JPH0231720Y2 - - Google Patents

Info

Publication number
JPH0231720Y2
JPH0231720Y2 JP8986080U JP8986080U JPH0231720Y2 JP H0231720 Y2 JPH0231720 Y2 JP H0231720Y2 JP 8986080 U JP8986080 U JP 8986080U JP 8986080 U JP8986080 U JP 8986080U JP H0231720 Y2 JPH0231720 Y2 JP H0231720Y2
Authority
JP
Japan
Prior art keywords
cathode
insulating stone
tube
cylinder
dish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8986080U
Other languages
Japanese (ja)
Other versions
JPS5714346U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8986080U priority Critical patent/JPH0231720Y2/ja
Publication of JPS5714346U publication Critical patent/JPS5714346U/ja
Application granted granted Critical
Publication of JPH0231720Y2 publication Critical patent/JPH0231720Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は陰極線管電子銃に用いられる陰極構体
に関し、特に陰極と第1制御電極、又は複数の陰
極が同一平面に配列された場合の陰極相互の絶縁
性を良好にするための陰極構体の改良に関するも
のである。 第1図は従来一般に用いられている陰極構体
0を示す第1制御電極を含む部分断面図である。
頂部に熱電子放射物質層が被着された帽状筒体の
陰極筒13はアルミナ、ステアタイト等のセラミ
ツクで形成された絶縁石11へカシメ縁12A,
12Bでカシメ固定する等の方法で固着された外
側陰極支持筒12に下端部で溶接固定される。陰
極筒13を支持した絶縁石11は閉塞面に透孔が
穿設された有底円筒状の第1制御電極14の内部
に間隔子15により絶縁石11の上面位置を規制
され、その下面は固定子16で押圧接し、固定子
16を第1制御電極14の側面に溶接して支持固
定される。この際間隔子15の高さは第1制御電
極14の閉塞面に対する陰極筒13の頂部と絶縁
石11の上面間距離の差が所定値となるように選
定される。 通常陰極筒13の電子放射面側の絶縁石11上
面には外側陰極支持筒12を取囲む溝11Aが穿
設されている。これは陰極線管動作時に陰極筒1
3に挿入された加熱線条の熱で陰極頂部電子放射
面より還元生成された金属Baが蒸発し、この蒸
発物が絶縁石11の上面11Bに付着しても陰極
筒13と第1制御電極14間の絶縁性が劣化する
ことのないように、陰極頂部から溝11Aを見込
む角度内に死角を作るようになつている。 然しながら上述の溝11Aによつて陰極頂部か
らの蒸発物に対する死角を形成する方法では、陰
極筒13と第1制御電極14間の絶縁性を高める
ためには溝11Aの深さは深い程、その幅は狭い
程よいが、通常絶縁石11の厚みは1〜2mm程度
であり、深くすると絶縁石の機械的強度を損うこ
とになり、一方幅を狭くすると粉体を押圧加工し
て絶縁石11を形成する際の溝成形が困難とな
り、必要十分な死角が得られない。特に陰極線管
ネツクの細い電子銃に用いられる陰極構体では全
体の寸法が縮小され、絶縁石11に環状溝11A
を穿設する寸法余裕がなくなり、溝11Aを形成
する絶縁石11の押出し型の加工も非常に困難と
なる。更に絶縁石11の押圧加工時には溝成形が
困難となり、精度も出なく、且つ寸法上の制約等
から有効な死角が得られなくなる欠点があつた。 本考案は、上述の欠点を除去して頂部に熱電子
放射物質を被着された1つ以上の帽状陰極筒の下
端部を夫々溶接固定する、絶縁石に固着された1
つ以上の外側陰極支持筒を備えた陰極構体に於
て、陰極筒頂部側に面した絶縁石上面の固着部に
外側陰極支持筒の外径に嵌合する開孔が穿設され
た底面と、底面より微小距離高い段付の環状縁を
持つた皿状板を入れて、外側陰極支持筒の上部を
固着した陰極線管陰極構体を提供することを目的
とする。 以下、本考案の実施例を図面により詳細に説明
する。 第2図は本考案の一実施例に基づく陰極構体
0の第1制御電極を含む側断面図を、第3図は皿
状板21の斜視図を夫々示し、説明の簡略化のた
め従来と同一のものには第1図と同一の符号をつ
ける。 陰極筒13の頂部側に面した絶縁石11の上面
にある外側陰極支持筒12のカシメ部12Aには
第3図に示すような外側陰極支持筒12の外径に
嵌合する開孔が穿設された底面21Aと、底面よ
り微小距離高い段付の環状縁21Bを持つた皿状
板21を入れた後、従来と同様に外側陰極支持筒
12がカシメ縁12A,12Bで絶縁石11にカ
シメ固定されている。この場合絶縁石11の上面
には従来の様に陰極筒13の頂部からの蒸発物降
着による外側陰極支持筒12と第1制御電極14
間の絶縁性低下防止の環状溝は特に必要ない。頂
部に熱電子放射物質層を被着された帽状陰極筒1
3が外側陰極支持筒12の下端部で溶接固定さ
れ、陰極筒13を支持固定した絶縁石11は第1
制御電極14内に間隔子15により、その上面1
1B位置を規制され、その下面は固定子16で第
1制御電極14に固定される。 本考案の実施例によれば、陰極筒13頂部より
の蒸発物付着による外側陰極支持筒12と第1制
御電極14間の絶縁性劣化防止用として従来の絶
縁石11の上面11B上に外側陰極支持筒12を
取囲む様に環状溝が特に形成されていなくても、
カシメ縁12Aで固定された皿状板21の環状縁
21Bにより蒸発物降着に対して十分な死角が得
られる。ここに皿状板21の環状縁21Bは底面
21Aより0.2〜0.3mm程度浮いた位置にあり、そ
の幅は第1制御電極14の内径より小さい範囲で
大きい程よいが、実用上は0.5〜1.5mm程度あれば
よい。 従がつて従来の様に環状溝による陰極頂部から
の蒸発物降着に対して十分な死角を得るため、絶
縁石11の強度と、加工性を犠牲にして溝を深
く、その幅を狭くする必要がなくなる。或いは絶
縁石11に必要十分な環状溝を形成する寸法余裕
が少ない、特に陰極構体20が小型化された場合
でも、本願を適用すれば環状溝が不要のため、絶
縁石11の上面形状が単純となり、その成形型加
工や、製造が極めて容易となる。 又陰極線管動作時に陰極筒13の頂部から還元
された金属Baは直線的に絶縁石11上面に降着
する以外に、管内残留ガス分子に衝突し散乱し
て、絶縁石11上面11Bに垂直に降着するもの
があるが、これらに対しても本実施例は十分な死
角を形成出来る。或いは第4図に示す様に同一平
面内に三つの陰極13がインライン配列されて絶
縁石31に固定されたインライン型陰極構体30
の場合には、中央と両外側陰極支持筒12の間に
は両側の陰極筒13から蒸発物が降着するので、
従来の様に夫々の外側陰極支持筒12を取囲む環
状溝では十分な死角が得られなかつた。然るに本
考案による環状縁21Bを持つた皿状板21を上
部カシメ部に夫々入れて外側陰極支持筒12がカ
シメ固定されているため、隣接陰極相互間の絶縁
性も劣化することがなくなる。 更に、外側陰極支持筒12のカシメ部に金属か
らなる皿状板21を入れてカシメるために、カシ
メ縁12Aでは両者が互になじむと共に、皿状板
21の底部21Aが弾性材の役割を果して、これ
を押圧接してカシメられるため、カシメ強度は飛
躍的に向上し、陰極線管の動作時に外側陰極支持
筒12が熱膨張でカシメ部にガタを生じる熱的経
時変化は防止され、極めて安定した陰極特性が得
られる。 上述の説明では、絶縁石11の上面に環状溝が
形成されていない場合について述べたが、従来の
様に環状溝と本考案を併用してもよく、この場合
皿状板21の環状縁21Bが環状溝を覆う様に環
状縁21Bの大きさを選べば陰極頂部よりの蒸発
物降着に対して一層有効な遮蔽効果が得られる。
[Detailed Description of the Invention] The present invention relates to a cathode assembly used in a cathode ray tube electron gun, and in particular improves the insulation between the cathodes and the first control electrode, or when a plurality of cathodes are arranged on the same plane. The present invention relates to improvements in cathode structures for the purpose of Figure 1 shows a cathode structure 1 commonly used in the past.
