JPH0231737A - Nuclear magnetic resonance apparatus - Google Patents

Nuclear magnetic resonance apparatus

Info

Publication number
JPH0231737A
JPH0231737A JP63180805A JP18080588A JPH0231737A JP H0231737 A JPH0231737 A JP H0231737A JP 63180805 A JP63180805 A JP 63180805A JP 18080588 A JP18080588 A JP 18080588A JP H0231737 A JPH0231737 A JP H0231737A
Authority
JP
Japan
Prior art keywords
frequency
high frequency
impedance
signal
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63180805A
Other languages
Japanese (ja)
Inventor
Hiromi Kawaguchi
川口 博巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63180805A priority Critical patent/JPH0231737A/en
Publication of JPH0231737A publication Critical patent/JPH0231737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an erroneous diagnosis in medical treatment by suppressing the artifact due to the cyclical body motion of an examinee by a method wherein a computer inputs the output signal of an impedance change detector to control the transmission point of time of the high frequency pulse due to a high frequency transmitter-receiver in synchronous relation to the cyclical change of impedance. CONSTITUTION:When a high frequency current is allowed to flow to a high frequency coil 11 through an impedance bridge 13 and a matching circuit 12 by utilizing the function of a high frequency transmitter-receiver 14 as a high frequency power supply, the output signal of the impedance bridge 13 is zero in an equilibrium state and, at a time shifted from the equilibrium state, the high frequency signal proportional to the shift quantity is outputted. An impedance change detector 15 amplifies the change quantity of said signal to apply A/D conversion thereto and inputs the converted digital value to a computer 16. The computer 16 receives said digital value to calculate the cycle of the body motion of an examinee and further calculates the point of time becoming a state of the same slice surface on the basis of said cycle to control the transmission point of time of the high frequency pulse of the corresponding high frequency transmitter-receiver 14. By this method, the artifact generated by respiration can be reduced to a large extent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は核磁気共鳴現象を利用して人体の断面を撮像
しこの画像を基に医療診断を行うための核磁気共鳴装置
(以下、MHI装置と称する)に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention utilizes a nuclear magnetic resonance apparatus (hereinafter referred to as MHI) for imaging a cross section of a human body and performing medical diagnosis based on this image. equipment).

〔従来の技術〕[Conventional technology]

MRI装置は患者である被検体を均一磁場コイルが生成
した高度に均一な静磁場におき、この静磁場の強度に比
例した原子核の共鳴周波数に一致した周波数の高周波パ
ルスを第2図に示す高周波パルス発信装置102によっ
て発信させ、高周波送信コイル103によって被検体に
照射して原子核に共鳴を起こさせ、この高周波パルスの
照射を停止した後自由誘S減衰信号、略してFID信号
と称されている共鳴している原子核が放射する電磁波を
高周波受信コイル105で受信し、これを高周波受信装
置104で増幅しディジタル信号に変換した上でコンピ
ュータの本体であるCPUl0Iに入力し、このCPU
l0Iにより演算処理して画像信号とした上で表示装置
108に撮像断面画像を表示する。
The MRI apparatus places the subject (patient) in a highly uniform static magnetic field generated by a uniform magnetic field coil, and transmits high-frequency pulses at a frequency corresponding to the resonance frequency of the atomic nucleus, which is proportional to the strength of this static magnetic field, as shown in Figure 2. It is transmitted by the pulse transmitting device 102, irradiated to the subject by the high frequency transmitting coil 103 to cause resonance in the atomic nucleus, and after the irradiation of this high frequency pulse is stopped, a free induced S decay signal, abbreviated as FID signal, is generated. The electromagnetic waves emitted by the resonating atomic nuclei are received by the high-frequency receiving coil 105, amplified by the high-frequency receiving device 104, converted into digital signals, and inputted to the main body of the computer, CPU10I, which is then sent to the CPU.
After arithmetic processing is performed using L0I to create an image signal, the captured cross-sectional image is displayed on the display device 108.

