JPH0231679A - Recombinant vector - Google Patents

Recombinant vector

Info

Publication number
JPH0231679A
JPH0231679A JP18175288A JP18175288A JPH0231679A JP H0231679 A JPH0231679 A JP H0231679A JP 18175288 A JP18175288 A JP 18175288A JP 18175288 A JP18175288 A JP 18175288A JP H0231679 A JPH0231679 A JP H0231679A
Authority
JP
Japan
Prior art keywords
fragment
vector
dna
recombinant
silkworm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18175288A
Other languages
Japanese (ja)
Inventor
Kunitada Shimotoono
邦忠 下遠野
Hiroshi Nibuya
博 丹生谷
Tsutomu Ogura
勤 小倉
Masayoshi Kikuchi
匡芳 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP18175288A priority Critical patent/JPH0231679A/en
Publication of JPH0231679A publication Critical patent/JPH0231679A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an antigenic polypeptide by forming a recombinant vector with a fragment containing the DNA coding p-21 of adult T cell leukemia virus coat protein gene origin with a specified site of this DNA nicked. CONSTITUTION:Lymphocytes are separated from the peripheral blood of an adult T cell leukemia patient, and from the DNA extracted from said lymphocyte a fragment (HTLV-15'-3' fragment) containing the DNA coding p21 and nicked at a site within 17 base pairs upstream from the 5' end of this DNA is taken out. This fragment is incorporated into the cloning site of a silkworm manifestation vector (pBF vector) to form a recombinant vector. Thence, using this vector, the HTLV-15'-3' fragment is put to recombination with part of the polyhedral protein structure gene of BmNPV, thus producing the objective recombinant virus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成人T細胞白血病(Adult Tcell
leukemia ;以下ATL、と略記する)の病因
となる成人T細胞白血病ウィルス(Iluman Tc
pHleukemiaviruS−1H以下+1TLV
−1と略記する)の抗体に対し7て抗原性を有するポリ
ペプチドを製造するための新規な組換えベクターに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to adult T cell leukemia (Adult T cell leukemia).
Adult T-cell leukemia virus (Iluman Tc) is the cause of leukemia; hereinafter abbreviated as ATL).
pHleukemiavirusS-1H or less +1TLV
The present invention relates to a novel recombinant vector for producing a polypeptide having antigenicity against an antibody (abbreviated as -1).

[従来の技術] ATLの病因は、IITLV−1の感染であることが知
られており、5aHTLV−1のワクチン、診断薬等と
して有用な、)ITLV−1の抗体に対して抗原性を有
するポリペプチドを生産するための方法の開発が望まれ
ていた。
[Prior Art] It is known that the etiology of ATL is infection with IITLV-1, and 5aHTLV-1 has antigenicity against ITLV-1 antibodies, which are useful as vaccines, diagnostic agents, etc. It has been desired to develop a method for producing polypeptides.

従来、HTLV−1に対して抗原性を有するポリペプチ
ドを生産するために、HTLV−1の外皮蛋白(env
elope protein ;以下env蛋白と略記
する)の遺伝子で組換えられた大腸菌を増殖させ、産生
ずるポリペプチドを回収する方法が試みられている。
Conventionally, in order to produce polypeptides having antigenicity against HTLV-1, HTLV-1 coat protein (env
Attempts have been made to grow Escherichia coli that has been recombined with the gene for elope protein (hereinafter abbreviated as env protein) and to recover the polypeptide produced.

しかしながら、上記方法によって得られるポリペプチド
は、HTLV−Iの抗体に対する抗原性が低いものであ
った。これは大腸菌等の細菌類内では産生ずるポリペプ
チドに対して、糖鎖付加反応等の修飾がないことによる
ものと推定される。
However, the polypeptide obtained by the above method had low antigenicity to HTLV-I antibodies. This is presumed to be due to the fact that polypeptides produced in bacteria such as E. coli are not modified by glycosylation reactions or the like.

一方、有用物質である蛋白の構造遺伝子をカイコ核多角
体病ウィルスDNAの多角体蛋白構造遺伝子部分に組み
換えた組換えウィルスを、カイコ樹丘細胞又はカイコ生
体中で増殖させるポリペプチドの製造方法が、特開昭6
2−208276号及び特開昭61−9288号におい
て知られている。
On the other hand, there is a method for producing a polypeptide in which a recombinant virus in which the structural gene of a protein, which is a useful substance, is recombined with the polyhedral protein structural gene portion of the DNA of the silkworm nuclear polyhedrosis virus is grown in silkworm denule cells or in the living body of the silkworm. , Japanese Patent Publication No. 6
2-208276 and JP-A-61-9288.

[発明が解決しようとする課題] ところが、これらの公報には、前記したHTLシー1の
抗原蛋白であるポリペプチドの製造に対して上記の方法
を適用することに関しては何の具体的な記載もない。か
かる方法によるHTLV−Iの抗原蛋白であるポリペプ
チドを製造するには、HTLV4の構造遺伝子のいかな
る部分によってカイコ核多角体病ウィルスDNAの多角
体蛋白構造遺伝子を組換えるか、また、これによりポリ
ペプチドの産生が可能であるか、更にはポリペプチドが
得られた場合、該ポリペプチドがHTLシー1の抗体に
対して抗原性を有するかどうかについては、更に数多く
の研究が必要であった。
[Problems to be Solved by the Invention] However, these publications do not contain any specific description regarding the application of the above method to the production of the polypeptide that is the antigen protein of HTL Sea 1. do not have. In order to produce a polypeptide that is an antigenic protein of HTLV-I by such a method, it is necessary to recombine the polyhedral protein structural gene of the silkworm nuclear polyhedrosis virus DNA with which part of the HTLV4 structural gene, and also to make the polyhedron protein structural gene of the silkworm nuclear polyhedrosis virus DNA. Much further research was required to determine whether the peptide could be produced and, if a polypeptide was obtained, whether the polypeptide would be antigenic to HTL Sea 1 antibodies.

そして、本発明者等は、)ITLV−1の抗体に対して
高い抗原性を有するポリペプチドの有効な製造方法を開
発すべく研究を重ねた。その結果、カイコ核多角体病ウ
ィルス(Bombyx Nuclear Po1yhe
drosisVirus;以下、BmNPVと略記する
)の遺伝子をHTLV−1のenν蛋白遺伝子に由来す
るDNAの特定の断片によって組換えた組換えウィルス
を増殖させることによって、かかる目的を達成し得るこ
とを見い出した。そして、本発明はかかる目的を達成す
るために用いられる組換えベクターを提供することにあ
る。
The present inventors have conducted extensive research in order to develop an effective method for producing a polypeptide that has high antigenicity against ITLV-1 antibodies. As a result, Bombyx Nuclear Polyhedrosis Virus (Bombyx Nuclear Polyhedrosis Virus)
We have discovered that this objective can be achieved by propagating a recombinant virus in which the gene of drosis Virus (hereinafter abbreviated as BmNPV) has been recombined with a specific fragment of DNA derived from the enν protein gene of HTLV-1. . The object of the present invention is to provide a recombinant vector that can be used to achieve this objective.

〔課題が解決するための手段] 本発明は、カイコ発現系ペククーがIITLVl en
v蛋白遺伝子に由来するDNAのうち、p21をコード
したDNAを含み且つ該D N Aの5′末端から上流
の17塩基対以内で切断された断片(以下、HTLVr
 5′−3′断片と略す)でm換えられた組換えベクタ
ーである。そして、カイコ発現系ベクターとしては、p
BFベクターが挙げられる。
[Means for Solving the Problems] The present invention provides that the silkworm expression system Pekku is
A fragment of DNA derived from the v protein gene that contains the DNA encoding p21 and is cleaved within 17 base pairs upstream from the 5' end of the DNA (hereinafter referred to as HTLVr
This is a recombinant vector that has been modified with a 5'-3' fragment. As a silkworm expression vector, p
Examples include BF vectors.

本発明の上記組換えベクターの製造方法は特に制限され
るものではない。代表的な製造方法として、ATL患者
末梢血からリンパ球を分離し、該リンパ球から抽出した
DNAより1ITLV45′−3′断片を切り出し、こ
れをカイコ発現系ベクター(pBFヘクター)のクロー
ニング部位に挿入して、Mi換えベクターを製造する方
法が挙げられる。次ぎに、この組換えベクターを用いて
HTLV−15′−3′断片をBa+NPVの多角体蛋
白構造遺伝子の一部と組換えることにより組換えウィル
スが製造される。
The method for producing the above recombinant vector of the present invention is not particularly limited. As a typical production method, lymphocytes are separated from the peripheral blood of ATL patients, the 1ITLV45'-3' fragment is excised from the DNA extracted from the lymphocytes, and this is inserted into the cloning site of a silkworm expression system vector (pBF hector). Examples include a method for producing a Mi recombinant vector. Next, using this recombinant vector, a recombinant virus is produced by recombining the HTLV-15'-3' fragment with a part of the Ba+NPV polyhedral protein structural gene.

以下、上記の方法を詳細に説明する。The above method will be explained in detail below.

1− I  RmNPV 本発明において、)ITLV−15′−3′断片によっ
て組換えられるBsNPVは、養蚕業者に広く知られて
いるものであり、前出、古沢らが単離した代表的な株と
してT3株があり、この株のウィルスI) N Aは、
米国のATCC(A@erican Type Cu1
ture Co11ection)にATCCN[L4
0188として寄託されており、容易に人手し得る。又
、BaNPVに感染したカイコより公知の方法によって
単離することもできる。
1-I RmNPV In the present invention, BsNPV that is recombined with the ITLV-15'-3' fragment is widely known to sericulture workers, and is the representative strain isolated by Furusawa et al. There is a T3 strain, and the virus I) NA of this strain is
US ATCC (A@erican Type Cu1
ture Co11ection) to ATCCN [L4
It has been deposited as No. 0188 and can be easily obtained manually. It can also be isolated from silkworms infected with BaNPV by known methods.

上記BdPVのDNAは、第1図の制限酵素地図で表わ
すことができる。
The BdPV DNA described above can be represented by the restriction enzyme map shown in FIG.

このBaNPV D N A (7)うち本発明におイ
テ、IITLVl 5′−3′断片によって組換えられ
る部分は、第1図に示される多角体蛋白遺伝子のうちプ
ロモータ一部分を除いた多角体蛋白構造遺伝子の一部分
である。
Of this BaNPV DNA (7), the part that is recombined with the IITLVl 5'-3' fragment, which is relevant to the present invention, is the polyhedral protein structure of the polyhedral protein gene shown in FIG. 1, excluding a portion of the promoter. It's part of the gene.

1 −2  11TI、V−15′−3’    の 
 ′。  法11TLV−1は遺伝子としてRNAを持
つレトロウィルスであり、感染細胞内でこの遺伝子RN
Aに由来して合成されるDNAのenv遺伝子を中心と
する塩基配列としては、5eiki らが”Proc、
 Natl。
1-2 11TI, V-15'-3'
'. Method 11TLV-1 is a retrovirus that has RNA as a gene, and this gene RNA is transmitted in infected cells.
As for the base sequence centered on the env gene of DNA synthesized from A, 5eiki et al.
Natl.

八cad、Sci、USA 80”(1983)第36
21頁で発表したものが知られている。
8cad, Sci, USA 80” (1983) No. 36
The one published on page 21 is known.

