JPH0231896A - Treating apparatus for waste water - Google Patents

Treating apparatus for waste water

Info

Publication number
JPH0231896A
JPH0231896A JP63182533A JP18253388A JPH0231896A JP H0231896 A JPH0231896 A JP H0231896A JP 63182533 A JP63182533 A JP 63182533A JP 18253388 A JP18253388 A JP 18253388A JP H0231896 A JPH0231896 A JP H0231896A
Authority
JP
Japan
Prior art keywords
membrane
wet oxidation
tower
water
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63182533A
Other languages
Japanese (ja)
Inventor
Jiro Kijima
木島 二郎
Shigeki Sawada
沢田 繁樹
Yoshiaki Harada
原田 吉明
Mitsuya Yamada
山田 光矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Osaka Gas Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP63182533A priority Critical patent/JPH0231896A/en
Publication of JPH0231896A publication Critical patent/JPH0231896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To reduce running cost for the treatment of waste water by constituting a treating apparatus of a wet oxidation tower, an insolubilizing tank for insolubilizing P by adding an insolubilizing agent for P to the treated water of the wet oxidation tower, and a membrane separator for separating the reaction liquid from the insolubilizing tank for P through a precision filtration membrane or ultrafiltration membrane. CONSTITUTION:Waste water contg. materials to be oxidized and P from a feed liquid feeding line a is fed to a wet oxidation tower 1, where it is heated and pressurized to oxidize the material to be oxidized in the waste water, and the materials to be oxidized are decomposed to gaseous CO2, N2, and water. The gas/liquid mixture is transported to a gas/liquid separation tower 3, and treated water decomposed by the oxidation in the tower 3 is transported to an insolubilizing tank 10 for P, where it is mixed and stirred with slaked lime and a pH adjusting agent in a mixing and stirring zone 12. Thus, the P in the treated water is insolubilized. The treated water contg. the insolubilized P overflows a top of a separating wall 11 and is introduced into a pump pit 13, then fed to a membrane separation device 20 hosing an ultrafiltration membrane therein through a line 19. Permeated water of the membrane separation device is discharge out of the system. Thus, the frequency of washing in the membrane separation device 20 is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、被酸化物およびリンを含有する廃水を湿式酸
化処理する装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in an apparatus for wet oxidation treatment of wastewater containing oxidizable substances and phosphorus.

(従来の技術) 従来、被酸化物を比軸的高濃度に含む廃水、例えばし尿
、下水またはし尿を生物学的に処理した際に発生する余
剰汚泥あるいは消化汚泥1石炭のガス化・液化廃水、都
市ゴミの熱分解により生成する廃水、製糸工場、繊維染
色工場1食品工場。
(Prior art) Excess sludge or digested sludge generated when biologically treating wastewater containing oxidizable substances at a relatively high concentration, such as human waste, sewage, or human waste 1 Coal gasification/liquefaction wastewater , wastewater generated by pyrolysis of municipal waste, silk mills, textile dyeing factories, 1 food factory.

化学工場1石油精製工場その他の各種工場から排出され
る工場廃水を湿式酸化処理することが行なわれている。
Chemical Factory 1 Wet oxidation treatment is performed on factory wastewater discharged from oil refineries and other various factories.

この湿式酸化処理は、高圧タンクからなる湿式酸化反応
塔内に上述の廃水を導入し、酸素の存在下、高温、高圧
に維持して被酸化物を炭酸ガス。
In this wet oxidation treatment, the above-mentioned wastewater is introduced into a wet oxidation reaction tower consisting of a high-pressure tank, and is maintained at high temperature and pressure in the presence of oxygen to convert the oxidized material into carbon dioxide gas.

硝酸、窒素ガス、水分に分解するもので、この際酸化分
解反応を効率よく行なわせるために湿式酸化反応塔内に
は酸化触媒の充填槽が内蔵されている。
It is decomposed into nitric acid, nitrogen gas, and water.In order to carry out the oxidative decomposition reaction efficiently, a tank packed with an oxidation catalyst is built into the wet oxidation reaction tower.

