a magnetic force is applied to the column 11 by the magnet 27, the immobilized enzyme in the column 11 loses its activation, and when the magnet is removed, it becomes activated again.

このことから、センサ使用時には磁石27による磁力を
なくしてカラム11内の固定化酵素を活性化状態にして
おき、不使用時には磁力を作用させて上記固定化酵素を
失活状態にしておく 。
Therefore, when the sensor is used, the magnetic force of the magnet 27 is removed to keep the immobilized enzyme in the column 11 in an activated state, and when the sensor is not used, the magnetic force is applied to keep the immobilized enzyme in an inactivated state.

上記カラム11内の固定化酵素は失活状態におかれた分
だけ寿命が長くなり、従って、その分だけバイオセンサ
としての寿命が長くなる。
The life of the immobilized enzyme in the column 11 is increased by the amount of time it is kept in an inactivated state, and therefore the life of the biosensor is increased by that amount.

なお上記実施例では第5図に示したカラム11の周囲に
磁石27を配置した例を示したが、第1図、第6図に示
すカラム20a、25の周囲に磁石27を配置してもよ
いことはいうまでもない。
Although the above embodiment shows an example in which the magnet 27 is arranged around the column 11 shown in FIG. 5, the magnet 27 may also be arranged around the columns 20a and 25 shown in FIGS. 1 and 6. Needless to say, it's a good thing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、シングル形のフロー型計測系と路間等
の簡易な構成でもって、スプリットフロー形と同等の性
能、すなわち、ベースラインのドリフト等を除去できて
正確な信号を出力することができる。
According to the present invention, with a single flow type measurement system and a simple configuration such as between roads, it is possible to achieve the same performance as a split flow type, that is, to remove baseline drift and output accurate signals. I can do it.

またカラム11.20a、25内の固定化酵素は磁気発
生素子による磁力のON、OFFという簡単な操作でも
って、すなわち従来のように、不使用時のたびに、上記
カラムを冷蔵するという手間をかけずにその寿命の延長
を図ることができる。
In addition, the immobilized enzymes in columns 11, 20a and 25 can be easily controlled by turning on and off the magnetic force using magnetic generating elements, which eliminates the trouble of refrigerating the columns each time they are not in use. It is possible to extend its lifespan without spending too much time on it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は第1の発明の実施例の要部を示すもの
で、第1図は正面図、第2図は破断斜視図、第3図、第
4図は第2の発明の実施例の要部を示す斜視図、第5図
、第6図は従来例を示すもので、第5図はシングル形の
フロー形計測系のバイオセンサを示す回路図、第6図は
スプリットフロー形のバイオセンサの要部を示す説明図
である。 3は送液チューブ、11,20a、20b。 25はカラム、25a、25bは部屋、27は磁石。
1 and 2 show essential parts of an embodiment of the first invention, FIG. 1 is a front view, FIG. 2 is a cutaway perspective view, and FIGS. 3 and 4 are views of the second invention. Figures 5 and 6 show conventional examples, Figure 5 is a circuit diagram showing a single flow type biosensor, and Figure 6 is a split diagram. FIG. 2 is an explanatory diagram showing the main parts of a flow type biosensor. 3 is a liquid feeding tube, 11, 20a, 20b. 25 is a column, 25a and 25b are rooms, and 27 is a magnet.

Claims (2)