本発明において、)IT、LV−15′−3′断片の取
得方法は特に制限されない。代表的な方法にはA T 
L 患者抹消血中のリンパ球に所在するDNAから該)
ITLV−15” −3′断片を取得する方法が挙げら
れる。
In the present invention, the method for obtaining the IT, LV-15'-3' fragment is not particularly limited. Typical methods include AT
L DNA located in lymphocytes in the patient's peripheral blood)
Examples include methods for obtaining the ITLV-15''-3' fragment.

代表的な方法を例示すれば、まず、ATL患者末梢血か
らリンパ球を分離し、該リンパ球からDNAを抽出し、
次いで制限酵素EcoRIで切断し、約20キロ塩店対
断片を含むDNAを得、該DNAをシャロン(char
on) 4 A ベクターのEcoR[制限酵素切断部
位に接続した後、)HTLV4のプロウィルスを含むフ
ァージをスクリーニングで単離し、該プロウィルスから
pUCベクターに代表される大腸菌のベクター基を使用
したサブ・クローニングおよび制限酵素による切断によ
りHTLV−15” −3’断片を得る方法である。
To illustrate a typical method, first, lymphocytes are separated from the peripheral blood of an ATL patient, DNA is extracted from the lymphocytes,
Next, the DNA was cut with the restriction enzyme EcoRI to obtain a DNA containing about 20 kilograms of salt fragments.
phage containing the HTLV4 provirus (after ligation to the restriction enzyme cleavage site) of the 4A vector was isolated by screening, and the provirus was subtracted from the provirus using an E. coli vector group represented by the pUC vector. This is a method for obtaining an HTLV-15''-3' fragment by cloning and cleavage with restriction enzymes.

HTLV−15′−3′断片は、HTLシーT env
蛋白遺伝子に由来するDNAのうち、膜中および膜の内
側に位置する蛋白であるp21をコードしているDNA
(第9図参照)を含み且つ、該D N Aの5′末端か
ら上流の17塩基対以内で切断されたものであれば、す
べて適用できる。
The HTLV-15'-3' fragment
Among DNA derived from protein genes, DNA encoding p21, a protein located in and inside the membrane
(See Figure 9) and is cleaved within 17 base pairs upstream from the 5' end of the DNA.

なお、p21をコードしているDNA配列は、第9図に
示す通り、前記5eiki らが発表しているIITL
V−1env蛋白遺伝子配列の6116番目から664
3番目の配列がこれに相当し、また、5′末端から上流
の17塩基対は6099番目のものがこれに相当する。
As shown in Figure 9, the DNA sequence encoding p21 is the IITL sequence published by 5eiki et al.
V-1env protein gene sequence 6116th to 664th
The third sequence corresponds to this, and the 17 base pairs upstream from the 5' end correspond to the 6099th sequence.

本発明者等の知見によれば、上記)ITLV−15′−
3′断片がp21をコードしているDNAを含んでいて
も、4g D N Aの5′末端から上流に17塩基対
より多くの塩基対を含んでいる場合には、後記する方法
により、該断片を用いて得られたBsNPVの組換えウ
ィルスを増殖させてポリペプチドを産生じようとしても
、ポリペプチドが得られなかったり、たとえ得られたと
してもHTLV−1の抗体に対して抗原性を有さす、本
発明の目的を達成できないのである。
According to the findings of the present inventors, the above ITLV-15'-
Even if the 3' fragment contains DNA encoding p21, if it contains more than 17 base pairs upstream from the 5' end of the 4g DNA, it can be isolated by the method described below. Even if an attempt is made to produce a polypeptide by propagating a recombinant BsNPV virus obtained using a fragment, the polypeptide may not be obtained, or even if it is obtained, it may not be antigenic to HTLV-1 antibodies. However, the purpose of the present invention cannot be achieved.

好適なる部位を示せば、前記p21をコードしたDNA
の5′末端から上流に17塩基対隔てた位置よりGAT
Cと配列されているBaa+HI制限酵素切断部位が挙
げられる。
If a suitable site is indicated, the DNA encoding the p21
GAT from a position 17 base pairs upstream from the 5' end of
The Baa+HI restriction enzyme cleavage site is sequenced as C.

本発明ニオイテ、前記HTLV45′−3’断片は、p
lベクターに組換えられた後、膝組換えベクターにより
BmNPVの多角体蛋白構造遺伝子の一部と組換えて組
換えウィルスとされる。組換えウィルス取得のために使
用するpBFベクターは、第2図の制限酵素地図により
特徴づけられるものである。即ちpBFベクターは、B
mNPV D N Aの多角体蛋白遺伝子のプロモータ
ー領域と多角体蛋白構造遺伝子前後付近及び大腸菌のベ
クターであるpUCヘクターの遺伝子とを含むベクター
である。
In the present invention, the HTLV45'-3' fragment is p
After being recombined into the BmNPV vector, the virus is recombined with a part of the polyhedral protein structural gene of BmNPV using the knee recombination vector to produce a recombinant virus. The pBF vector used to obtain the recombinant virus is characterized by the restriction enzyme map shown in FIG. That is, the pBF vector is B
This is a vector containing the promoter region of the polyhedral protein gene of mNPV DNA, the vicinity before and after the polyhedral protein structural gene, and the gene of pUC hector, which is an E. coli vector.

上記pap ベクターは、Xbal、 EcoRI、 
5tul制限酵素切断部位のクローニング部位がある。
The above pap vectors include Xbal, EcoRI,
There is a cloning site for the 5tul restriction enzyme cleavage site.

かかるpBFベクターは、そのクローニング部位の上流
に塩基配列ATGから始まる多角体蛋白構造遺伝子をど
の部位まで含んでいるかで種類があり、第3図に示すよ
うなpBF 4〜pBF133が存在している。
There are various types of such pBF vectors depending on the extent to which they contain the polyhedral protein structural gene starting from the base sequence ATG upstream of the cloning site, and pBF4 to pBF133 as shown in FIG. 3 exist.

組換えベクターの製造においては、上記ベクターノウチ
、挿入するI!TLV−r 5′−3′断片部分とpB
Fヘクター上流部分とのリーディング・フレームが合う
ものであれば、どのベクターを使用してもよい。しかし
、5′−3′断片をカイコ樹立培養細胞およびカイコ幼
虫で効率よく発現できる組換えウィルスを作成するため
には、塩基配列ATGから開始されるBiNPV D 
N A由来の多角体蛋白構造遺伝子の一部をコードした
遺伝子部分を多く含んでいるpBFヘクター、例えばρ
BF124. pRF129. pBF133等のpB
Fベクターを使用するのが望ましい。
In the production of a recombinant vector, the above-mentioned vector information, inserted I! TLV-r 5'-3' fragment and pB
Any vector may be used as long as it shares a reading frame with the upstream portion of the F hector. However, in order to create a recombinant virus that can efficiently express the 5'-3' fragment in established cultured silkworm cells and silkworm larvae, it is necessary to use BiNPV D starting from the base sequence ATG.
pBF hector containing many gene parts encoding part of the polyhedral protein structural gene derived from NA, such as ρ
BF124. pRF129. pB such as pBF133
Preferably, the F vector is used.

上記pBF ベクターへのIITLV−15′−3′断
片の挿入は、pBFヘクターのクローニング部位に存在
するEco[if、 Xbal、 5tul制限酵素切
断部位を利用して行なえばよい。pBFベクタークロー
ニング部位に11TLV−15′−3′断片を挿入する
には、DNA合成又は大腸菌のベクター系であるpUc
ヘクターへの挿入、切断等の公知の手段により、該断片
の両端にEcoRI、 Xbal或いは5tuI制限酵
素切断部位を接続するか、該断片の5′端にEcoRI
、3′端に5jul制限酵素切断部位を接続するか、更
には該断片の5′端にXbal、3′端にStu!制限
酵素切断部位を接続するかのいずれかの操作が一般に行
われる。以上のうちでも、HTLV−15′−3′断片
の両端にEcoRI OI2いはXbal制限酵素切断
部位を接続する方法が好ましい。
The IITLV-15'-3' fragment may be inserted into the pBF vector using the Eco[if, Xbal, and 5tul restriction enzyme cleavage sites present in the cloning site of the pBF hector. To insert the 11TLV-15'-3' fragment into the pBF vector cloning site, use DNA synthesis or the E. coli vector system pUc.
Either EcoRI, Xbal or 5tuI restriction enzyme cleavage sites are connected to both ends of the fragment by known means such as insertion into Hector, cleavage, etc., or EcoRI is added to the 5' end of the fragment.
, a 5jul restriction enzyme cleavage site is connected to the 3' end of the fragment, or Xbal is added to the 5' end of the fragment, and Stu! is added to the 3' end of the fragment. Any operation that connects restriction enzyme cleavage sites is generally performed. Among the above methods, the method of connecting EcoRI OI2 or Xbal restriction enzyme cleavage sites to both ends of the HTLV-15'-3' fragment is preferred.

そして5′−3′断片の両端にEcoRI制限酵素切断
部位を接続する場合、該断片はpBFベクターをEco
RI制限酵素で切断したものと接続する。又、+1TL
V−15′−3′断片の両端にXbal制限酵素切断部
位を接続した場合も同様に、該断片はpBFベクターを
Xba Tで切断したものと接続する。この場合接続に
際しては、予め制限酵素で切断したpBFヘクターに対
し、アルカリフォスファターゼ処理を行ない、pBFヘ
クターのセルフライゲーション(self1igati
on)を避けることが好ましい。
When EcoRI restriction enzyme cleavage sites are connected to both ends of the 5'-3' fragment, the fragment converts the pBF vector into an Eco
Connect with the one cut with RI restriction enzyme. Also, +1TL
Similarly, when Xbal restriction enzyme cleavage sites are connected to both ends of the V-15'-3' fragment, the fragment is connected to the pBF vector cut with XbaT. In this case, when making the connection, the pBF hector that has been previously cut with a restriction enzyme is treated with alkaline phosphatase to allow self-ligation of the pBF hector.
on) is preferably avoided.

又、HTLシー15′−3’断片の5′端にEcoRI
、 3′端に5jul制限酵素切断部位を接続する場合
、該断片は、pBFベクターをEcoRI、 5tul
で切断したものと接続し、1(TLV−15” −3′
断片の5′端にXbal、3′端に5jul制限酵素切
断部位を接続する場合、該断片は、ρBFヘクターをX
bal、 Stu[で切断したものと接続すればよい。
In addition, EcoRI was added to the 5' end of the HTL sea 15'-3' fragment.
, if a 5jul restriction enzyme cleavage site is connected to the 3' end, the fragment
1 (TLV-15"-3')
When connecting the Xbal restriction enzyme cleavage site at the 5' end and the 5jul restriction enzyme cleavage site at the 3' end, the fragment
Just connect it to the one you disconnected with bal and Stu[.

かかる接続方法は、リガーゼを用いて公知の方法により
行うことができる。例えば制限酵素で切断されたpBF
ヘクターのDNAの量に対して、挿入すべき5′−3′
断片のDNA1が3〜8倍量になるように調整し、例え
ばT4 DNAリガーゼを用いて接続する方法である。
Such a connection method can be performed by a known method using ligase. For example, pBF cut with a restriction enzyme
5'-3' to be inserted relative to the amount of DNA in Hector.
In this method, the amount of DNA of the fragments is adjusted to 3 to 8 times, and the fragments are ligated using, for example, T4 DNA ligase.