高周波パルスを照射する際には、まず、撮像断面に直角
の方向に直線的に磁場の強度が変化する傾斜磁場を重畳
することにより核磁気共鳴が生ずる空間を薄い板状の空
間に決定することにより撮像断面を設定する。ついで、
この撮像断面に平行な一方向に磁場の強度が直線的に変
化する傾斜磁場を均一磁場に重畳することにより、共鳴
周波数をこの方向に変化させることによりFED信号に
含まれる周波数の違いが撮像断面内の一方向の位置に対
応することになるので、この方向を変えて撮像断面内の
信号を繰り返し受信することにより撮像断面画像を構成
するに必要な信号を得ることができる。
When irradiating high-frequency pulses, first, the space in which nuclear magnetic resonance occurs is determined to be a thin plate-shaped space by superimposing a gradient magnetic field whose magnetic field strength changes linearly in a direction perpendicular to the imaging cross section. Set the imaging section by. Then,
By superimposing a gradient magnetic field in which the strength of the magnetic field changes linearly in one direction parallel to this imaging cross section on a uniform magnetic field, the resonance frequency is changed in this direction, and the difference in the frequency included in the FED signal is reflected in the imaging cross section. Therefore, by changing this direction and repeatedly receiving signals within the imaging section, it is possible to obtain the signals necessary to construct the imaging section image.

第3図はMRIマグネットの一部を切り欠いた斜視図で
あり、均一磁場コイル1の内部に形成される均一磁場の
中心に患者である被検体7が仰向けに寝ている状態で断
層画像を得るべき位置に配置される。この図で、頭から
足の方向を2軸、頭が向いている方向をy軸、両肩に平
行な方向をy軸とすると、頭部が均一磁場の中心として
のX。
FIG. 3 is a partially cutaway perspective view of the MRI magnet, in which a tomographic image is obtained with a patient (subject 7) lying on his back at the center of the uniform magnetic field formed inside the uniform magnetic field coil 1. placed in the desired position. In this figure, if the direction from the head to the feet is the two axes, the direction the head is facing is the y-axis, and the direction parallel to both shoulders is the y-axis, then the head is the center of the uniform magnetic field.

y+  ”の三次元座標の原点位置に配置されている状
態を示しており、この頭部を囲むようにして高周波電磁
場をX軸方向に生成する高周波コイル5が配置され、更
にその外側に傾斜磁場を生成するコイルとして、2方向
傾斜磁場コイル3Z、X方向傾斜磁場コイル3Y、x方
向傾斜磁場コイル3Xの3つの方向に傾斜磁場を生成す
る3つのコイルが配置されており、これらの傾斜磁場コ
イルによって任意の方向に磁場の強度が直線的に変化す
る傾斜磁場を生成することができる。
The head is shown being placed at the origin position of the three-dimensional coordinates of ``y+'', and a high-frequency coil 5 that generates a high-frequency electromagnetic field in the X-axis direction is placed to surround this head, and further generates a gradient magnetic field outside of the high-frequency coil 5. Three coils are arranged to generate gradient magnetic fields in three directions: a two-direction gradient magnetic field coil 3Z, an X-direction gradient magnetic field coil 3Y, and an x-direction gradient magnetic field coil 3X. It is possible to generate a gradient magnetic field in which the strength of the magnetic field changes linearly in the direction of .