FIG. 3 is a partial cross-sectional view including the first control electrode showing 0;
The cathode cylinder 13, which is a cap-shaped cylinder with a thermionic emissive material layer deposited on the top, is caulked to an insulating stone 11 made of ceramic such as alumina or steatite.
The lower end portion is welded and fixed to the outer cathode support cylinder 12 which is fixed by caulking or the like at 12B. The insulating stone 11 that supported the cathode tube 13 is placed inside the first control electrode 14 which is a bottomed cylindrical shape with a through hole in the closed surface, and the upper surface position of the insulating stone 11 is regulated by a spacer 15, and the lower surface thereof is regulated by a spacer 15. The stator 16 is pressed into contact with the first control electrode 14, and the stator 16 is welded to the side surface of the first control electrode 14 to be supported and fixed. At this time, the height of the spacer 15 is selected so that the difference in distance between the top of the cathode cylinder 13 and the upper surface of the insulating stone 11 with respect to the closed surface of the first control electrode 14 becomes a predetermined value. Normally, a groove 11A surrounding the outer cathode support tube 12 is bored in the upper surface of the insulating stone 11 on the electron emitting surface side of the cathode tube 13. This is the cathode tube 1 during cathode ray tube operation.
The metal Ba that is reduced and produced from the electron emitting surface at the top of the cathode is evaporated by the heat of the heating wire inserted into the cathode cylinder 13 and the first control electrode even if this evaporated substance adheres to the upper surface 11B of the insulating stone 11. In order to prevent the insulation between the cathode 14 from deteriorating, a blind spot is created within the angle from which the groove 11A is viewed from the top of the cathode. However, in the method of forming a blind spot for evaporated matter from the top of the cathode using the groove 11A described above, the deeper the groove 11A is, the more the groove 11A is required to improve the insulation between the cathode tube 13 and the first control electrode 14. The narrower the width, the better, but the thickness of the insulating stone 11 is usually about 1 to 2 mm, and if the width is made too deep, the mechanical strength of the insulating stone will be impaired. This makes it difficult to form the groove when forming the groove, making it impossible to obtain a necessary and sufficient blind spot. In particular, in cathode assemblies used in narrow electron guns for cathode ray tubes, the overall dimensions are reduced, and the annular groove 11A is formed in the insulating stone 11.
There is no dimensional margin to drill the grooves 11A, and it becomes very difficult to process the extrusion mold of the insulating stone 11 that forms the grooves 11A. Furthermore, when pressing the insulating stone 11, it becomes difficult to form the groove, the accuracy is poor, and due to dimensional constraints, an effective blind spot cannot be obtained. The present invention eliminates the above-mentioned drawbacks and provides a structure in which the lower ends of one or more cap-shaped cathode tubes, the top of which is coated with a thermionic emissive material, are welded to each other.
In a cathode assembly equipped with two or more outer cathode support tubes, the bottom surface is provided with an opening that fits into the outer diameter of the outer cathode support tube in the fixed part of the upper surface of the insulating stone facing the top side of the cathode tube. To provide a cathode assembly for a cathode ray tube in which the upper part of an outer cathode support tube is fixed by inserting a dish-like plate having a stepped annular edge a micro distance higher than the bottom surface. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 shows a cathode structure 2 based on an embodiment of the present invention.