上記のHTLシー+ 5′−3′断片を挿入したpBF
ヘクターの分離及び確認は、下記の方法により行うこと
ができる。
pBF into which the above HTL Sea + 5'-3' fragment was inserted
Isolation and confirmation of Hector can be performed by the following method.

即ち、分離は前記の接続反応液をJM109株(全酒造
■製 No、9052) 、MV11B4株(全酒造■
製)で代表される大腸菌のコンピテントセルに加え、公
知の方法で大腸菌の形質転換を行ない、pBFヘクター
がアンピシリン耐性遺伝子を含んでいることから、形質
転換後の液をアンピシリンを含んだLB寒天培地に接種
し、室温以上の適当な温度、例えば37°Cで12時間
〜20時間培養して出現するシングル・コロニーを形質
転換株として取得することによって行うことができる。
That is, for separation, the above-mentioned connecting reaction solution was used for strain JM109 (No. 9052, manufactured by Zenshuzo ■) and strain MV11B4 (No. 9052, manufactured by Zenshuzo ■).
In addition to E. coli competent cells, such as those typified by E. coli (manufactured by J.D. Co., Ltd.), E. coli was transformed using a known method, and since pBF hector contains an ampicillin resistance gene, the transformed solution was transformed into LB agar containing ampicillin. This can be done by inoculating a medium and culturing at a suitable temperature above room temperature, for example 37°C, for 12 to 20 hours to obtain a single colony that appears as a transformed strain.

また、HTLV−15” −3”断片を挿入したpBF
ヘクターの確認は、形質転換株に存在する組換えベクタ
ーボイリング法(boiling法)或いはアルカリ・
リシス法(alkali 1ysis法)を用いてミニ
・プレバレージョン軸ini preparation
) L、組換えベクター懸濁液を取得し、このようにし
て調製した組換えベクター懸濁液をIITLV−15′
−3′断片が挿入されていることが確認できる任意の制
限酵素、例えばEcoR1+ Xbalで切断し、切断
物をアガロースゲル電気泳動し、エチジウム・ブロマイ
ドによる染色後、予想できる位置にバンドが存在するか
否かを確認することによって行うことができる。尚、5
′−3′断片の両端をEcoRl或いはXbal制限酵
素切断部位にしたものをpBF ベクターのEcoRl
、 Xbal制限酵素切断部位に挿入した組換えベクタ
ーの場合は、pBFベクターの上流部分と挿入する5′
−3′断片が正しい方向に結合しているかどうか確認で
きる制限酵素、例えば、Bamtll、 Xhol等で
切断し、その切断物を同様にアガロースゲル電気泳動し
、エチジウム・ブロマイドによる染色後、予想できる位
置にハンドが存在するか否かも同時に確認するとよい。
In addition, pBF into which the HTLV-15”-3” fragment was inserted
Hector can be confirmed using the boiling method or alkaline vector recombinant vector present in the transformed strain.
Mini-prevention axis ini preparation using alkali lysis method
) L, a recombinant vector suspension was obtained, and the recombinant vector suspension thus prepared was transformed into IITLV-15′.
-Cut with any restriction enzyme that can confirm that the -3' fragment has been inserted, such as EcoR1+ This can be done by checking whether the In addition, 5
The '-3' fragment with EcoRl or Xbal restriction enzyme cleavage sites at both ends is the EcoRl of the pBF vector.
, in the case of a recombinant vector inserted into the Xbal restriction enzyme cleavage site, the upstream part of the pBF vector and the inserted 5'
-3' fragments are cleaved with restriction enzymes such as Bamtll, Xhol, etc. that can confirm whether they are bound in the correct direction, and the cleaved products are subjected to agarose gel electrophoresis in the same manner, and after staining with ethidium bromide, the expected positions are determined. It is a good idea to check at the same time whether or not there is a hand.

上記方法で形質転換株として分離した組換えベクターは
、該形質転換株を増殖させることにより、その量を増加
させて使用することが好ましい。例えば膝組換えベクタ
ーを所有する形質転換株をアンピシリンを含んだL B
液体培地に接種し、室温以上の適当な温度、例えば37
“Cて12時間〜20時間振盪培養し、該培養物からア
ルカリ・リシス法(alkali Iysis法)を用
いてミデイアム・プレバレージョン(o+ediurm
 preparation)  シ、組換えベクター懸
濁液を取得することによって行うことができる。
It is preferable to increase the amount of the recombinant vector isolated as a transformed strain by the above method by propagating the transformed strain before use. For example, a transformed strain possessing a knee recombinant vector is transformed into an LB containing ampicillin.
Inoculate into a liquid medium and keep at a suitable temperature above room temperature, e.g.
The culture was cultured with shaking for 12 to 20 hours at 40°C, and the culture was cultured using the alkali lysis method to obtain medium-prevalence (o+edium lysis).
preparation) This can be done by obtaining a recombinant vector suspension.

取得した組換えベクターも前記した方法と同様な方法で
再度目的の組換えベクターであるか否かを確認すること
が好ましい。
It is preferable to confirm whether the obtained recombinant vector is the desired recombinant vector again using a method similar to the method described above.

得られた組換えベクター懸濁液は、アールエヌエース処
理(RNase処理)して組換えウィルス取得用のMi
換えベクター懸濁液として使用することが好ましい。
The obtained recombinant vector suspension was treated with RNase to obtain Mi for recombinant virus.
It is preferable to use the vector as a suspension.

1−3−    えウィルスの 本発明において、HTLV−T 5’ −3′断片によ
って、多角体蛋白構造遺伝子の一部が組換えられた組換
えBgeNPVは、BmNPV D N Aと前記組換
えベクターとをカイコ樹立細胞にカルシウム沈澱法を用
いて、同時にトランスフェクション(コ・トランスフェ
クション)し、組換えベクターとBa+NPV D N
 A間の対立遺伝子を置き換えることにより取得するこ
とができる。
1-3- In the present invention, the recombinant BgeNPV in which a part of the polyhedral protein structural gene has been recombined with the HTLV-T 5'-3' fragment is a combination of BmNPV DNA and the recombinant vector. were simultaneously transfected (co-transfected) into silkworm established cells using the calcium precipitation method, and the recombinant vector and Ba + NPV D N
It can be obtained by replacing alleles between A.

上記のコ・トランスフェクションは、具体的には、0.
25M塩化カルシウムおよびキャリヤDNAの存在下で
BmNPV D N Aと組換えベクター[)NAをモ
ル比1:100になる様に混ぜ、その後、該混合液に、
0.28M塩化ナトリウムを含むHEPES 緩衝液(
pH7,1)とリン酸緩衝液の混合液を添加し、混和後
、該混和液をBa+培養細胞中に添加するという前用、
古沢らの方法(特公昭61−9297号)に従って行な
うことが望ましい。
Specifically, the above-mentioned co-transfection is carried out using 0.
BmNPV DNA and recombinant vector [)NA were mixed at a molar ratio of 1:100 in the presence of 25M calcium chloride and carrier DNA, and then, into the mixture,
HEPES buffer containing 0.28M sodium chloride (
A preliminary step of adding a mixture of pH 7.1) and phosphate buffer, mixing, and then adding the mixture into Ba+ cultured cells;
It is preferable to carry out the method according to Furusawa et al. (Japanese Patent Publication No. 61-9297).

コ・トランスフェクションした後、組換えウィルスを含
む反応液は室温付近の温度、例えば27°Cで5〜6日
間培養し、培養後、培地を回収、遠心後、上清を組換え
ウィルスのクローニングに使用する。コ・トランスフェ
クションで得られた反応液の上清からの組換えウィルス
のクローニングは、プラークアッセイ法(J、5eri
c Sci、Jpn、53547(1984) )やリ
ミッティング・ダイリューション法により組換えウィル
スを単離することによって行えばよい。どちらの方法を
使用しても良いが、操作法の容易さ、分離回数の少な(
て済む点から、リミッティング・グイリュージョン法を
使用する方が良好である。
After co-transfection, the reaction solution containing the recombinant virus is cultured at a temperature around room temperature, e.g. 27°C, for 5 to 6 days. After culture, the medium is collected, and after centrifugation, the supernatant is used for cloning of the recombinant virus. used for. Cloning of the recombinant virus from the supernatant of the reaction mixture obtained by co-transfection was performed using the plaque assay method (J, 5eri
This may be accomplished by isolating a recombinant virus using the limiting dilution method (C Sci, Jpn, 53547 (1984)) or the limiting dilution method. Either method may be used, but the method is easier to operate, requires fewer separations (
It is better to use the limiting illusion method because it saves a lot of time.

上記リミッティング・ダイリューション法を使用しての
組換えウィルスのクローニングは、コ・トランスフェク
ションで得られたウィルス液を希釈し、該ウィルス希釈
液とlXlOs〜1×10hカイコ細胞数/@lカイコ
培養培地、好ましくはTC1O培地(第2表参照)の濃
度で調整しであるカイコ樹立細胞液とをl:lで混合す
ることにより感染させ、この混合液をマイクロタイター
トレー中のウェルへ注入し、室温付近の温度、例えば2
7°Cで培養し、培養2〜7日後、マイクロタイタート
レー中のウェルを検鏡し、ウェル中で見られるカイコ細
胞の形状、形態で組換えウィルス存在のを無を判定する
。検鏡することで見い出されるカイコ細胞の形態には、
第6図に示すように3種類確認できる。
Cloning of a recombinant virus using the above-mentioned limiting dilution method involves diluting the virus solution obtained by co-transfection, and combining the virus dilution solution with lXlOs ~ 1 x 10h silkworm cell number/@l Infection is achieved by mixing 1:1 of silkworm culture medium, preferably TC1O medium (see Table 2) with a silkworm established cell suspension whose concentration is adjusted, and this mixture is injected into wells in microtiter trays. and at a temperature near room temperature, e.g.
After 2 to 7 days of culture, the wells in the microtiter tray are examined under a microscope, and the presence or absence of the recombinant virus is determined based on the shape and morphology of the silkworm cells observed in the wells. The morphology of silkworm cells found through microscopy includes:
As shown in Figure 6, three types can be confirmed.

第6図におけるウィルスが感染した形態を示しているカ
イコ細胞で且つ該細胞内に多角体蛋白が検出されない細
胞のみが存在しているウェル中の培地を回収、遠心し、
その上清を回収することにより組換えウィルス液が得ら
れる。ウェル中に野生株であるBmNPVと組換えウィ
ルスとが混在している場合は、該ウェル中の培地を回収
し、リミッティング・ダイリューションを繰り返し行な
い、組換えウィルスを分離することが好ましい。
Collecting and centrifuging the medium in the well containing only the silkworm cells shown in FIG. 6 that are infected with the virus and in which no polyhedral protein is detected;
A recombinant virus solution is obtained by collecting the supernatant. When wild strain BmNPV and recombinant virus coexist in a well, it is preferable to collect the medium in the well and repeatedly perform limiting dilution to separate the recombinant virus.

■、ポリペプチドの製法 11−1  カイコ 本発明において組換えウィルスを感染させるカイコ樹立
培養細胞としては、Ba+NPVが増殖できるカイコ樹
立培養細胞であれば、どの細胞でも良い。
(2) Method for producing polypeptide 11-1 Silkworm In the present invention, any established cultured silkworm cell to be infected with the recombinant virus may be used as long as it is capable of proliferating Ba+NPV.