第4図は高周波パルスの照射や傾斜磁場の印加の時系列
の一例を示すチャート図であるが、このような電気パル
スの時系列はパルス系列と称されており種々の方法が考
案されている。この図はフーリエ変換ズーグマトグラフ
ィ法と称されているパルス系列で、MHI装置のパルス
系列の中で最も基本的なものである。この図では撮像断
面は第3図のxy断面である横断面としてあり、したが
ってこの撮像断面を設定するのは2方向傾斜磁場である
。この図に示す■の時間内に2方向傾斜磁場が印加され
その間に高周波パルスを150μsec程度の間照射し
て原子核のスピンの方向を均一磁場の方向から90変回
転させるが、このような高周波パルスは90度パルスと
称されており、このとき共鳴するのは2方向に直角な1
つの平面だけに限定される。■の時間ではX方向傾斜磁
場とX方向傾斜磁場とを印加した上でFID信号を受信
する。■の時間の間に原子核の共鳴は減衰し、次のステ
ップの■に到るまでに実質的に零になる。
Figure 4 is a chart showing an example of the time series of high-frequency pulse irradiation and gradient magnetic field application; this time series of electric pulses is called a pulse series, and various methods have been devised. . This diagram shows a pulse sequence called the Fourier transform zoom chromatography method, which is the most basic pulse sequence of the MHI device. In this figure, the imaging cross section is a cross section that is the xy cross section of FIG. 3, and therefore, it is the two-directional gradient magnetic field that sets this imaging cross section. A two-directional gradient magnetic field is applied during the time period (■) shown in this figure, and a high-frequency pulse is irradiated for about 150 μsec during this time to rotate the direction of the spin of the atomic nucleus by 90 degrees from the direction of the uniform magnetic field. is called a 90 degree pulse, and at this time, the resonance is 1 perpendicular to the two directions.
limited to only one plane. At time (2), an FID signal is received after applying an X-direction gradient magnetic field and an X-direction gradient magnetic field. During the time (2), the nuclear resonance attenuates and becomes substantially zero by the time the next step (2) is reached.

■では■のときと同じ2方向傾斜磁場を印加して高周波
パルスを照射し、■の場合と同じ断面の原子核を共鳴さ
せ、■のステップにおいてX方向傾斜磁場とX方向傾斜
磁場を印加した上でFID信号を受信する。■の場合と
違うのはX方向傾斜磁場の強度が異なっている点だけで
ある。一つのX方向傾斜磁場との強度によって撮像断面
のy軸に平行な1本の線上の画像データが得られる。X
方向傾斜磁場を撮像断面の最上に相当する強度から最下
に相当する強度まで所定のステップで変化させて前述の
ようなパルス系列でFED信号を受信することにより1
枚の断面像を作成するための情報を得ることができる。
In step (2), the same two-directional magnetic field gradient as in step (2) is applied and a high-frequency pulse is irradiated to cause the nuclei in the same cross section as in (2) to resonate, and in step (2), an X-direction gradient magnetic field and an X-direction gradient magnetic field are applied. receive the FID signal. The only difference from case (2) is that the strength of the X-direction gradient magnetic field is different. Image data on one line parallel to the y-axis of the imaging cross section is obtained by the strength of one X-direction gradient magnetic field. X
By changing the directional gradient magnetic field in predetermined steps from the intensity corresponding to the top of the imaging section to the intensity corresponding to the bottom, and receiving the FED signal in the pulse series as described above, 1.
Information for creating two cross-sectional images can be obtained.