FIG. 3 shows a side cross-sectional view including the first control electrode of FIG. . The caulked portion 12A of the outer cathode support tube 12 on the upper surface of the insulating stone 11 facing the top side of the cathode tube 13 is provided with an opening that fits into the outer diameter of the outer cathode support tube 12 as shown in FIG. After inserting the dish-shaped plate 21 having a bottom surface 21A and a stepped annular edge 21B that is slightly higher than the bottom surface, the outer cathode support cylinder 12 is attached to the insulating stone 11 with the caulked edges 12A and 12B as in the conventional case. It is caulked and fixed. In this case, on the upper surface of the insulating stone 11, the outer cathode support tube 12 and the first control electrode 14 are formed by accretion of evaporates from the top of the cathode tube 13, as in the conventional case.
There is no particular need for an annular groove to prevent a decrease in insulation between the two. Cap-shaped cathode tube 1 with a thermionic emissive material layer deposited on the top
3 is welded and fixed at the lower end of the outer cathode support tube 12, and the insulating stone 11 that supports and fixes the cathode tube 13 is the first
A spacer 15 is provided in the control electrode 14 so that its upper surface 1
1B position is regulated, and its lower surface is fixed to the first control electrode 14 by a stator 16. According to the embodiment of the present invention, the outer cathode is placed on the upper surface 11B of the conventional insulating stone 11 in order to prevent insulation deterioration between the outer cathode support tube 12 and the first control electrode 14 due to deposition of evaporated matter from the top of the cathode tube 13. Even if an annular groove is not particularly formed to surround the support tube 12,
The annular edge 21B of the dish plate 21 fixed by the caulked edge 12A provides a sufficient blind spot against evaporative accretion. Here, the annular edge 21B of the dish-shaped plate 21 is located at a position floating about 0.2 to 0.3 mm from the bottom surface 21A, and the width is preferably as large as possible within a range smaller than the inner diameter of the first control electrode 14, but in practice it is 0.5 to 1.5 mm. A certain degree is fine. Therefore, in order to obtain a sufficient blind spot against the accretion of evaporates from the top of the cathode by the annular groove as in the past, it is necessary to make the groove deeper and narrower at the expense of the strength and workability of the insulating stone 11. disappears. Alternatively, even if there is little dimensional margin to form a necessary and sufficient annular groove in the insulating stone 11, especially when the cathode structure 20 is downsized, applying the present invention eliminates the need for an annular groove, so the upper surface shape of the insulating stone 11 is simple. This makes processing the mold and manufacturing extremely easy. In addition, the metal Ba reduced from the top of the cathode tube 13 during operation of the cathode ray tube not only accretes linearly onto the upper surface of the insulating stone 11, but also collides with residual gas molecules in the tube, scatters, and accretes vertically onto the upper surface 11B of the insulating stone 11. However, this embodiment can create sufficient blind spots even for these. Alternatively, as shown in FIG. 4, there is an in-line cathode structure 30 in which three cathodes 13 are arranged in-line in the same plane and fixed to an insulating stone 31.
In this case, evaporated matter from the cathode tubes 13 on both sides is deposited between the center and both outer cathode support tubes 12.