触媒酸化としてはチタニア(酸化チタニア)。Titania (titania oxide) is used for catalytic oxidation.

ジルコニア(酸化ジルコニア)、アルミナ、シリカ、シ
リカ−アルミナ、活性炭、あるいはニッケル、ニッケル
ークロム、ニッケルークロム−アルミニュウム、ニッケ
ルークロム−鉄等の金属多孔体からなる単体に鉄、マン
ガン、コバルト、ニッケル、ルテニウム、ロジウム、パ
ラジウム、イリジラム、白金、銅、金およびタングステ
ンならびにこれらの酸化物、さらには二塩化ルテニウム
、二塩化白金等の塩化物、硫化ルテニウム。硫化ロジウ
ム等の硫化物の水に対し不溶性または難溶性の化合物を
担持させたものが用いられている。
Iron, manganese, cobalt, and nickel can be added to a single metal porous body such as zirconia (zirconia oxide), alumina, silica, silica-alumina, activated carbon, or nickel, nickel-chromium, nickel-chromium-aluminum, or nickel-chromium-iron. , ruthenium, rhodium, palladium, iridylam, platinum, copper, gold and tungsten and their oxides, as well as chlorides such as ruthenium dichloride and platinum dichloride, and ruthenium sulfide. A sulfide such as rhodium sulfide supported on a compound that is insoluble or poorly soluble in water is used.

さらに、湿式酸化反応塔からの処理水を逆浸透膜を内蔵
した逆浸透膜装置(以下「R○装置」という)により分
解生成物の硫酸ソーダ等を除去し、その透過水を再利用
することが行なわれている(例えば特開昭62 132
589号公報)。
Furthermore, the treated water from the wet oxidation reaction tower is used to remove decomposition products such as sodium sulfate using a reverse osmosis membrane device (hereinafter referred to as "R○ device") with a built-in reverse osmosis membrane, and the permeated water is reused. has been carried out (for example, JP-A-62-132)
Publication No. 589).

(発明が解決しようとする課題) しかしながら、北記従来の処理装置にあっては湿式酸化
反応塔の処理水をRO装置で処理するように構成されて
いるため、R○装置の透過水を再利用する場合はそれな
りの利益があるが、透過水を単に系外に放流する場合に
はコスト高になる欠点があった。
(Problem to be solved by the invention) However, since the conventional treatment equipment described above is configured to treat the treated water from the wet oxidation reaction tower with the RO equipment, the permeated water from the R○ equipment is recycled. Although there are some benefits when using this method, there is a drawback that the cost is high when the permeated water is simply discharged outside the system.

なぜならば、湿式酸化反応塔からの処理水中には分解生
成物の硫酸ソーダの他にリンや他の塩類が多く含まれて
いるためRO装置を採用すると逆浸透膜の汚染が激しく
、洗浄を頻繁に行なう必要があり、このため洗浄薬品代
がかさむとともにR○装置は高圧ポンプ等を必要とする
ため設備費がかさむという欠点があった。
This is because the treated water from the wet oxidation reaction tower contains a large amount of phosphorus and other salts in addition to the decomposition product sodium sulfate, so if an RO device is used, the reverse osmosis membrane will be heavily contaminated and must be cleaned frequently. This increases the cost of cleaning chemicals, and the R◯ device requires a high-pressure pump, which increases equipment costs.