1枚の断面画像を構成するのに必要なX方向傾斜磁場の
強度のステップ数は約200であるので、前述のFID
信号の受信を200回繰り返すことになる。
Since the number of steps of the strength of the X-direction gradient magnetic field required to construct one cross-sectional image is approximately 200, the above-mentioned FID
The reception of the signal will be repeated 200 times.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような繰り返しの間隔である第4図の時
間間隔Tは数分の1秒ないし1秒程度が必要であるので
、1枚の断面画像を・得るためには、数分程度の時間を
必要とし、この間患者を撮像状態に拘束していなければ
ならない0頭部断面画像を対象とするときには、適当な
固定法により頭が動かないように保持することは比較的
容易であるが、胴体部を対象とする場合は呼吸による被
検体の体動の影響は避けられず、前述のようにy方向傾
斜磁場の強度を変えることによりX軸に平行な直線上の
画像情報をy方向位置をずらせながら順次取ってゆく際
に、異なるy座IjI4t1の情報のそれぞれが同一の
断面画像のものでなくなり、得られた情報に基づいてコ
ンピュータ処理して構成された断面画像が実際のものと
は異なった歪んだ画像が得られることになる。MHI装
置における画像の歪みは一般にアーティファクトと称さ
れているが、このようなアーティファクトが生ずること
により医療診断の際の誤診の原因になるという問題があ
る。
By the way, the time interval T shown in Fig. 4, which is the interval between repetitions, needs to be about a fraction of a second to one second, so it takes about a few minutes to obtain one cross-sectional image. When performing head cross-sectional images, which require the patient to be restrained in the imaging state during this period, it is relatively easy to hold the head immobile using an appropriate fixation method; When targeting the subject's body, the influence of the subject's body movement due to breathing cannot be avoided, and as described above, by changing the strength of the y-direction gradient magnetic field, image information on a straight line parallel to the X-axis can be converted to a position in the y-direction. When data is taken sequentially while being shifted, each of the information on different Y locus IjI4t1 is no longer the same cross-sectional image, and the cross-sectional image constructed by computer processing based on the obtained information may differ from the actual one. This results in a distorted image. Image distortion in an MHI device is generally referred to as an artifact, but there is a problem in that the occurrence of such an artifact causes misdiagnosis during medical diagnosis.

この発明は、被検体の周期的な体動によるアーティファ
クトを抑制し医療診断の際に誤診をする恐れのない核磁
気共鳴装置を提供することを目的とする。
An object of the present invention is to provide a nuclear magnetic resonance apparatus that suppresses artifacts caused by periodic body movements of a subject and eliminates the risk of misdiagnosis during medical diagnosis.

(課題を解決するための手段〕 上記課題を解決するために、この発明によれば、核磁気
共鳴現象を利用して被検体の断面を1i像しこの画像を
基に医療診断を行うための核磁気共鳴装置であって、高
周波パルスを被検体に照射するための送信アンテナ及び
照射された高周波パルスによって核磁気共鳴を生じた原
子核が放射する共鳴信号を受信するための受信アンテナ
を兼ねた高周波コイルと、前記高周波パルスを生成する
送信装置と前記受信信号を処理する高周波受信装置とを
兼ねた高周波送受信装置と、この高周波送受信装置によ
って処理された受信信号を入力信号として所定の演算に
より断層画像を生成し表示するとともに前記高周波送受
信装置の送信時点を制御するコンピュータとを備えた核
磁気共鳴装置において、前記高周波コイルと前記高周波
送受信装置との間に設け前記高周波コイルとこの高周波
コイルに並列に設けられた整合回路とを1つのインピー
ダンス回路とするインピーダンスブリッジと、このイン
ピーダンスブリッジの出力信号を人力信号としてこの入
力信号の変化に比例したディジタル信号に変換するイン
ピーダンス変化検出器とを備え、このインピーダンス変
化検出器の出力信号を入力信号として前記コンピュータ
がインピーダンスの周期的変化に同量して前記高周波送
受信装置による高周波パルスの送信時点を制御するもの
とする。
(Means for Solving the Problems) In order to solve the above problems, according to the present invention, a method is provided for obtaining a 1i image of a cross section of a subject using nuclear magnetic resonance phenomena and performing medical diagnosis based on this image. A nuclear magnetic resonance apparatus that serves as a transmitting antenna for irradiating a subject with high-frequency pulses and a receiving antenna for receiving resonance signals emitted by atomic nuclei that have generated nuclear magnetic resonance due to the irradiated high-frequency pulses. A coil, a high frequency transmitting/receiving device that serves as a transmitting device that generates the high frequency pulse, and a high frequency receiving device that processes the received signal, and a tomographic image is generated by a predetermined calculation using the received signal processed by the high frequency transmitting/receiving device as an input signal. A nuclear magnetic resonance apparatus comprising: a computer for generating and displaying a signal and controlling a transmission point of the high-frequency transmitting/receiving device; The impedance bridge includes an impedance bridge that includes a matching circuit provided as one impedance circuit, and an impedance change detector that converts the output signal of the impedance bridge into a digital signal proportional to the change in the input signal as a human input signal. It is assumed that the computer uses the output signal of the change detector as an input signal and controls the time point at which the high frequency pulse is transmitted by the high frequency transmitting/receiving device in the same amount as the periodic change in impedance.