【特許請求の範囲】[Claims] (1)担体に固定化された酸素等の特異的選択検知素子
と、この担体を充填すると共に、バッファ液と共に試料
を送液する送液チューブ3に接続したカラムと、カラム
内に発熱温度を検出するサーミスタとからなる熱計測バ
イオセンサにおいて、上記カラム25を隔壁26により
送液方向に平行の2つの部屋25a、25bに分離し、
一方の部屋25aに活性を有する酵素等を固定化した担
体22を充填し、他方の部屋25bに失活した酵素等を
固定した担体23を充填し、上記カラム25のそれぞれ
の部屋25a、25bの外側にサーミスタ21a、21
bを取付けたことを特徴とする熱計測バイオセンサ。
(1) A specific selective detection element such as oxygen immobilized on a carrier, a column filled with this carrier and connected to a liquid feeding tube 3 through which the sample is fed together with a buffer solution, and an exothermic temperature inside the column. In a thermometric biosensor comprising a thermistor for detection, the column 25 is separated into two chambers 25a and 25b parallel to the liquid feeding direction by a partition wall 26,
One chamber 25a is filled with a carrier 22 on which an active enzyme, etc. is immobilized, and the other chamber 25b is filled with a carrier 23 on which an inactivated enzyme, etc. is immobilized. Thermistor 21a, 21 on the outside
A thermal measurement biosensor characterized in that b is attached.
(2)上記活性を有する酵素等を固定化した担体22を
充填したカラム11の外側に、磁石の作用をON、OF
F可能にした磁石27等の磁気発生素子を配設したこと
を特徴とする熱計測バイオセンサ。
(2) Turn on and off the action of a magnet on the outside of the column 11 filled with the carrier 22 on which enzymes etc. having the above activity are immobilized.
A heat measurement biosensor characterized in that a magnetism generating element such as a magnet 27 that enables F is disposed.
JP18180188A 1988-07-22 1988-07-22 Heat measuring biosensor Pending JPH0232238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18180188A JPH0232238A (en) 1988-07-22 1988-07-22 Heat measuring biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18180188A JPH0232238A (en) 1988-07-22 1988-07-22 Heat measuring biosensor

Publications (1)

Publication Number Publication Date
JPH0232238A true JPH0232238A (en) 1990-02-02

Family

ID=16107089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18180188A Pending JPH0232238A (en) 1988-07-22 1988-07-22 Heat measuring biosensor

Country Status (1)

Country Link
JP (1) JPH0232238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535436A (en) * 2015-11-16 2018-11-29 ユニフェルシテイト マーストリヒトUniversiteit Maastricht An apparatus and method for detecting an analyte using heat waves.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535436A (en) * 2015-11-16 2018-11-29 ユニフェルシテイト マーストリヒトUniversiteit Maastricht An apparatus and method for detecting an analyte using heat waves.

Similar Documents

Publication Publication Date Title
Wang et al. A MEMS thermal biosensor for metabolic monitoring applications
Messina et al. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples
Cooper et al. Isothermal titration microcalorimetry
JPS6459125A (en) Gas flow rate correction sensor
Xie et al. Development of an integrated thermal biosensor for the simultaneous determination of multiple analytes
US4021307A (en) Method and apparatus for measuring temperature changes generated by enzyme activity
Urban et al. The construction of microcalorimetric biosensors by use of high resolution thin-film thermistors
JPH0232238A (en) Heat measuring biosensor
CN105571747A (en) Heat flow detection device
US4054056A (en) Calorimetry probe
Danielsson et al. [45] Enzyme Thermistor Devices
CN104569039A (en) Method for detecting organophosphorus pesticide residues by adopting enzyme reactor
JP2000039344A (en) Flowmeter and gas meter
JPS6011160A (en) Moisture analysis meter
CN204101214U (en) A kind of hot-fluid pick-up unit
Duffy et al. A conductometric device for monitoring of enzyme-catalyzed reactions
JPH0227245A (en) Heat measuring element
SU813223A1 (en) Method of measuring heat capacity per unit volume of liquid substances
JPS61212750A (en) Biothermo-chip sensor
Gaddes et al. Microcalorimetric detection of creatinine in urine
SU1696874A1 (en) Thermal flowmeter
Zheng et al. A Thermal Biosensor Based on Enzyme Reaction
Weiss et al. Chip-based scanning nano-calorimeter for protein stability analysis in biosensor membranes
Fulton et al. High‐resolution differential thermometry in flowing aqueous solutions
SU1696875A1 (en) Gas stream speed measuring set