(課題を解決するための手段) 本発明は上記課題に鑑み、湿式酸化反応塔の処理水を簡
単に放流基準まで処理できる装置の提供を目的とするも
のであって、その構成は被酸化物およびリンを含有する
廃水を導入して湿式酸化処理する湿式酸化反応塔と、 前記湿式酸化反応塔からの処理水にリン不溶化剤を添加
してリンを不溶化するリン不溶化反応槽と、 前記リン不溶化反応槽からの反応液を精密濾過膜または
限外濾過膜により膜分離処理する膜分離機と、 からなることを特徴とするものである。
(Means for Solving the Problems) In view of the above-mentioned problems, the present invention aims to provide an apparatus that can easily treat treated water of a wet oxidation reaction tower up to the discharge standard, and the structure is such that the water to be oxidized is and a wet oxidation reaction tower that introduces wastewater containing phosphorus and performs wet oxidation treatment; a phosphorus insolubilization reaction tank that adds a phosphorus insolubilizing agent to the treated water from the wet oxidation reaction tower to insolubilize phosphorus; and the phosphorus insolubilization. A membrane separator that performs membrane separation treatment on a reaction liquid from a reaction tank using a precision filtration membrane or an ultrafiltration membrane.

(作用) 本発明では、湿式酸化反応塔からの処理水中のリン成分
は不溶化反応槽において不溶化され、精密濾過膜または
限外涙過膜を内蔵した膜分離機で除去される。
(Function) In the present invention, the phosphorus component in the treated water from the wet oxidation reaction tower is insolubilized in the insolubilization reaction tank and removed by a membrane separator equipped with a microfiltration membrane or an ultralach membrane.

(実施例) 以下、本発明装置を図示の実施例に基づいて説明する。(Example) Hereinafter, the apparatus of the present invention will be explained based on the illustrated embodiments.

図面は本発明装置の一実施例を示すフローシートであっ
て、1は周知の酸化触媒が充填されている高圧タンクか
らなる湿式酸化反応塔である。この湿式酸化反応塔1に
は原液供給ライン1aから被酸化物およびリンを含む廃
水が供給され、図示しない加熱手段により250〜29
0℃に加温されるとともに加圧手段により70〜90k
g/cm2に加圧され、さらにガス供給手段により酸素
が供給されている。
The drawing is a flow sheet showing one embodiment of the apparatus of the present invention, and 1 is a wet oxidation reaction tower consisting of a high-pressure tank filled with a well-known oxidation catalyst. This wet oxidation reaction tower 1 is supplied with waste water containing oxidized substances and phosphorus from a raw solution supply line 1a, and heated to a temperature of 250 to 290 nm by heating means (not shown).
It is heated to 0℃ and heated to 70-90k by means of pressure.
It is pressurized to g/cm2, and oxygen is further supplied by a gas supply means.

なお、加温は装置始動時に外部の熱源で行なわれるが、
装置が定常運転状態になると原液中の酸化燃焼により行
なうことができる。
Note that heating is performed using an external heat source when starting the device, but
When the device is in a steady state of operation, oxidative combustion in the stock solution can be performed.

また、湿式酸化反応塔1には酸化触媒を必ずしも充填す
る必要がないが、この実施例のように酸化触媒を充填す
ると効率よく酸化することができる。
Further, although it is not necessarily necessary to fill the wet oxidation reaction tower 1 with an oxidation catalyst, efficient oxidation can be achieved if the wet oxidation reaction tower 1 is filled with an oxidation catalyst as in this embodiment.

廃水中の被酸化物は湿式酸化反応塔1内で酸化されて、
炭酸ガス、窒素ガス、水に分解され、その気液混合液は
ライン2を介して気液分離塔3へ送出される。このライ
ン2には図示しないが熱交換器が設けられていて、これ
により原液供給ライン1aの廃水が熱交換されて加温さ
れ熱回収が行なわれている。
The oxidizable substances in the wastewater are oxidized in the wet oxidation reaction tower 1,
It is decomposed into carbon dioxide gas, nitrogen gas, and water, and the gas-liquid mixture is sent to the gas-liquid separation column 3 via line 2. This line 2 is provided with a heat exchanger (not shown), by which the waste water in the stock solution supply line 1a is heat exchanged, heated, and heat is recovered.