BmNPVが増殖可能なカイコ樹立培養細胞には、Vo
lkman、L、E、 、 and Golds@i 
th+ P、A、 (1982) :^ppl。
The established cultured silkworm cells capable of propagating BmNPV include Vo
lkman, L.E., and Golds@i
th+ P, A, (1982): ^ppl.

Environ、旧crobio1.,44.227−
233に示されているBIN、(^TCC隘CRL−8
910)および前出らがB1・Nよりクローニングした
Bm−N2. Be−N4のようなセルラインが知られ
ている。kNPVの増殖の良さ、扱いやすさの点で、B
m・N4カイコ樹立培養細胞を使用するのが適当である
。又、感染に用いるカイコ樹立培養細胞は、公知の培養
条件、例えば、lθ%小牛脂児血清を含むTC−10培
地で27°C,4日間の条件で、培養したものを使用す
るのが適当である。
Environ, former crobio1. ,44.227-
BIN shown in 233, (^TCC 隘CRL-8
910) and Bm-N2., which was cloned from B1.N by the aforementioned et al. Cell lines such as Be-N4 are known. In terms of good propagation of kNPV and ease of handling, B.
It is appropriate to use established cultured m/N4 silkworm cells. In addition, it is appropriate to use established cultured silkworm cells used for infection that have been cultured under known culture conditions, for example, in TC-10 medium containing lθ% calf fat serum at 27°C for 4 days. It is.

H−2えウィルス 上7   びカイコに   せる 
゛  び 本発明において、目的とするポリペプチドは、前記組換
えウィルスをカイコ樹立培養細胞又はカイコ幼虫に感染
させ、増殖させることによって発現される。膝組換えウ
ィルスのカイコ樹立培養細胞への感染方法は、公知の方
法が特に制限なく使用される。例えば、準備したカイコ
樹立培養細胞の培養液を容器に入れ、該細胞を容器の底
面に沈着させた後、該容器の底面に付着しているカイコ
樹立培養細胞がはがれないように古い培養液を抜き取り
、安定剤としての牛胎児血清をカイコ培養培地を添加し
、該培養物に組換えウィルスを滴下する方法を用いるの
が一般的である。組換えウィルスの増殖は、組換えウィ
ルスを感染させた後、室温付近の温度、例えば、27°
Cで数日間培養することによって行うことができる。
H-2 virus No. 7 injected into silkworms
In the present invention, the polypeptide of interest is expressed by infecting established cultured silkworm cells or silkworm larvae with the recombinant virus and allowing them to multiply. As a method for infecting established cultured cells of silkworms with the knee recombinant virus, known methods can be used without particular limitations. For example, after putting the prepared culture solution of silkworm cultured cells into a container and allowing the cells to settle on the bottom of the container, remove the old culture solution so that the cultured silkworm cells attached to the bottom of the container do not come off. It is common to extract the virus, add fetal bovine serum as a stabilizer to a silkworm culture medium, and drop the recombinant virus into the culture. The recombinant virus is propagated at a temperature around room temperature, for example, 27°C, after infection with the recombinant virus.
This can be done by culturing in C for several days.

培養後、感染したカイコ樹立細胞培養物は、遠心分離し
た後、沈澱した細胞は、後記するHTLV−1env蛋
白の発現確認およびtlTLV−1enν蛋白の精製に
使用し、また、上清はカイコ幼虫に感染させる組換えウ
ィルス液として使用してもよい。
After culturing, the infected silkworm established cell culture was centrifuged, and the precipitated cells were used for confirming the expression of HTLV-1env protein and purifying tlTLV-1env protein, which will be described later. It may also be used as a recombinant virus solution for infection.

また、組換えウィルスをカイコ幼虫に感染させる方法も
特に制限されない。一般に、感染させるカイコ幼虫は、
カイコ5令幼虫を使用するのが好ましい。カイコ幼虫へ
の感染は、前記のカイコ樹立細胞への感染で上清として
得られるウィルス力価を高めた組換えウィルス液又は該
操作を行なわないm換えウィルス液を経皮的に10〜1
00 μl程注入することで行なうことができる。組換
えウィルスを感染させた後、感染カイコを飼育すること
で、組換えウィルスを増殖させ、多角体蛋白とHTLV
−1env蛋白の融合蛋白がカイコ幼虫の脂肪体内に蓄
積される。
Furthermore, the method of infecting silkworm larvae with the recombinant virus is not particularly limited. Generally, the silkworm larvae that infect
It is preferable to use fifth instar silkworm larvae. For infection of silkworm larvae, a recombinant virus solution with increased virus titer obtained as a supernatant by infecting established silkworm cells or a recombinant virus solution without the above procedure is administered percutaneously at 10 to 1 ml.
This can be done by injecting about 00 μl. After infecting the recombinant virus, the infected silkworms are bred to multiply the recombinant virus, and the polyhedral protein and HTLV
A fusion protein of -1env protein is accumulated in the fat body of silkworm larvae.

カイコの飼育方法は、特に制限されないが、桑の葉或い
は桑の葉をホモジエネートし、滅菌後凍結乾燥したペー
スト様試料(協同試料■社製等)に蒸留水を浸したちの
いずれかを与え、室温付近の温度、例えば、27゛Cで
培養する一般的な方法を採用すればよい。
The method of rearing silkworms is not particularly limited, but either mulberry leaves or mulberry leaves are homogenated, sterilized and freeze-dried, and a paste-like sample (manufactured by Kyodo Sample Co., Ltd., etc.) is soaked in distilled water. A general method of culturing at a temperature around room temperature, for example, 27°C may be adopted.

飼育期間は、カイコ幼虫が死亡する直前まで行なうこと
が好ましい。感染させる組換えウィルス液のウィルスの
力価で飼育期間は多少異なるが、感染して3日〜5日後
を飼育期間の目安とすることができる。
The breeding period is preferably continued until just before the silkworm larvae die. Although the breeding period varies somewhat depending on the virus titer of the recombinant virus solution to be infected, the breeding period can be set to 3 to 5 days after infection.

上記のカイコ幼虫から、脂肪体を取り出し、該脂肪体を
HTLV−1enν蛋白発現の確認およびIITLV−
1enν蛋白の精製に用いる。
The fat body was removed from the silkworm larva, and the fat body was used to confirm the expression of HTLV-1enν protein and to confirm the expression of IITLV-
Used for purification of 1enν protein.

上記脂肪体の取得方法は、組換えウィルスを感染したカ
イコ幼虫を中編を切らないように注意深く表皮を切るこ
とで解剖し、中編等の器官を除去後、スパチュラ等で下
腹部に蓄積している脂肪体をかき取ることにより取得す
る方法が推奨される。
The method for obtaining the fat body described above is to dissect the silkworm larva infected with the recombinant virus by carefully cutting the epidermis without cutting the midcolumn, remove the midcolumn and other organs, and then collect the fat body in the lower abdomen with a spatula. The recommended method is to scrape off the remaining fat pads.

本発明において、前記方法で得られた組換えウィルス感
染カイコ樹立細胞および組換えウィルス感染カイコ幼虫
の脂肪体からポリペプチドを分離する方法は特に制限さ
れないが、例えば、PBS緩衝液等の中性緩衝液に該カ
イコ樹立細胞又は脂肪体を懸濁し、ソニケーションによ
る分散後、尿素水溶液を添加して再度ソニケーションし
た後、遠心分離し、沈澱物を回収する方法が好適である
In the present invention, the method for separating polypeptides from the recombinant virus-infected silkworm established cells obtained by the above method and the fat body of the recombinant virus-infected silkworm larvae is not particularly limited; A preferred method is to suspend the silkworm established cells or fat bodies in a solution, disperse by sonication, add an aqueous urea solution, sonicate again, and then centrifuge to collect the precipitate.

上記方法で得られたポリペプチドは、SDS水溶液で溶
解し、イオン交換樹脂による精製およびゲル濾過による
精製等の従来の方法により精製を行なうことが望ましい
The polypeptide obtained by the above method is preferably dissolved in an aqueous SDS solution and purified by conventional methods such as purification using an ion exchange resin and purification by gel filtration.

また、上記のポリペプチドはpBF133などの有す多
角体遺伝子部分がコードする多角体蛋白の一部とIIT
LV−15′−3′断片がコードする、tlTLV−1
env蛋白のうち膜中および膜の内側に位置する蛋白で
あるρ21含有部分との融合蛋白であり、そのまま或い
は目的によって、化学的あるいは酵素的方法を組合わせ
て、多角体蛋白を除くことにより更に精製して使用して
もよい。
In addition, the above polypeptide is a part of the polyhedral protein encoded by the polyhedral gene portion of pBF133 etc.
tlTLV-1 encoded by the LV-15'-3' fragment
It is a fusion protein with the ρ21-containing part of the env protein, which is a protein located in and inside the membrane, and it can be further purified by removing the polyhedral protein as it is or by combining chemical or enzymatic methods depending on the purpose. It may be used after purification.

多角体蛋白を除く方法を具体的に示せば、多角体蛋白と
p21をつなぐペプチド部分のアミノ酸配列を認識する
蛋白質分解酵素を使用して、その部分を切断後、ゲル濾
過等の分子量の違いを利用した精製手段で精製するのが
良好である。
Specifically, the method for removing polyhedral proteins is to use a proteolytic enzyme that recognizes the amino acid sequence of the peptide part that connects polyhedral proteins and p21, cut that part, and then use gel filtration to detect the difference in molecular weight. It is best to purify using the purification means used.

〔発明の効果〕〔Effect of the invention〕

本発明の組換えベクターは、H几シー■の抗体に対して
良好な抗原性を示すポリペプチドを効率よく産生ずる組
換えウィルスを調製するために有用であり、産業上の価
埴は極めて大きいものである。
The recombinant vector of the present invention is useful for preparing a recombinant virus that efficiently produces a polypeptide that exhibits good antigenicity against antibodies of H. It is something.

また、組換えウィルスをカイコ樹立培養細胞に感染させ
て得られるポリペプチドは、ATLに対するワクチンの
作成およびATL診断薬の抗原として有用である。例え
ば、ATL診断薬への応用例として、ラテックス粒子に
抗原を付着させ、該粒子にマイクロタイタープレート中
で検定血清を反応せしめ、該粒子の凝集および非凝集に
より、HTLV−1抗体陽性および陰性を判定する態様
等が挙げられる。
Furthermore, polypeptides obtained by infecting established cultured cells of silkworms with recombinant viruses are useful for creating vaccines against ATL and as antigens for ATL diagnostic agents. For example, as an example of application to an ATL diagnostic agent, an antigen is attached to latex particles, the particles are reacted with a test serum in a microtiter plate, and HTLV-1 antibody positivity and negativity are determined by agglutination and non-aggregation of the particles. Examples include the manner in which the determination is made.

[実施例] 実施例1 (IITLV−I env蛋白遺伝子由来のDNAの取
得)A T L 傷者末梢血10−から公知の方法に従
いリンパ球を分離し、該リンパ球をプロテインナーセK
(シグマ社製PO390)で処理した後、フェノール・
クロロホルム抽出エタノール沈澱を行いATL患者由来
のリンパ球のDNA1■を得た。
[Example] Example 1 (Obtaining DNA derived from IITLV-I env protein gene) Lymphocytes were separated from ATL injured peripheral blood 10- according to a known method, and the lymphocytes were treated with proteinase K.
(PO390 manufactured by Sigma), then phenol.
Chloroform extraction and ethanol precipitation were carried out to obtain 1.5 ml of lymphocyte DNA from an ATL patient.