〔作用〕[Effect]

この発明の構成において、高周波送受(3装置の高周波
電源の機能を利用して高周波送受信装置と高周波コイル
との間にインピーダンスブリッジを設け、高周波コイル
と整合回路との並列回路をこのインピーダンスブリッジ
の平衡回路の1つのインピーダンスとすることにより高
周波コイルの僅かのインピーダンスの変化を高感度に検
出することができる。検出されたインピーダンスブリッ
ジの出力信号の変化僅をインピーダンス変化検出器でコ
ンビエータの入力信号に適したディジタル信号に変換し
た上でコンピュータに入力し、コンピュータによってこ
の入力信号を基にして体動の周期を演算により求めこの
周期に基づいて高周波送受信装置の高周波パルスの送信
時点を制御することにより常に被検体の断層面の状態が
同一の時点での画像データを得ることができる。
In the configuration of this invention, an impedance bridge is provided between the high frequency transmitting/receiving device and the high frequency coil by utilizing the functions of the high frequency power sources of the high frequency transmitting/receiving device (three devices), and a parallel circuit of the high frequency coil and the matching circuit is connected to the balance of this impedance bridge. By using one impedance of the circuit, it is possible to detect a slight change in the impedance of the high-frequency coil with high sensitivity.The slight change in the output signal of the detected impedance bridge is detected by an impedance change detector suitable for the input signal of the combiator. The computer calculates the period of body movement based on this input signal, and controls the transmission point of the high-frequency pulse of the high-frequency transmitting/receiving device based on this period. It is possible to obtain image data at a time when the condition of the tomographic plane of the subject is the same.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示すブロック図で、高周波コイル11
に直並列の2つの可変コンデンサでなる整合回路12が
接続されており、高周波送受信装置!14側からみたイ
ンピーダンスが純抵抗になるようにこの整合回路12の
2つの可変コンデンサが調整される。コンピュータ16
は高周波送受信装置14の高周波パルスの送信時点の制
御を行うとともに受信信号を入力信号として演算処理し
断層画像を生成し必要に応じてコンピュータ16に付属
の表示装置に表示したり記憶装置に記憶したりする。こ
れらは第2図のMR[装置の構成の一部を別の表現で示
したものであり、従来技術と共通の部分である。
The present invention will be explained below based on examples. FIG. 1 is a block diagram showing an embodiment of the present invention, in which a high frequency coil 11
A matching circuit 12 consisting of two variable capacitors in series and parallel is connected to the high-frequency transmitter/receiver! The two variable capacitors of this matching circuit 12 are adjusted so that the impedance seen from the matching circuit 14 becomes a pure resistance. computer 16
controls the time point at which the high-frequency pulse is transmitted by the high-frequency transmitting/receiving device 14, processes the received signal as an input signal, generates a tomographic image, and displays it on a display device attached to the computer 16 or stores it in a storage device as necessary. or These are part of the configuration of the MR [device shown in FIG.

高周波送受信装置14と整合回路12との間にインピー
ダンスブリッジ13を設けて高周波コイル11と整合回
路12とをブリッジ回路の1つのインピーダンスとする
。被検体が高周波コイル内に配置された状態でこのイン
ピーダンスブリッジ13を平衡状態に設定する。インピ
ーダンスブリッジ13の出力信号を入力信号とするイン
ピーダンス変化検出器15はインピーダンスブリッジ1
3の出力信号の変化に比例した量をディジタル信号とし
て出力する。
An impedance bridge 13 is provided between the high frequency transmitting/receiving device 14 and the matching circuit 12, so that the high frequency coil 11 and the matching circuit 12 serve as one impedance of the bridge circuit. This impedance bridge 13 is set to a balanced state with the subject placed within the high-frequency coil. The impedance change detector 15 which receives the output signal of the impedance bridge 13 as an input signal is connected to the impedance bridge 1
An amount proportional to the change in the output signal No. 3 is output as a digital signal.