気液分離塔3で分離されたガス成分は減圧弁4を介在し
ているライン5を経てサイクロンセパレータ6へ送出さ
れる。サイクロンセパレータ6で分離されたガスは大気
へ放出されるとともに、その液分は後述のリン不溶化反
応槽へライン7を介して送出される。
The gas components separated in the gas-liquid separation tower 3 are sent to a cyclone separator 6 through a line 5 with a pressure reducing valve 4 interposed therebetween. The gas separated by the cyclone separator 6 is discharged to the atmosphere, and its liquid component is sent via a line 7 to a phosphorus insolubilization reaction tank, which will be described later.

気液分離塔3で酸化分解された液、すなわち処理水は弁
8を介在しているライン9を介してl¥if述のライン
7へ送出される。弁8は気液分離塔1内に設けられた図
示しないレベル計の検出信号で開閉制御され、気液分離
塔1内の液面レベルを常時所定レベルとなるように制御
している。
The liquid oxidized and decomposed in the gas-liquid separation tower 3, that is, the treated water, is sent to the line 7 via a line 9 with a valve 8 interposed therebetween. The opening and closing of the valve 8 is controlled by a detection signal from a level meter (not shown) provided in the gas-liquid separation tower 1, and the liquid level in the gas-liquid separation tower 1 is controlled to always be at a predetermined level.

10はリン不溶化反応槽であって隔壁11によって混合
撹拌部12とポンプピット13とに区画されている。混
合撹拌部1.2ではライン9を経てライン7から受は入
れた湿式酸化反応塔1からの処理水と、pH#Il整剤
貯溜槽14および消石灰(水酸化カルシウム)貯溜槽1
5から薬注ポンプ16および〕7によって添加されたp
H調整剤。
Reference numeral 10 denotes a phosphorus insolubilization reaction tank, which is divided by a partition wall 11 into a mixing and stirring section 12 and a pump pit 13. In the mixing and stirring section 1.2, the treated water from the wet oxidation reaction tower 1 received from the line 7 via the line 9, the pH#Il adjustment agent storage tank 14, and the slaked lime (calcium hydroxide) storage tank 1.
p added by dosing pump 16 and ]7 from 5
H adjuster.

消石灰とがエアバブリングにより混合撹拌される。The slaked lime is mixed and stirred by air bubbling.

なお、この混合撹拌はエアバブリングに代えて周知の機
械h′1.拌を採用してもよい。
Note that this mixing and agitation is performed using a well-known machine h'1. instead of air bubbling. Stirring may also be used.

pH調整剤貯溜槽14には原廃水(原液供給ライン1a
中の廃水)の性状により酸またはアルカリ剤を用意して
おき、ここから薬注ポンプ16により添加される。すな
わち混合撹拌部12に供給される処理水量を流量計81
で検出するとともに、p n計82によりpHを検出し
て所定のpHとなるように薬注ポンプ16を制御して行
なわれる。
The pH adjuster storage tank 14 contains raw wastewater (raw solution supply line 1a).
An acid or alkali agent is prepared depending on the nature of the waste water (waste water inside), and is added from there by the chemical injection pump 16. That is, the flow meter 81 measures the amount of treated water supplied to the mixing and stirring section 12.
At the same time, the pH is detected by a pn meter 82, and the chemical injection pump 16 is controlled so that the pH is at a predetermined level.

消石灰の添加量は、予め求められている原廃水中の平均
リン濃度と流量計81の検出信号とを基に、処理水中の
リンを過不足なく不溶化するように薬注ポンプ17を制
御して行なわれる。なお、消石灰の代わりにリンを不溶
化する生石灰、塩化カルシウム、アルミニウム化合物、
塩化第一鉄。
The amount of slaked lime added is determined by controlling the chemical injection pump 17 to insolubilize just the right amount of phosphorus in the treated water based on the average phosphorus concentration in the raw wastewater determined in advance and the detection signal of the flow meter 81. It is done. In addition, instead of slaked lime, quicklime, calcium chloride, aluminum compounds, which insolubilize phosphorus,
Ferrous chloride.

塩化第二鉄、硫酸第一鉄、硫酸第二鉄等の不溶化薬剤を
用いてもよく、この場合は消石灰貯溜槽15には消石灰
の代わりに不溶化薬剤が貯溜される。
An insolubilizing agent such as ferric chloride, ferrous sulfate, or ferric sulfate may be used, and in this case, the slaked lime storage tank 15 stores the insolubilizing agent instead of slaked lime.