該DNAl0μgを第4表ぬlに示す組成の溶液中でE
coRr制限酵素(全酒造■製 N111040)によ
り切断し、エタノール沈澱後、TE緩衝液200μ!に
溶解した。
0 μg of the DNA was added to E in a solution having the composition shown in Table 4.
Cut with coRr restriction enzyme (N111040 manufactured by Zenshuzo ■), precipitate with ethanol, and add 200μ of TE buffer! dissolved in.

そして該溶液を、ショ糖密度勾配遠心(ショ糖10〜4
0%−t/vol、 26000 rpm、 18時間
)にかけ、アガロースゲル電気泳動による確認で20キ
ロ塩基対に相当するDNA断片を得た。次にこのDNA
断片1.0μgをシャロン4Aベクター(ベクターDN
A、未神佳之講談社1986参照)のIEcoRI制限
酵素切断部位への接続を行い、シャロン4Aベクターに
存在するEcoRI切断部位に該DNA断片を挿入した
。この接続は、T4DNAリガーゼ(全酒造■製 No
、2011)を用い、接続反応は、第5表に示すような
組成の溶液中で、15°C112時間行なった。次いで
、得られたDNAについてイン・ビトo・パンケージン
グを行なった後、処理液を遠心分離(7000rpm、
 2時間)し、上清をプラークハイブリダイゼーション
用の組換えファージ液とした。膝組換えファージ液を指
示菌LE392  (全酒造■製)に感染し、プラーク
を形成した後、32PでラヘルしたHTLV−1pol
 D N A含有断片をプローブにプラークハイブリダ
イゼーションを行ない、+1T1.V−1遺伝子由来の
DNAを含むファージを単離した。得られた組換えファ
ージを、第4表N0.1に示す組成の溶液中で、Hin
dlII(全酒造■製)、EcoRI (全酒造■製 
m1040)制限酵素により切断し、+1TLV−1遺
伝子由来のDNAのうちenv−px−LTR領域に相
当し、且つρ21をコードするDNAを含む約3.9キ
ロ塩基対のDNA断片を400μg得た。そして、大腸
菌用ベクターpUc19 (全酒造■製 階3219)
を同様な条件下で旧nd [[I + EcoR1制限
酵素により切断し、切断部位への上記DNA断片の接続
反応を行なった。得られた接続反応液は、後述する、H
TLシー15′−3′断片を含むBa5ll l−Ba
m+旧断片DNAと、pUc19の接続反応液と同様に
、大腸菌JM109  (全酒造■製 No、9052
)の形質転換、ミニ・プレバレージョン、そしてミデイ
アム・プレバレージョンへと続く一連の操作に使用した
。以上の操作の結果、HTLV−1env−px−LT
R領域遺伝子に由来するDNA断片がplJc19に正
しい方向で挿入している徂換えベクター P)IT 3
.9Kb/pUC19を400μg得た。
Then, the solution was subjected to sucrose density gradient centrifugation (sucrose 10-4
0%-t/vol, 26,000 rpm, 18 hours), and a DNA fragment corresponding to 20 kilobase pairs was obtained as confirmed by agarose gel electrophoresis. Next, this DNA
1.0 μg of the fragment was transferred to Sharon 4A vector (vector DN
A, Yoshiyuki Mikami, Kodansha 1986) was connected to the IEcoRI restriction enzyme cleavage site, and the DNA fragment was inserted into the EcoRI cleavage site present in the Sharon 4A vector. For this connection, use T4 DNA ligase (Zen Shuzo No.
, 2011), and the connection reaction was carried out at 15°C for 112 hours in a solution having the composition shown in Table 5. Next, the obtained DNA was subjected to in vitro pancasing, and the treated solution was centrifuged (7000 rpm,
2 hours), and the supernatant was used as a recombinant phage solution for plaque hybridization. After infecting indicator bacteria LE392 (manufactured by Zenshuzo ■) with the knee recombinant phage solution and forming plaques, HTLV-1pol was infected with 32P.
Plaque hybridization was performed using the DNA-containing fragment as a probe, and +1T1. A phage containing DNA from the V-1 gene was isolated. The obtained recombinant phage was incubated with Hin in a solution having the composition shown in Table 4, No.
dlII (manufactured by Zenshuzo ■), EcoRI (manufactured by Zenshuzo ■)
m1040) was cleaved with a restriction enzyme to obtain 400 μg of a DNA fragment of approximately 3.9 kilobase pairs, which corresponds to the env-px-LTR region of the DNA derived from the +1TLV-1 gene and contains DNA encoding ρ21. And vector pUc19 for Escherichia coli (Full 3219, manufactured by Zenshuzo ■)
was cleaved with old nd [[I + EcoR1 restriction enzyme under similar conditions, and the above DNA fragment was ligated to the cleavage site. The obtained connecting reaction solution was prepared by H
Ba5ll l-Ba containing the TL sea 15'-3' fragment
Similarly to the ligation reaction solution of m+ old fragment DNA and pUc19, Escherichia coli JM109 (manufactured by Zenshuzo ■, No. 9052) was used.
) was used for a series of operations, including transformation, mini-prevention, and medium-preparation. As a result of the above operations, HTLV-1env-px-LT
A transgenic vector in which a DNA fragment derived from the R region gene is inserted into plJc19 in the correct direction P) IT 3
.. 400 μg of 9Kb/pUC19 was obtained.

上記組換えへ’) ターI’llT 3.9に+3/p
Uc19200 u gを、第4表階、3に示す組成の
溶液中で、Pstr (宝酒造(li製 No、107
3)、Hind[I (全酒造■製 No、1060)
を使用して、切断し、Hindllr−Pst r断片
(約1700塩基対)を得る。
To the above recombination') TarI'llT 3.9 to +3/p
Uc19200 u g was added to Pstr (manufactured by Takara Shuzo Co., Ltd., No. 107, in a solution having the composition shown in Table 4, 3).
3), Hind [I (manufactured by Zenshuzo ■, No. 1060)
to obtain the Hindllr-Pstr fragment (approximately 1700 base pairs).

一方、大腸菌ベクターpuc19を第4表No、 1に
示す組成の溶液中で5ail (全酒造■製 Nci 
1080 )を使用して切断し、マングビーン・ヌクレ
アーゼ(全酒造■製 N[12420)処理後、接続し
、A c c I +5all、)IincII制限酵
素切断部位のないpUc19を得た。次に、該plJc
19を第4表Nα2に示す組成溶液中でl1ind ■
+ PstIを使用して切断し、該ベクターの旧ndl
l、Pstr切断部位に上記旧nd III−Pstl
断片を接続した。
On the other hand, the Escherichia coli vector puc19 was incubated at 5ails (Nci manufactured by Zenshuzo ■) in a solution having the composition shown in Table 4 No. 1.
1080), treated with mung bean nuclease (N[12420, manufactured by Zenshuzo ■), and ligated to obtain pUc19 without A c c I +5all, ) I inc II restriction enzyme cleavage site. Next, the plJc
19 in a solution with the composition shown in Table 4 Nα2.
+ PstI to cut the old ndl of the vector.
l, the above old nd III-Pstl at the Pstr cleavage site
Connected the pieces.

次いで、接続反応液を大腸菌JM109の形質転換、ミ
ニプレバレージョンと続く一連の操作に使用し、Hin
d I[I−Pstl断片が上記pUc19ベクターに
正しい方向で挿入している組換えpUc19ヘクターを
400μg得た。更に、第4表Nα2に示す組成の溶液
中で、組換えpUc19ベクターをAcal(全酒造■
製NO。
Next, the ligation reaction solution was used for a series of operations including transformation of E. coli JM109 and miniprevention.
d 400 μg of recombinant pUc19 hector in which the I[I-Pstl fragment was inserted into the pUc19 vector in the correct orientation was obtained. Furthermore, the recombinant pUc19 vector was added to Acal (Zen Shuzo ■) in a solution having the composition shown in Table 4 Nα2.
Manufactured NO.

fool)、Xbal (全酒造■製 No、1093
)を使用して切断し、IITLシー1 env蛋白遺伝
子に由来するDNAのうち後半部分に相当するAccl
−Xbal断片(約1060塩基対)取得した。
fool), Xbal (manufactured by Zenshuzo ■, No. 1093
) and cut Accl corresponding to the latter half of the DNA derived from the IITL sea 1 env protein gene.
-Xbal fragment (approximately 1060 base pairs) was obtained.

一方、m喚えベクターPIT 3.9にb/pUc19
.200μgを、第4表階5に示す組成の溶液中でNc
o I制限酵素(宝酒造a勾製 No、1160)を使
用して切断し、Ncol−Ncol断片(約610塩基
対)を得た。一方、大腸菌ベクターpUc18 (全酒
造■製 No、3218)を第4表No、3に示す組成
の溶液中でl1inell制限酵素(全酒造■製 Na
1059)で切断し、該ベクターのHinall制限酵
素部位に上記Ncol−Ncol断片をフィルイン・ラ
イゲーションによって、接続した。次いで、接続反応液
を、大腸菌J M 109の形質転換、ミニ・プレバレ
ージョン、そしてミデイアム・プレバレージョンと続く
一連の操作にflし、Ncol[−Ncoll断片が上
記pHc18ベクターに正しい方向で挿入している組換
えpUc18ベクターを400 μg得た。該ベクター
を第4表毘6に示す組成の溶液中で、Xba[、Acc
r制限酵素で切断し、1lTLV−1env蛋白遺伝子
に由来するDNAの前半部分に相当するXba I−^
ccl断片(約500塩基対)を得た。
On the other hand, m call vector PIT 3.9 and b/pUc19
.. 200 μg was added to Nc in a solution having the composition shown in Table 4, Floor 5.
The Ncol-Ncol fragment (approximately 610 base pairs) was obtained by cleaving using the oI restriction enzyme (Takara Shuzo A-Kasei No. 1160). On the other hand, Escherichia coli vector pUc18 (No. 3218, manufactured by Zenshuzo ■) was added to linell restriction enzyme (Na, manufactured by Zenshuzo ■) in a solution with the composition shown in Table 4, No. 3.
1059), and the above Ncol-Ncol fragment was ligated to the Hinall restriction enzyme site of the vector by fill-in ligation. The ligation reaction mixture was then subjected to a series of operations including transformation of E. coli JM 109, mini-prevention, and medium pre-preparation to ensure that the Ncol[-Ncoll fragment was inserted into the above pHc18 vector in the correct orientation. 400 μg of recombinant pUc18 vector was obtained. The vector was mixed with Xba[, Acc
Xba I-^ which corresponds to the first half of the DNA derived from the 11TLV-1env protein gene by cutting with the r restriction enzyme.
A ccl fragment (approximately 500 base pairs) was obtained.