高周波コイル11に高周波パルスを印加するこのできる
高周波送信装置14の高周波電源としての機能を利用し
てインピーダンスブリッジ13と整合回路12を介して
高周波コイル11に高周波電流を流すと、前述の平衡状
態にあるときはインピーダンスブリッジ13の出力信号
は零であり、平衡状態から外れているときには外れた量
に比例した高周波信号が出力される。
When a high-frequency current is passed through the high-frequency coil 11 through the impedance bridge 13 and the matching circuit 12 by utilizing the function as a high-frequency power source of the high-frequency transmitting device 14 that can apply high-frequency pulses to the high-frequency coil 11, the above-mentioned equilibrium state is achieved. At certain times, the output signal of the impedance bridge 13 is zero, and when it deviates from the equilibrium state, a high frequency signal proportional to the amount of deviation is output.

被検体である患者が呼吸すると、高周波コイル11と被
検体表面との間の距離が変化しこの間の漂遊静電容量が
僅かながら変化するので、インピーダンスブリッジ13
から見た高周波コイル11のインピーダンスが変化する
。インピーダンスブリッジ13はこの高周波コイル11
のインピーダンス変化に比例した高周波電圧を出力する
When the patient, the subject, breathes, the distance between the high-frequency coil 11 and the surface of the subject changes, and the stray capacitance between them changes slightly, so the impedance bridge 13
The impedance of the high frequency coil 11 as seen from above changes. The impedance bridge 13 is this high frequency coil 11
Outputs a high frequency voltage proportional to the impedance change.

この出力信号は患者の呼吸に同期してその値が周期的に
変化するので、この信号を人力信号とするインピーダン
ス変化検出器15によってこの信号の変化量を増幅しA
D変換を行った上でコンビエータ16に入力する。コン
ピュータ!6はこの入力信号を受けて被検体の体動の周
期を求め、この周期を基にして同一の断層面の状態とな
る時点を求め、この時点に対応して高周波送受信装置1
4の高周波パルスの送信時点を制御することにより、画
像データを得る時点の断面の状態を常に一定の状態に設
定できることから、呼吸などの周期的な体動によって生
ずるアーティファクトを大幅に低減することができる。
Since the value of this output signal changes periodically in synchronization with the patient's breathing, the amount of change in this signal is amplified by the impedance change detector 15 which uses this signal as a human input signal.
After performing D conversion, the signal is input to the combiator 16. Computer! 6 receives this input signal and determines the cycle of the subject's body movement, and based on this cycle, determines the point in time when the state of the same tomographic plane is reached, and transmits the high-frequency transmitter/receiver 1 corresponding to this point in time.
By controlling the time point at which the high-frequency pulse is transmitted in step 4, the state of the cross section at the time of obtaining image data can be always set to a constant state, which greatly reduces artifacts caused by periodic body movements such as breathing. can.