混合撹拌部12内で消石灰と処理水が混合撹拌されると
、処理水中のリンはヒドロキシアバタイ1□(Cas○
H・ (PO4)3 )となり不溶化して凝集ないし晶
析析出される。不溶化されたリンを含む処理水は隔壁1
上の上部を溢流しポンプピット13に導入され、ここか
らポンプ18を介在したライン1つを介して限外涙過膜
を内蔵した膜分離機20に供給される。内蔵される限外
濾過膜は、イオンを通過させる分画分子量以上のもので
よく、また膜分離機20は周知の平膜型またはチューブ
ラ−型のいずれでもよく、さらに限外?濾過膜の代わり
に精密濾過膜であってもよい。
When slaked lime and treated water are mixed and stirred in the mixing and stirring section 12, phosphorus in the treated water is converted into hydroxyabatite 1□ (Cas○
H.(PO4)3), which becomes insolubilized and aggregates or crystallizes out. The treated water containing insolubilized phosphorus is transported to the partition wall 1.
It overflows the upper part and is introduced into the pump pit 13, from where it is supplied via one line with a pump 18 interposed therebetween to the membrane separator 20 containing the ultralacrimal membrane. The built-in ultrafiltration membrane may have a molecular weight cut-off or higher that allows ions to pass through, and the membrane separator 20 may be of the well-known flat membrane type or tubular type. A precision filtration membrane may be used instead of the filtration membrane.

膜分離1a20からの透過水はライン21を介して得ら
れ、必要に応じてpH調整された後系外へ放流される。
The permeated water from the membrane separation 1a20 is obtained via the line 21, and after having its pH adjusted as necessary, it is discharged to the outside of the system.

不溶化されたリンおよび湿式酸化反応塔1で生成された
灰分を含む濃縮水は、ライン22を介して濃縮槽23に
送出される。また濃縮水の一部はライン22から分岐し
、かつエゼクタ24を介在するライン25を介して前述
の混合撹拌部12へ送出される。このため混合撹拌部1
2では空気を含む濃縮水の一部が供給されてバブリング
が行なわれ、これにより混合撹拌が効果的に行なわれる
Concentrated water containing insolubilized phosphorus and ash produced in the wet oxidation reaction tower 1 is sent to a concentration tank 23 via a line 22. Further, a part of the concentrated water is branched from the line 22 and sent to the above-mentioned mixing and stirring section 12 via a line 25 with an ejector 24 interposed therebetween. For this reason, the mixing and stirring section 1
In step 2, a portion of the concentrated water containing air is supplied and bubbling is performed, thereby effectively performing mixing and stirring.

濃縮槽23は重力式に固液分離され、その上澄液はライ
ン26を介しC再びポンプピット13へ返送される。濃
縮槽23内の固形分はう、イン27を介して混合槽28
に導かれ、ここで脱水剤貯溜槽29から薬注ポンプ30
により供給された脱水剤と混合された後、遠心脱水機3
1により固液分離される。遠心脱水機31からの脱水汚
泥はホッパ32に受は入れられた後埋め立て等に供され
るとともに、脱水r液はポンプ33を介在しているライ
ン34によりリン不溶化反応槽10または図示しない原
廃水貯槽へ返送される。なお、遠心脱水機31の代わり
にベルトプレス脱水機その他の周知の脱水機を用いるこ
ともできる。
The concentration tank 23 undergoes solid-liquid separation using gravity, and the supernatant liquid is returned to the pump pit 13 via a line 26. The solid content in the concentration tank 23 flows through the inlet 27 to the mixing tank 28.
Here, the chemical injection pump 30 is introduced from the dehydrating agent storage tank 29.
After being mixed with the dehydrating agent supplied by the centrifugal dehydrator 3
Solid-liquid separation is performed by 1. The dehydrated sludge from the centrifugal dehydrator 31 is received in a hopper 32 and then sent to landfill, etc., and the dehydrated r-liquid is sent to the phosphorus insolubilization reaction tank 10 or raw wastewater (not shown) via a line 34 that includes a pump 33. Returned to storage tank. Note that instead of the centrifugal dehydrator 31, a belt press dehydrator or other known dehydrator may be used.