次いで、大腸菌ベクターであるpUcl 19 (全酒
造■製 No、3319)を第4表N0.6に示した組
成の溶液中でXbal制限酵素(全酒造■製 Na10
93)により切断し、得られたベクターと上記AccL
Xbal断片及びXbal−Accl断片との接続を行
なった。そして、接続反応液を大腸菌JM109の形質
転換、ミニ・プレバレージョン、そしてミデイアム・プ
レバレージョンへと続く一連の操作に使用し、11且V
−1env蛋白遺伝子由来のDNAが pUcl 19
ベクターに正しい方向で挿入している紺換えベクターe
nv/pUc119、200μgを得た。以上の工程を
第7図に示す。
Next, pUcl 19 (manufactured by Zenshuzo ■, No. 3319), which is an E. coli vector, was added to Xbal restriction enzyme (Na10, manufactured by Zenshuzo ■) in a solution having the composition shown in Table 4, N0.6.
93) and the obtained vector and the above AccL
Connections were made with the Xbal fragment and the Xbal-Accl fragment. Then, the ligation reaction solution was used for a series of operations including transformation of E. coli JM109, mini-prevalence, and medium-prevalence.
-1env protein gene-derived DNA is pUcl 19
Dark blue vector e inserted into the vector in the correct direction
200 μg of nv/pUc119 was obtained. The above steps are shown in FIG.

(組換えベクターの製造) 前記の方法で得られた組換えベクターenv/pUc1
19.200μgを第4表Na6に示す組成の溶液に溶
解し、次いでBamHI制限酵素(全酒造■製 NO,
1010)を断続的に9時間添加していき、切断反応を
行なった。切断後、フェノール抽出、エタノール沈澱を
順次行なった後、沈澱したDNAをTE緩衝液(pH8
,0)に溶解し、該DNA溶解液をアガロースゲル電気
泳動した。そしてHTI、V−15’−3′断片を含む
Bawl I−Bao+旧断片に相当するバンド部分の
寒天片を切り出し、電気泳導による溶出によって該断片
を抽出した。次いで、抽出液を更にフェノール抽出し、
エタノール沈澱してIITLV−15” −3”断片を
含むBamH−BamHI断片を得た。
(Production of recombinant vector) Recombinant vector env/pUc1 obtained by the above method
19.200 μg was dissolved in a solution with the composition shown in Table 4 Na6, and then BamHI restriction enzyme (Zen Shuzo ■ NO,
1010) was added intermittently for 9 hours to carry out a cleavage reaction. After cleavage, phenol extraction and ethanol precipitation were performed sequentially, and the precipitated DNA was added to TE buffer (pH 8).
, 0), and the DNA solution was subjected to agarose gel electrophoresis. Then, an agar piece of the band corresponding to the Bawl I-Bao+old fragment containing the HTI, V-15'-3' fragment was cut out, and the fragment was extracted by electrophoretic elution. Next, the extract is further extracted with phenol,
A BamH-BamHI fragment containing the IITLV-15''-3'' fragment was obtained by ethanol precipitation.

一方、大腸菌用ベクターpUc1910μg @Ba+
5lll制限酵素により、前記と同様の切断条件で切断
した。次いで得られた反応液をアルカリフォスファター
ゼ懸濁液(全酒造■製 No、2120)  1 u 
eにより、60“Cで30分間反応させた。アルカリフ
ォスファターゼ反応停止後、該反応液をフェノール抽出
、エタノール沈澱し、BamHIで切断されたpUcl
9を得た。
On the other hand, E. coli vector pUc1910μg @Ba+
It was cut with 5lll restriction enzyme under the same cutting conditions as above. The resulting reaction solution was then mixed with 1 u of alkaline phosphatase suspension (No. 2120, manufactured by Zenshuzo ■).
After stopping the reaction with alkaline phosphatase, the reaction solution was extracted with phenol and precipitated with ethanol.
I got a 9.

このようにして得られた、Bae+HIで切断されたp
Hc190.2 ugと前記HTLV−I 5′−3′
断片を含むBamH−BaIIHI断片0.25μgを
混合し、第5表に示す組成の溶液中で、T4DNAリガ
ーゼを用い、16°C,3時間以上接続反応を行なった
The Bae+HI-cleaved p thus obtained
Hc190.2 ug and the HTLV-I 5'-3'
0.25 μg of the BamH-BaIIHI fragment containing the fragment was mixed, and a ligation reaction was carried out at 16° C. for 3 hours or more using T4 DNA ligase in a solution having the composition shown in Table 5.

そして該操作により得られた接続反応液25μlを大腸
菌JM109のコンピテントセル懸濁液200μ2に添
加し、氷上で30分放置した。その後、42゛Cで2分
間ヒート・ショックし、更に、室温に戻した後、LB液
体培地800μlを添加し、37°Cで1時間おだやか
に振盪培養した。
Then, 25 μl of the connection reaction solution obtained by this operation was added to 200 μl of a competent cell suspension of E. coli JM109, and the mixture was left on ice for 30 minutes. Thereafter, heat shock was performed at 42°C for 2 minutes, and after the mixture was returned to room temperature, 800 μl of LB liquid medium was added and cultured with gentle shaking at 37°C for 1 hour.

該液体培地100μ2を、アンピシリンlOOμg/−
を含むLB寒天培地15m1/プレートに接種後、37
°Cで12時間培養した。培養後出現したシングルコロ
ニー20個を取り出し、それぞれをアンピシリン30μ
g/@l含むLB液体培地15−に接種し、37°Cで
8時間培養した。それぞれの液体培地から1−ずつ採取
し、各採取培地中の大腸菌内に所在するプラスミドをミ
ニ・プレバレージョン法により抽出した。得られた各プ
ラスミドのそれぞれを、第4表No、4に示す組成の溶
液中でKpnT制限酵素(全酒造■製 k1068)に
より切断反応を行った。反応後、各反応液をアガロース
ゲル電気泳動し、HTLV−15′−3’断片を含むB
am1l I−Ban旧断片がpUcl9に正しい方向
で挿入しているプラスミドを確認した。
100μ2 of the liquid medium was mixed with ampicillin lOOμg/−
After inoculating 15 ml/plate of LB agar medium containing
Cultured at °C for 12 hours. Take out 20 single colonies that appeared after culturing, and treat each with 30μ of ampicillin.
The cells were inoculated into LB liquid medium 15- containing g/@l and cultured at 37°C for 8 hours. One sample was collected from each liquid medium, and the plasmid present in E. coli in each collection medium was extracted by the mini-preview method. Each of the obtained plasmids was subjected to a cleavage reaction using KpnT restriction enzyme (k1068, manufactured by Zenshuzo ■) in a solution having the composition shown in Table 4, No. 4. After the reaction, each reaction solution was subjected to agarose gel electrophoresis, and B containing the HTLV-15'-3' fragment was
A plasmid in which the am1l I-Ban old fragment was inserted into pUcl9 in the correct direction was confirmed.

この確認したプラスミドを所有している大腸菌が存在す
る前記液体培地から0.2111/を採取し、アンピシ
リン100μg/dを含むLB液体培地50@1に接種
後、37°Cで12時間培養した。
0.2111/ was collected from the liquid medium containing E. coli possessing this confirmed plasmid, inoculated into LB liquid medium 50@1 containing 100 μg/d of ampicillin, and cultured at 37° C. for 12 hours.

得られた液体培地中の大腸菌内に所在するプラスミドを
ミデイアム・プレバレージョン法により抽出し、組換え
ヘクターBam旧Env(600)/pUc19400
μgを得た。
The plasmid present in E. coli in the obtained liquid medium was extracted by the medium precipitation method, and the recombinant Hector Bam old Env(600)/pUc19400
μg was obtained.

膝組換えベクターBam1lXEnv(600)/pL
lc19200μgを第4表Na6に示す組成の溶液に
溶解し、次いでXbar制限酵素を断続的に9時間添加
していき、切断反応を行なった。得られた切断物を前記
アガロースゲル電気泳動することで、11几V−15′
−3”断片を含むXbal−XbaI断片(約600b
p) 0.15 u gを得た。
Knee recombinant vector Bam1lXEnv(600)/pL
200 μg of lc19 was dissolved in a solution having the composition shown in Table 4, Na6, and then Xbar restriction enzyme was added intermittently for 9 hours to perform a cleavage reaction. By subjecting the obtained cut product to agarose gel electrophoresis, 11 liters of V-15'
-3” fragment (approximately 600 b
p) Obtained 0.15 ug.

又、カイコの発現系ベクターρBP133.10μgを
Xba I制限酵素により、前記と同様な切断条件で切
断し、次いでアルカリフォスファターゼ処理した。
Further, 133.10 μg of the silkworm expression vector ρBP was cut with Xba I restriction enzyme under the same cutting conditions as above, and then treated with alkaline phosphatase.

上記+1TLシー15′−3”断片を含むXbal−X
balD N A断片1.25μgとXbalテ切断さ
れたp8F1330.2 ugを混合し、T4DNAリ
ガーゼにより前述と同様な方法で接続反応を行なった。
Xbal-X containing the above +1TL sea 15'-3'' fragment
1.25 μg of the balDNA fragment and 0.2 ug of p8F1333 cut with Xbalte were mixed, and a ligation reaction was performed using T4 DNA ligase in the same manner as described above.

そして、前記と同様な方法により、この接続反応液を用
いた大腸菌JM109の形質転換及び、該形質転換菌の
分離を行なった。次いで、分離された各培養物ごとで一
連のミニ・プレバレージョン操作を実施し、それぞれの
液体培地からプラスミドを抽出した。
Then, E. coli JM109 was transformed using this ligation reaction solution and the transformed bacteria was isolated by the same method as described above. A series of mini-prevention operations were then performed for each isolated culture, and plasmids were extracted from each liquid medium.

次いで、各プラスミドに対して、BaaHIによる切断
反応を行い、アガロースゲル電気泳動により、HTLV
−15′−3’断片を含むXbar−Xbal D N
 AがpBF133に正しい方向に挿入されているプラ
スミドを確認した。
Next, each plasmid was subjected to a cleavage reaction with BaaHI, and agarose gel electrophoresis revealed that HTLV
-15'-3' fragment containing Xbar-Xbal D N
A plasmid in which A was inserted into pBF133 in the correct direction was confirmed.

この確認したプラスミドを所有している大腸菌が存在す
る液体培地から0.2 mを採取し、アンピシリン30
μg/wIを含むしB液体培地50m/に接種後、37
°Cで12時間培養゛した。
0.2 m of the liquid medium containing E. coli possessing this confirmed plasmid was collected and treated with 30 ampicillin.
After inoculating 50 m/B liquid medium containing μg/wI, 37
It was incubated at °C for 12 hours.

BS ?f1体培地中の大腸菌内に存在するプラスミド
をミデイアム・プレバレージョン法により抽出し、組換
えベクターBa5iFlr Env(600)/pBF
13320Qugを得た。この組換えベクターBamH
T Env(600)/pBF133はE、coliに
導入し、得られる微生物を[i、coli HTLVl
−Envlとして工業技術院微生物工業技術研究所に寄
託した。寄託番号は微工研菌寄第10072号(FRE
MP 10072)である。以上の工程を第8図に示す
BS? The plasmid present in E. coli in the f1 body culture medium was extracted by the medium precipitation method, and the recombinant vector Ba5iFlr Env(600)/pBF was extracted.
13320 Qug was obtained. This recombinant vector BamH
T Env(600)/pBF133 was introduced into E.coli, and the resulting microorganism was transformed into [i.coli HTLVl
-Envl was deposited at the Institute of Microbial Technology, Agency of Industrial Science and Technology. The deposit number is FRE deposit number 10072 (FRE
MP 10072). The above steps are shown in FIG.