The conventional annular groove surrounding each outer cathode support cylinder 12 did not provide a sufficient blind spot. However, since the outer cathode support cylinder 12 is fixed by inserting the dish-like plates 21 having the annular edges 21B into the upper caulking portions according to the present invention, the insulation between adjacent cathodes does not deteriorate. Furthermore, since the dish-shaped plate 21 made of metal is inserted into the caulking part of the outer cathode support cylinder 12 and caulked, both parts fit together at the caulking edge 12A, and the bottom part 21A of the dish-shaped plate 21 plays the role of an elastic material. As a result, since this is pressed and crimped, the crimping strength is dramatically improved, and the thermal expansion of the outer cathode support cylinder 12 during operation of the cathode ray tube, which causes play in the crimped part over time, is prevented, making it extremely stable. Cathode characteristics can be obtained. In the above description, the case where the annular groove is not formed on the upper surface of the insulating stone 11 has been described, but the annular groove and the present invention may be used together as in the conventional case. If the size of the annular edge 21B is selected so as to cover the annular groove, a more effective shielding effect can be obtained against the deposition of evaporated matter from the top of the cathode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来用いられている陰極構体10を示
す第1制御電極を含む部分断面図、第2図は本考
案の一実施例に基つく陰極構体を示す第1制御電
極を含む断面図、第3図は本考案に基づく環状縁
を持つた皿状板の斜視図、第4図は本考案の他の
実施例に基づくインライン型陰極構体の断面図を
示す。 11,31……絶縁石、11A……環状溝、1
2……外側陰極支持筒、13……帽状陰極筒、1
4……第1制御電極、15……間隔子、16……
固定子、20,30……陰極構体、21……皿状
板。
FIG. 1 is a partial sectional view including a first control electrode showing a conventionally used cathode structure 10 , FIG. 2 is a sectional view including a first control electrode showing a cathode structure based on an embodiment of the present invention, FIG. 3 is a perspective view of a dish plate with an annular edge according to the present invention, and FIG. 4 is a sectional view of an in-line cathode assembly according to another embodiment of the present invention. 11, 31... Insulating stone, 11A... Annular groove, 1
2... Outer cathode support tube, 13... Cap-shaped cathode tube, 1
4...First control electrode, 15...Spacer, 16...
Stator, 20, 30...Cathode structure, 21...Dish plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 頂部に熱電子放射物質層を被着した帽状陰極筒
の下端部を一端で溶接固定して他端が絶縁石の貫
通孔にカシメ固定された外側陰極支持筒を備えた
陰極構体に於いて、前記外側陰極支持筒の外径に
嵌合する開孔が穿設された底面に連接して該底面
より0.2〜0.3mm高い環状縁を有する皿状板を前記
絶縁石の陰極筒頂頭部に面した面と前記外側陰極
支持筒の他端との間に配して前記環状縁を前記絶
縁石から浮かせるとともに前記外側陰極支持筒の
他端カシメ部を前記皿状板の底面部に位置させて
いることを特徴とする陰極線管陰極構体。
In a cathode structure equipped with an outer cathode support tube, in which the lower end of a cap-shaped cathode tube with a thermionic emissive material layer coated on the top is fixed by welding at one end, and the other end is fixed by caulking to a through hole in an insulating stone. , At the top of the cathode cylinder of the insulating stone, a dish-shaped plate connected to a bottom face with a hole that fits into the outer diameter of the outer cathode support cylinder and having an annular edge 0.2 to 0.3 mm higher than the bottom face is attached to the top of the cathode cylinder of the insulating stone. Disposed between the facing surface and the other end of the outer cathode support tube to float the annular edge from the insulating stone, and position the other end caulked portion of the outer cathode support tube on the bottom surface of the dish-shaped plate. A cathode ray tube cathode assembly characterized by:
JP8986080U 1980-06-26 1980-06-26 Expired JPH0231720Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8986080U JPH0231720Y2 (en) 1980-06-26 1980-06-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8986080U JPH0231720Y2 (en) 1980-06-26 1980-06-26