被検体である患者が例えば腕を動かすなどの体動による
高周波コイル11のインピーダンスの変化が生じたとき
には、インピーダンス変化検出器15からこのような非
周期的な信号が入力されるとコンピュータ16によって
有効でない信号であると判断し除外することにより本来
の周期的な体動に関する信号による周期の演算を乱すこ
となのないようにする。
When a change in the impedance of the high-frequency coil 11 occurs due to a body movement of the patient, who is the subject, for example, moving an arm, when such a non-periodic signal is input from the impedance change detector 15, it is detected by the computer 16. By determining that the signal is not a signal and excluding it, the calculation of the period based on the signal related to the original periodic body movement is not disturbed.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように高周波送信装置の高周波電源の
機能を利用して高周波送信装置と高周波コイルとの間に
インピーダンスブリッジを設けテ高周波コイルと整合回
路とをこのインピーダンスブリッジの平衡回路の1つの
インピーダンスとすることにより高周波コイルの僅かの
インピーダンスの変化を高感度に検出することができる
。検出されたインピーダンスブリッジの出力信号をイン
ピーダンス変化検出器でコンピュータの入力信号に適し
た信号に変換した上でコンピュータに入力し、コンピュ
ータによってこの入力信号を基にして体動の周期を演算
により求めこの周期に基づいて高周波送信装置の送高周
波パルスの送信時点を制御することにより常に被検体の
断層面の状態が同一の時点で画像データを得ることがで
きる。
As mentioned above, this invention utilizes the function of the high frequency power supply of the high frequency transmitter to provide an impedance bridge between the high frequency transmitter and the high frequency coil.The high frequency coil and matching circuit are connected to one of the balanced circuits of the impedance bridge. By using impedance, a slight change in impedance of the high frequency coil can be detected with high sensitivity. The output signal of the detected impedance bridge is converted into a signal suitable for the input signal of the computer using an impedance change detector, and then inputted to the computer, and the computer calculates the period of body movement based on this input signal. By controlling the transmission time point of the high-frequency pulse of the high-frequency transmitter based on the period, image data can always be obtained at a time point when the state of the tomographic plane of the subject is the same.

その結果、被検体の周期的な体動によって生じるアーテ
ィファクトが大幅に低減されることになり優れた断層画
像を得ることのできるMRI装置が得られる。
As a result, artifacts caused by periodic body movements of the subject are significantly reduced, resulting in an MRI apparatus that can obtain excellent tomographic images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す一部回路図を含むブロ
ック図、第2図はMHI装置の動作を説明するためのブ
ロック図、第3図はMRIマグネットの斜視図、第4図
はパルス系列の一例を示すチャート図である。 11・・・高周波コンビエータ、12・・・整合回路、
13・・・インピーダンスブリッジ、 14・・・高周波送信装置、 15・・・インピーダンス変化検出器、第1圀
Fig. 1 is a block diagram including a partial circuit diagram showing an embodiment of the present invention, Fig. 2 is a block diagram for explaining the operation of the MHI device, Fig. 3 is a perspective view of an MRI magnet, and Fig. 4 is a block diagram including a partial circuit diagram. It is a chart figure showing an example of a pulse sequence. 11... High frequency combinator, 12... Matching circuit,
13... Impedance bridge, 14... High frequency transmitter, 15... Impedance change detector, first field

Claims (1)