参考例1 組換えウィルスの製造 BsNPV T 3株のウィルスDNAと前記組換えベ
クターBamHI Env(600)/pBF133と
が1:100のモル比に調合された第1表の組成液12
45μ尼を、第1表の組成液■255μ2と混合した。
Reference Example 1 Production of Recombinant Virus Composition solution 12 in Table 1 in which the viral DNA of BsNPV T 3 strain and the recombinant vector BamHI Env (600)/pBF133 were mixed at a molar ratio of 1:100.
45μ2 was mixed with 255μ2 of composition liquid (1) shown in Table 1.

(本頁以下余白) 第  1  表 生じた懸濁液0.5−をTC−10(第2表)の培地の
カイコ樹立培養細胞8mNd液(4X105Biece
lls/d)5ml/に加え、27”C,20時間の培
養により、Ba1HrEnv(600)/pBF133
とB+aNPV D N Aのカイコ樹立細胞への導入
を行った。得られた培養物は、更にTC10培地の交換
を行った後、27°Cで6日間培養した。次いでこの培
養物を遠心分離(1500rpm、 10分間)し、得
られた上清を組換えウィルスのクローニング用反応液と
した。
(Margins below this page) Table 1 0.5-ml of the resulting suspension was mixed with 8 mNd solution (4 x 105 Biece) of cultured silkworm cells in TC-10 (Table 2) medium.
Ba1HrEnv(600)/pBF133 was added to 5ml/d) and cultured at 27"C for 20 hours.
and B+aNPV DNA was introduced into established silkworm cells. The obtained culture was further cultured at 27°C for 6 days after exchanging the TC10 medium. This culture was then centrifuged (1500 rpm, 10 minutes), and the resulting supernatant was used as a reaction solution for cloning the recombinant virus.

該クローニング用反応液をTC−10培地でlo−61
0−’、 10−’に希釈し、それぞれ10−の希釈反
応液とした。該希釈反応液に対して、それぞれカイコ樹
立培養細胞8mNd液(105Bamcells/l1
if) 10@lを混合し、該混合液を200μiずつ
96大のマイクロタイター・トレーの中に分注し、27
°Cで4日間培養した。4日間培養後、マイクロタイタ
ー・トレーを検鏡し、細胞表面が粗く変形しウィルスが
感染した形態を示しているカイコ樹立培養細胞で且つ該
細胞内に多角体蛋白が検出されないウェルを見い出し、
そこから培養物を回収した。得られた培養物を遠心分離
(1500rpm、 10分)し、上清150μffi
を組換えウィルスのポリペプチド発現用反応液とした。
The cloning reaction solution was diluted with lo-61 in TC-10 medium.
The mixture was diluted to 0-' and 10-' to obtain 10-' diluted reaction solutions. For the diluted reaction solution, 8 mNd solution of established cultured silkworm cells (105 Bamcells/l1
if) Mix 10@l, dispense the mixed solution into 96-sized microtiter trays in 200 μi portions, and
Cultured at °C for 4 days. After culturing for 4 days, the microtiter tray was examined under a microscope, and wells were found that were established cultured silkworm cells in which the cell surface was rough and deformed, indicating a virus-infected morphology, and in which no polyhedral protein was detected within the cells;
Cultures were collected from there. The resulting culture was centrifuged (1500 rpm, 10 minutes), and 150 μffi of the supernatant was
was used as a reaction solution for expressing a recombinant viral polypeptide.

該ポリペプチド発現用反応液は、プラーク検定でI X
IO’ PFU/a1の力価を示す組換えウィルス液で
あった。尚、このポリペプチド発現用反応液を用い、組
換えウィルスのカイコ樹立細胞BmN4への感染、培養
を行い、膝組換えウィルスを増殖させた。この組換えウ
ィルスの増殖操作は、培養物の遠心分!(1500rp
m、 10分)による上清液401dが、プラーク検定
で3 XIO” PFtl/dの力価を有するまでくり
返し行った。以上により得られた上清液40dを、35
%(−八)ショ糖水溶液5 telに静かに重層した状
態で超遠心分M (2500Orpm、 15°C,2
時間)し、組換えウィルスをウィルス粒子として沈Rさ
せた。そして、該ウィルス粒子を蒸留水で洗浄後、TE
緩衝液(pH7,5) 200μlに溶解し、ウィルス
粒子の懸濁液をえた。該)懸濁液を更に、SOS存在下
でのプロテアーゼに処理、フェノール処理、フェノール
・クロホルム処理、クロロホルム・イソアミルアルコー
ル(50:1)処理し、ウィルスI)NAを50ggを
得た。
The polypeptide expression reaction solution was tested by plaque assay with IX
It was a recombinant virus solution showing a titer of IO' PFU/a1. Using this polypeptide expression reaction solution, silkworm established cells BmN4 were infected with the recombinant virus and cultured to propagate the knee recombinant virus. This recombinant virus propagation procedure involves centrifuging the culture! (1500rp
The procedure was repeated until the supernatant 401d obtained by the test (10 minutes) had a titer of 3 XIO'' PFtl/d in the plaque assay.
% (-8) sucrose aqueous solution (5 tel) and ultracentrifuged it (2500 Orpm, 15 °C, 2
time), and the recombinant virus was precipitated as virus particles. After washing the virus particles with distilled water, TE
The virus particles were dissolved in 200 μl of buffer (pH 7.5) to obtain a suspension of virus particles. The suspension was further treated with protease in the presence of SOS, treated with phenol, treated with phenol/chloroform, and treated with chloroform/isoamyl alcohol (50:1) to obtain 50 gg of virus I) NA.

上記TC−10の培地は第2表の培地900戚をpH6
゜30〜6.35に調整し、濾過滅菌後、牛胎児血清1
00m!を添加することにより調製される。
The medium for the above TC-10 is the medium 900 relative in Table 2 at pH 6.
Adjust to ℃30~6.35, sterilize by filtration, add fetal bovine serum 1
00m! It is prepared by adding.

(本真以下余白) コ1江し工l戊 L −Arginme L−Aspatic acid L−Asparagine  −H20L −Alan
ine β−八へanine L−Glutamic  acid L−Glutamine Glycine L −Hlstidine L 4soleucine L −Leucine L−Lysine  −HCI L −Methiouine L−Proline L−Phenyla  anine DL−5erune L −Threonme 5.79g 3.5g 3.98g 2、25g 2.0g 6、Oc 3、Og 6.5g 25.0g 0.5g 0.75g 6.25g 0.5g 3.5g 1.5g 11.0g 1.75g H2Oで全11000Mlとする 第2 笠−」L」L−衣 aCI Cl CaC1z  ・ 2HzO MgC12・ 6H20 MgC1z  ・ 7H20 Tryptose デキストロース (glucose) L−glutamine soln A” 5oln B’″1 so1nC**11 NaH2PO4・28zO (0,891g/100Id) NaHCO。
(Materials below the true text) KO1EshikoL -Arginme L-Aspatic acid L-Asparagine -H20L -Alan
ine β-8 anine L-Glutamic acid L-Glutamine Glycine L -Hlstidine L 4soleucine L -Leucine L-Lysine -HCI L -Methiouine L-Proline L -Phenyla anine DL-5erune L -Threonme 5.79g 3.5g 3 .98g 2, 25g 2.0g 6, Oc 3, Og 6.5g 25.0g 0.5g 0.75g 6.25g 0.5g 3.5g 1.5g 11.0g 1.75g Make a total of 11000Ml with H2O 2nd Cap-"L" L-Cl aCI Cl CaC1z ・ 2HzO MgC12 ・ 6H20 MgC1z ・ 7H20 Tryptose Dextrose (glucose) L-glutamine soln A" 5oln B'"1 so1nC* *11 NaH2PO4・28zO (0,891g/100Id ) NaHCO.

(0,35g/100d) 0.5g 2.87g 1.32g 2.28g 2、78g 2.0g 1.1g 0.3g 100戚 00rnl d 00d 100緘 HzOで全量900−とする 門宏壮し工J肩1夜 L−Cystine L−Tryptophane L −Tyros 1ne HzOで全量1000dとする 0、25g 1.0g 0.5g ↓上銭頂り虹m炙 Th1aa+ine  −HCI Riboflavine D−Ca  pantothenatePrydoxi
ne  −HCI Para−aminobenzoic  acidFo
lic  acid Nicotinic  acid Iso−Iuositol 1otin 2.0mg 2、O,mg 2.0■ 2.0■ 2.0■ 2.0■ 2.0■ 2.0mg 1.0■ H2Oで全量10001d!とする 参考例2 ポリペプチドの製造 参考例1で得られたポリペプチド発現用反応液100μ
ffiをカイコ培養細胞BaN4液(10J3a+ce
lls/m)30dに添加し、27°C,5日間培養し
た。5日間培8後、培養物を回収し、遠心分M (15
00rpm、 15分)した。
(0,35g/100d) 0.5g 2.87g 1.32g 2.28g 2,78g 2.0g 1.1g 0.3g 100 relative00rnl d 00d Gate widening work with a total amount of 900- at 100HzO J shoulder 1 night L-Cystine L-Tryptophane L -Tyros 1ne HzO to make total amount 1000d 0, 25g 1.0g 0.5g ↓Upper coin top rainbow m Th1aa+ine -HCI Riboflavine D-Ca pantoth enatePrydoxi
ne -HCI Para-aminobenzoic acid Fo
lic acid Nicotinic acid Iso-Iuositol 1otin 2.0mg 2, O, mg 2.0■ 2.0■ 2.0■ 2.0■ 2.0■ 2.0mg 1.0■ Total amount 10001d with H2O! Reference Example 2 Production of polypeptide 100 μl of the reaction solution for polypeptide expression obtained in Reference Example 1
ffi was added to silkworm cultured cell BaN4 solution (10J3a+ce
lls/m) for 30 days and cultured at 27°C for 5 days. After culturing for 5 days, the culture was collected and centrifuged at M (15
00 rpm, 15 minutes).

沈澱物(ウィルス成熟細胞)をPBS緩衝液で洗浄し5
軸M Tris−HCI(pH7,4) 400u l
に懸濁、ソニケーション後、遠心分離(8000rpm
+、 20分)した。沈澱物として得られたポリペプチ
ドにレムリ緩衝液200uffiを添加、懸濁したもの
を、煮沸し、遠心した上清をSDSゲル電気泳動の試料
とした。
Wash the precipitate (virus mature cells) with PBS buffer 5.
Axis M Tris-HCI (pH7,4) 400ul
After suspension and sonication, centrifugation (8000 rpm)
+, 20 minutes). The polypeptide obtained as a precipitate was suspended in 200 uffi of Laemmli buffer, boiled and centrifuged, and the supernatant was used as a sample for SDS gel electrophoresis.