(効果) 本発明は、上述のように湿式酸化反応塔へ導入した廃水
中の被酸化物である有機物を分解したのち、その処理水
をリン不溶化反応槽へ送出し、ここで処理水中に含まれ
るリンを消石灰、鉄塩またはアルミニウム化合物により
不溶化し、さらに限外濾過膜または精密ア過膜を内蔵し
た膜分離機で固液分離するように構成したので、固液分
離された液分の有機物およびリン濃度は放流基準以下ま
で低下させることができ系外へ放流することができる。
(Effects) As described above, the present invention decomposes the organic substances to be oxidized in the wastewater introduced into the wet oxidation reaction tower, and then sends the treated water to the phosphorus insolubilization reaction tank, where the organic matter contained in the treated water is decomposed. The structure is configured to insolubilize the phosphorous that is produced using slaked lime, iron salts, or aluminum compounds, and then perform solid-liquid separation using a membrane separator with a built-in ultrafiltration membrane or precision filtration membrane. The phosphorus concentration can be lowered to below the discharge standard and can be discharged outside the system.

しかも、膜分離機ではRO装置のようにイオン物質は除
去せず分画分子量の小さい?膜でSS成分を除去するだ
けなので膜の負荷が小さく、したがって膜汚染も少なく
洗浄回数を低減することができる。
Moreover, the membrane separator does not remove ionic substances like an RO device and has a small molecular weight cutoff. Since the SS component is simply removed by the membrane, the load on the membrane is small, so there is less membrane contamination, and the number of times of cleaning can be reduced.

さらに、RO装置のように高圧ポンプを必要としないな
め設備費を小さくすることができる。
Furthermore, equipment costs can be reduced because a high-pressure pump is not required like in an RO device.

また、不溶化したリンを沈降分離処理で固液分離する際
は、そのリン不溶化液を大気温まで冷却して対流の生じ
ないようにする必要があるが、本発明では膜分離するの
で、このような懸念はなく膜に悪影響を与えない温度ま
で冷却するだけでよく、例えば大気温度より10〜15
℃高い温度に冷却すればよく、この際高い温度であるの
で膜分離装置の透過量が増加するという効果が得られる
In addition, when insolubilized phosphorus is separated into solid and liquid by sedimentation, it is necessary to cool the phosphorus insolubilized liquid to atmospheric temperature to prevent convection, but since membrane separation is performed in the present invention, this is not possible. There is no need to worry about this, and all you need to do is cool it down to a temperature that does not adversely affect the film, for example, 10 to 15 degrees below atmospheric temperature.
It is sufficient to cool the membrane to a temperature higher than 0.degree. C., and since the temperature is high in this case, the effect of increasing the amount of permeation through the membrane separator can be obtained.

さらに、膜分離により固液分離するので、沈降分離処理
のようにSSの漏出がなく着色成分が系外へ排出される
という不都合が防止できる等の効果を有している。
Furthermore, since solid-liquid separation is performed by membrane separation, there is no leakage of SS unlike in sedimentation separation treatment, and the inconvenience of coloring components being discharged outside the system can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の一実施例を示すフローシートである
。 1・・・湿式酸化反応塔 3・・・気液分離塔 10・・・リン不溶化反応槽 20・・・膜分離機
The drawing is a flow sheet showing an embodiment of the apparatus of the present invention. 1... Wet oxidation reaction tower 3... Gas-liquid separation tower 10... Phosphorus insolubilization reaction tank 20... Membrane separator

Claims (1)