【特許請求の範囲】[Claims] 1)核磁気共鳴現象を利用して被検体の断面を撮像しこ
の画像を基に医療診断を行うための核磁気共鳴装置であ
って、高周波パルスを被検体に照射するための送信アン
テナ及び照射された高周波パルスによって核磁気共鳴を
生じた原子核が放射する共鳴信号を受信するための受信
アンテナを兼ねた高周波コイルと、前記高周波パルスを
生成する送信装置と前記受信信号を処理する高周波受信
装置とを兼ねた高周波送受信装置と、この高周波送受信
装置によって処理された受信信号を入力信号として所定
の演算により断層画像を生成し表示するとともに前記高
周波送受信装置の送信時点を制御するコンピュータとを
備えた核磁気共鳴装置において、前記高周波コイルと前
記高周波送受信装置との間に設け前記高周波コイルとこ
の高周波コイルに並列に設けられた整合回路とを1つの
インピーダンス回路とするインピーダンスブリッジと、
このインピーダンスブリッジの出力信号を入力信号とし
てこの入力信号の変化に比例したディジタル信号に変換
するインピーダンス変化検出器とを備え、このインピー
ダンス変化検出器の出力信号を入力信号として前記コン
ピュータがインピーダンスの周期的変化に同期して前記
高周波送受信装置による高周波パルスの送信時点を制御
することを特徴とする核磁気共鳴装置。
1) A nuclear magnetic resonance apparatus for imaging a cross-section of a subject using nuclear magnetic resonance phenomena and performing medical diagnosis based on this image, which includes a transmitting antenna and irradiation for irradiating the subject with high-frequency pulses. a high-frequency coil that also serves as a receiving antenna for receiving a resonance signal emitted by an atomic nucleus that has caused nuclear magnetic resonance due to the high-frequency pulse, a transmitter that generates the high-frequency pulse, and a high-frequency receiver that processes the received signal. a computer that generates and displays a tomographic image through predetermined calculations using the received signal processed by the high-frequency transmitter-receiver as an input signal, and controls the transmission time point of the high-frequency transmitter-receiver; In a magnetic resonance apparatus, an impedance bridge provided between the high-frequency coil and the high-frequency transmitting/receiving device and having the high-frequency coil and a matching circuit provided in parallel with the high-frequency coil as one impedance circuit;
and an impedance change detector that converts the output signal of the impedance bridge into a digital signal proportional to the change in the input signal. A nuclear magnetic resonance apparatus characterized in that the time point at which the high-frequency pulse is transmitted by the high-frequency transmitting/receiving device is controlled in synchronization with the change.
JP63180805A 1988-07-20 1988-07-20 Nuclear magnetic resonance apparatus Pending JPH0231737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180805A JPH0231737A (en) 1988-07-20 1988-07-20 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180805A JPH0231737A (en) 1988-07-20 1988-07-20 Nuclear magnetic resonance apparatus

Publications (1)

Publication Number Publication Date
JPH0231737A true JPH0231737A (en) 1990-02-01

Family

ID=16089655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180805A Pending JPH0231737A (en) 1988-07-20 1988-07-20 Nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPH0231737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793113A1 (en) * 1996-02-24 1997-09-03 Philips Patentverwaltung GmbH MR method with reduced motion artifacts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793113A1 (en) * 1996-02-24 1997-09-03 Philips Patentverwaltung GmbH MR method with reduced motion artifacts

Similar Documents

Publication Publication Date Title
AU2020204323B2 (en) Pulse sequences for low field magnetic resonance
JP4236696B2 (en) Magnetic resonance imaging apparatus and subject moving imaging method
US10185013B2 (en) Magnetic resonance imaging (MRI) apparatus and method of generating MR image
EP2628016B1 (en) Mr data acquisition using physiological monitoring
JP2001000417A (en) Magnetic resonance imaging method for heart using multiple slabs and multiple windows
CN106659423A (en) Positioning of a magnetic resonance imaging antenna within the homogeneous field zone
US10274563B2 (en) Magnetic resonance imaging apparatus and method
JPH0449949A (en) Magnetic resonance thermography
JP4343317B2 (en) Magnetic resonance imaging system
JP5465565B2 (en) Magnetic resonance imaging system
US4818937A (en) Rapid line scan NMR imaging
JP2006158762A (en) Mri apparatus
JPH01254156A (en) Body motion correction imaging system
JPH0274236A (en) Magnetic resonating imaging apparatus
KR101767214B1 (en) Magnetic resonance imaging apparatus and method for shimming of magnetic resonance imaging apparatus thereof
JPH0231737A (en) Nuclear magnetic resonance apparatus
JPH0759750A (en) Nuclear magnetic resonance imaging system
JP4994786B2 (en) Magnetic resonance imaging system
JP2891514B2 (en) Magnetic resonance imaging equipment
JPH01232943A (en) Apparatus and method for taking image of coronary artery
JP2010172473A (en) Nuclear magnetic resonance imaging apparatus and operating method for nuclear magnetic resonance imaging apparatus
JP2007181587A (en) Magnetic resonance imaging apparatus
JPH02255128A (en) Magnetic resonance image photographing device
Van Niekerk A vector based approach for high frequency prospective correction of rigid body motion in Magnetic Resonance Imaging (MRI)
JPH05123314A (en) Multislice image pick-up method in magnetic resonance imaging device