Publications (2)

Publication Number Publication Date
JPS5714346U JPS5714346U (en) 1982-01-25
JPH0231720Y2 true JPH0231720Y2 (en) 1990-08-28

Family

ID=29451881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8986080U Expired JPH0231720Y2 (en) 1980-06-26 1980-06-26

Country Status (1)

Country Link
JP (1) JPH0231720Y2 (en)

Also Published As

Publication number Publication date
JPS5714346U (en) 1982-01-25

Similar Documents

Publication Publication Date Title
JPH0231720Y2 (en)
JPH0128621Y2 (en)
US20030117054A1 (en) Cathode structure, and production method therefor and electron gun and cathode ray tube
JPH0125405Y2 (en)
JPS6326916Y2 (en)
KR900006197B1 (en) Self-indexing insulating support rods for an electron gun assembly
US4359666A (en) Cylindrical cathode with segmented electron emissive surface and method of manufacture
US4251746A (en) Direct-heated cathode structure
JP3157856B2 (en) Electron gun for cathode ray tube
US4409513A (en) Electrode for an electron gun
US6294872B1 (en) Cathode ray tube
JPH0635357Y2 (en) Electron gun structure
US5117153A (en) Cathode structure for electron gun
JP2960501B2 (en) Electron gun for cathode ray tube
KR920005234Y1 (en) One-body type electrode of crt
JPS6016027Y2 (en) electron gun structure
JPS5814509Y2 (en) Indirectly heated cathode
JPH0145074Y2 (en)
JPS5825552Y2 (en) cathode structure
KR860003169Y1 (en) Electron gun for color crt
KR200165757Y1 (en) Electron gun for cathode ray tube
JPH0120760Y2 (en)
JPH024439Y2 (en)
JPS6229858B2 (en)
JP2860667B2 (en) Cathode for magnetron