【特許請求の範囲】 1 被酸化物およびリンを含有する廃水を導入して湿式
酸化処理する湿式酸化反応塔と、前記湿式酸化反応塔か
らの処理水にリン不溶化剤を添加してリンを不溶化する
リン不溶化反応槽と、 前記リン不溶化反応槽からの反応液を精密濾過膜または
限外濾過膜により膜分離処理する膜分離機と、 からなることを特徴とする廃水の処理装置。
[Scope of Claims] 1. A wet oxidation reaction tower that introduces wastewater containing oxidized substances and phosphorus and performs wet oxidation treatment, and a phosphorus insolubilizer is added to the treated water from the wet oxidation reaction tower to insolubilize the phosphorus. A wastewater treatment device comprising: a phosphorus insolubilization reaction tank; and a membrane separator that performs membrane separation treatment on the reaction liquid from the phosphorus insolubilization reaction tank using a microfiltration membrane or an ultrafiltration membrane.
JP63182533A 1988-07-21 1988-07-21 Treating apparatus for waste water Pending JPH0231896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182533A JPH0231896A (en) 1988-07-21 1988-07-21 Treating apparatus for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182533A JPH0231896A (en) 1988-07-21 1988-07-21 Treating apparatus for waste water

Publications (1)

Publication Number Publication Date
JPH0231896A true JPH0231896A (en) 1990-02-01

Family

ID=16119970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182533A Pending JPH0231896A (en) 1988-07-21 1988-07-21 Treating apparatus for waste water

Country Status (1)

Country Link
JP (1) JPH0231896A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227895A (en) * 1990-04-26 1992-08-17 Passavant Werke Ag Method for removing phosphorus and suspended matter from waste water
JP2007125483A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Method and apparatus for treating chelating agent-containing water with fluorine and phosphorus
JP2007130518A (en) * 2005-11-08 2007-05-31 Japan Organo Co Ltd Fluorine and/or phosphorus treatment method of chelating agent-containing water, and apparatus
US10460735B2 (en) 2014-07-18 2019-10-29 Google Llc Speaker verification using co-location information

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227895A (en) * 1990-04-26 1992-08-17 Passavant Werke Ag Method for removing phosphorus and suspended matter from waste water
JP2007125483A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Method and apparatus for treating chelating agent-containing water with fluorine and phosphorus
JP2007130518A (en) * 2005-11-08 2007-05-31 Japan Organo Co Ltd Fluorine and/or phosphorus treatment method of chelating agent-containing water, and apparatus
US10460735B2 (en) 2014-07-18 2019-10-29 Google Llc Speaker verification using co-location information

Similar Documents

Publication Publication Date Title
CA1080863A (en) Process for treating waste water
KR0126670B1 (en) Process for treating water
US4699720A (en) Process for treating waste water by wet oxidations
US4294706A (en) Process for treating waste water
US3948774A (en) Water purification process and apparatus
GB2023565A (en) Process for treating water with ozone
US3268443A (en) Process for the treatment of waste liquors with flocculating agent recovery
EP1786735A2 (en) Waste activated sludge anaerobic contact waste stream treatment process-recycle
EP0362978A1 (en) Process for treating caustic cyanide metal wastes
WO1990015028A1 (en) A method for biological treatment of wastewater
JPH0231896A (en) Treating apparatus for waste water
AU637686B2 (en) Process of purifying exhaust gas
JPH0731985A (en) Treating method of sludge and device therefor
JP2000117272A (en) Waste water treatment
US6921486B2 (en) Waste activated sludge anaerobic contact waste stream treatment process
JPS5812927A (en) Method for incinerating sludge
JPH0691281A (en) Treatment of organic waste water containing phosphorus
JPH0231889A (en) Treatment of organic waste water containing phosphorus
JPH0454512B2 (en)
JPH0454515B2 (en)
JP2627953B2 (en) Wastewater treatment method
GB1567467A (en) Method of heating water
JPS61185394A (en) Treatment of organic high concentration waste solution
JP3792856B2 (en) Supercritical water oxidation method for organic sludge
JP2514676B2 (en) Treatment method of organic waste liquid