SDSゲル電気泳動の結果、この試料は、pBF133
の有す多角体蛋白遺伝子部分がコードする多角体蛋白の
一部(約5 Kd)とHTLV−[5′−3′断片がコ
ードするHTLV4外皮蛋白のp21含有部(約20K
d)の合計分子量にあたる約25Kdの位置にハンドが
検出された(第4図に図示)。なお、第4図は、B+i
細胞内でのtlTVL−1enν蛋白発現をSOSゲル
電気泳動で確認したものである。第4図において1an
e 1はサイズマーカー、1ane 2は非感染カイコ
細胞の蛋白1ane 3はF3araHI Env(0
,6)/pBF133を使用した組換えウィルスを感染
したカイコ細胞の蛋白を電気泳動したものである。
As a result of SDS gel electrophoresis, this sample was pBF133
A part of the polyhedron protein (approximately 5 Kd) encoded by the polyhedron protein gene portion possessed by
A hand was detected at a position of approximately 25 Kd, which corresponds to the total molecular weight of d) (as shown in FIG. 4). In addition, FIG. 4 shows B+i
Intracellular tlTVL-1enν protein expression was confirmed by SOS gel electrophoresis. 1an in Figure 4
e 1 is a size marker, 1ane 2 is a protein of uninfected silkworm cells, 1ane 3 is F3araHI Env (0
, 6)/pBF133, proteins from silkworm cells infected with the recombinant virus were electrophoresed.

一次抗体として抗多角体蛋白抗体及びIITLV−1p
21に対するモノクローナル抗体を使用したウェスタン
・プロット実験で、25Kdの蛋白が多角体蛋白とHT
LV4 p21とを含む融合蛋白であることを確認した
。又、同時に一次抗体として、正常人直情又は、ATL
患者血清を使用したウェスタン・プロット実験を行い、
該25Kdの蛋白がIITLV−1の抗体に対して良好
な抗原性を有していることが確認できた(第5図に図示
)。なお、第5図は、B−細胞内でのHTLV−1en
v蛋白発現をウェスタン・フロット法で確認したもので
ある。1ane 1はサイズマーカー、1ane 2〜
1ane 5は抗原としてflaw旧Env(600)
/pBF 133を使用した組換えウィルスを感染した
カイコ細胞の蛋白を電気泳動したものである。
Anti-polyhedra protein antibody and IITLV-1p as primary antibodies
Western blot experiments using a monoclonal antibody against 21 showed that the 25Kd protein was isolated from the polyhedral protein and HT.
It was confirmed that it was a fusion protein containing LV4 p21. At the same time, as a primary antibody, normal human emotion or ATL
Perform Western blot experiments using patient serum;
It was confirmed that the 25Kd protein had good antigenicity to the IITLV-1 antibody (as shown in FIG. 5). In addition, FIG. 5 shows HTLV-1en in B-cells.
v protein expression was confirmed by Western flot method. 1ane 1 is a size marker, 1ane 2~
1ane 5 is a flow old Env (600) as an antigen
/pBF 133 is an electrophoresed protein of silkworm cells infected with a recombinant virus.

ウェスタン・プロッティングは、第3表に示した一次抗
体及び二次抗体を使用して、アビジン、ビオチンを基質
としたパーオキシダーゼによる呈色反応で行なった。
Western plotting was carried out using the primary and secondary antibodies shown in Table 3 and a color reaction with peroxidase using avidin and biotin as substrates.

()内は希釈率を示した 参考例3 参考例1で得たポリペプチド発現用反応液100μff
iをカイコ樹立培養細胞液(10’B+++cells
/@1) 30−に添加し、27°C,5日間培養した
。5日間培養後、培養物を回収し遠心分離(1500r
pm、 15分)した。上清を0.1−ずつ5令1日目
のカイコ100匹にそれぞれ経皮的に注入し、25°C
で5日間、全集のペースト片を与えて飼育後、解剖し、
脂肪体を集めた。該脂肪体にPBS緩衝液10wklを
加え懸濁し、ソニケーション後、遠心分離(8000r
pm、 20分)し、沈澱物5−を取得した。該沈澱物
200μ2を再度ソニケーションし、Bio−RADプ
ロティン・アッセイにより、蛋白量を測定した結果60
μgであった。
Reference example 3 () shows the dilution rate 100 μff of the polypeptide expression reaction solution obtained in reference example 1
i to silkworm established culture cell solution (10'B+++cells
/@1) and cultured at 27°C for 5 days. After culturing for 5 days, the culture was collected and centrifuged (1500r
pm, 15 minutes). The supernatant was injected subcutaneously into 100 silkworms of 5 instars and 1 day old at a dose of 0.1-0.
After being reared for 5 days with paste pieces of the complete collection, the animals were dissected.
Fat bodies were collected. The fat body was suspended in 10 wkl of PBS buffer, sonicated, and then centrifuged (8000 rpm).
pm, 20 minutes), and a precipitate 5- was obtained. 200 μ2 of the precipitate was sonicated again, and the protein amount was measured by Bio-RAD protein assay. The result was 60
It was μg.

蛍白量測定後、50μ2をレムリ緩衝液50μ2に懸濁
し、煮沸し、遠心した上清をSDSゲル電気泳動の試料
とした。
After measuring the amount of fluorescence, 50 μ2 of the suspension was suspended in 50 μ2 of Laemmli buffer, boiled, and centrifuged. The supernatant was used as a sample for SDS gel electrophoresis.

SDS電気泳動の結果、分子置駒25Kdの位置にバン
ドが検出された、参考例2と同様な方法により、この2
5にdの蛋白が多角体蛋白とflTl、V−r p21
とを含む融合蛋白で、IITLV−Iの抗体に対して良
好な抗原性を有していることを確認した。
As a result of SDS electrophoresis, a band was detected at the molecular position of 25Kd.
In 5, the protein d is a polyhedral protein, flTl, and V-r p21.
It was confirmed that the fusion protein contains the following and has good antigenicity against IITLV-I antibodies.

(本頁以下余白) 第 表 表 1mM    ^TP(Margins below this page) No. table table 1mM ^TP

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカイコ核多角体腐ウィルスのDNAの制限酵素
地図、第2図はpBFベクターの制限酵素地図、第3図
はpBFベクターの種類、第4図はB+s細胞内でのH
TLV蛋白発現をSOSゲル電気泳動で確認した図、第
5図はB■細胞内でのHTLV−1env蛋白発現をウ
ェスタン・プロット法で確認した図、第6図はカイコ核
多角体腐ウィルス及び組換えウィルスが感染したカイコ
細胞、第7図は)ITLV−1enν蛋白遺伝子由来の
DNAの調製法、第8図は組換えベクターの調製法をそ
れぞれ示す、第9図はHTLV−1env遺伝子配列の
うちのp21蛋白部分の遺伝子及びアミノ酸配列図を示
す。 11dl[I・・・旧ndln、N ・”Nco I 
、^c−Acc I 、 Ec・”EcoRI 、5p
−5ph I 、 5a=−5alI 、旧11・・・
H4ncB ”・BamHT  % X・!・xbal 図面の浄書 第4図
Figure 1 is a restriction enzyme map of the DNA of silkworm nuclear polyhedrosis virus, Figure 2 is a restriction enzyme map of pBF vector, Figure 3 is the type of pBF vector, and Figure 4 is the restriction enzyme map of the DNA of Bombyx morivirus.
Figure 5 shows the expression of TLV protein confirmed by SOS gel electrophoresis, Figure 5 shows the expression of HTLV-1 env protein in B1 cells confirmed by Western blotting, and Figure 6 shows the results of silkworm nuclear polyhedrosis virus and bacterial infection. Silkworm cells infected with the recombinant virus, Figure 7 shows the method for preparing DNA derived from the ITLV-1env protein gene, Figure 8 shows the method for preparing the recombinant vector, and Figure 9 shows the method for preparing DNA derived from the HTLV-1env gene sequence. The gene and amino acid sequence diagram of the p21 protein portion of . 11dl[I...former ndln, N・”Nco I
, ^c-Acc I, Ec・”EcoRI, 5p
-5ph I, 5a=-5alI, old 11...
H4ncB ”・BamHT % X・!・xbal Drawing engraving Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)カイコ発現系ベクターが、成人T細胞白血病ウィ
ルス外皮蛋白遺伝子に由来するDNAのうちのp21を
コードするDNAを含み且つ該DNAの5′末端から上
流の17塩基対以内で切断された断片で組換えられた組
換えベクター。
(1) The silkworm expression system vector contains a p21-encoding DNA derived from the adult T-cell leukemia virus coat protein gene, and is a fragment cleaved within 17 base pairs upstream from the 5' end of the DNA. Recombinant vector recombined with.
(2)カイコ発現系ベクターがpBFベクターである請
求項1記載の組換えベクター。
(2) The recombinant vector according to claim 1, wherein the silkworm expression system vector is a pBF vector.
JP18175288A 1988-07-22 1988-07-22 Recombinant vector Pending JPH0231679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18175288A JPH0231679A (en) 1988-07-22 1988-07-22 Recombinant vector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18175288A JPH0231679A (en) 1988-07-22 1988-07-22 Recombinant vector

Publications (1)

Publication Number Publication Date
JPH0231679A true JPH0231679A (en) 1990-02-01

Family

ID=16106268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18175288A Pending JPH0231679A (en) 1988-07-22 1988-07-22 Recombinant vector

Country Status (1)

Country Link
JP (1) JPH0231679A (en)

Similar Documents

Publication Publication Date Title
Schmidt et al. Replicating foamy virus-based vectors directing high level expression of foreign genes
AU700160B2 (en) Vaccine containing parainfluenza viruses for the prevention of respiratory and reproductive diseases of the pig
EA022841B1 (en) Production of heterologous polypeptides in microalgae, microalgal extracellular bodies, compositions, and methods of making and uses thereof
CN104271745A (en) Compositions and methods for treatment of cytomegalovirus
CN104962581B (en) A kind of recombinant viral vaccine strain for expressing African swine fever virus p72 albumen
JPH11262397A (en) Replication defective recombinant retrovirus
CN113845576B (en) Recombinant feline herpesvirus type 1 gB-gD protein and application thereof
Buchmeier et al. Protein structure and expression among arenaviruses
CN110256539A (en) O-shaped foot and mouth disease virus novel gene engineering subunit vaccine
JPH1059868A (en) Vaccine composed of sugar protein of causative virus of aids
AU626288B2 (en) Gene expression system (particularly for rotavirus vp7 protein) involving a foreign signal peptide and optionally a transmembrane anchor sequence
JPH04500312A (en) Self-assembling defective non-self-replicating virus particles
CN107667175A (en) Vaccine based on restructuring mumps virus JERYL LYNN 2
CN112679586A (en) H5 and H7 subtype avian influenza virus genetic engineering subunit vaccine and preparation method and application thereof
KR100224331B1 (en) Recombinant varicella-zoster virus and process for constructing same
JP2583115B2 (en) Recombinant Marek's disease virus and method for producing the same
Ogura et al. Further evidence for the existence of a viral envelope protein defect in the Bryan high-titer strain of Rous sarcoma virus
CN112094354B (en) Acinetobacter paragallinarum genetic engineering subunit vaccine, preparation method and application thereof
JPH0231679A (en) Recombinant vector
JP4344805B2 (en) Genetically modified vaccinia virus vaccine
JPH01500962A (en) A viral vector, a DNA recombinant encoding the F protein of the AIDS-causing virus, a cell culture infected with the vector, a method for producing the above protein, the obtained protein, a vaccine, and the obtained antibody
CN113061167A (en) Rabbit hemorrhagic disease virus recombinant antigen and application thereof
JP2656088B2 (en) Method for producing polypeptide and recombinant vector and recombinant virus used in the method
JPH0231674A (en) Recombinant virus
JPH0257191A (en) Production of polypeptide