JPH0231605A - Walking type paddy field working machine - Google Patents

Walking type paddy field working machine

Info

Publication number
JPH0231605A
JPH0231605A JP18258488A JP18258488A JPH0231605A JP H0231605 A JPH0231605 A JP H0231605A JP 18258488 A JP18258488 A JP 18258488A JP 18258488 A JP18258488 A JP 18258488A JP H0231605 A JPH0231605 A JP H0231605A
Authority
JP
Japan
Prior art keywords
ground
sensor
wheel
attitude
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18258488A
Other languages
Japanese (ja)
Inventor
Kazuo Shimazumi
島隅 和夫
Susumu Yamamoto
進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18258488A priority Critical patent/JPH0231605A/en
Publication of JPH0231605A publication Critical patent/JPH0231605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transplanting Machines (AREA)

Abstract

PURPOSE:To retain prescribed height of a working machine to ground even in backward inclination of a machine body by engaging a mechanism for automatically switching posture of ground sensor to the machine body to front downward posture as driving wheels are situated lower than the machine body with a wheel lifting and lowering mechanism. CONSTITUTION:A sensor rod 23 is elected in front end of a center float 9 and a bending link 27 which is a posture changing mechanism B for the center float 9 is provided in the intermediate position of the sensor rod 23. An engaging mechanism C consisting of a connecting rod 28 and oscillating link 29 is provided between a balance arm 13 of cylinder for lifting and lowering wheels and bending link 27 and one end of the connecting rod 28 is connected to a bending link 27. Total length of the sensor rod 23 is set to basic length at an intermediate position in lifting and lowering wheels and when the wheels are lowered, the sensor rod 23 is lengthened and base posture of center float 9 to the machine body is changed to front downward posture. Consequently, variation of planting depth can be reduced also when inclined backward by reverse torque.

Description

【発明の詳細な説明】 〔産業上の利用分野]゛ 本発明は接地センサの接地圧変動による上下動に基づい
て、左右に一対備えられた又は単一の推進車輪の対機体
高さを車輪昇降機構で変更することによって、作業装置
の対地高さを所定高さに維持する昇降制御手段を設けて
ある歩行型水田作業機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention calculates the height of a pair of propulsion wheels on the left and right or a single propulsion wheel relative to the aircraft body based on the vertical movement of a ground sensor due to ground pressure fluctuations. The present invention relates to a walking type paddy field work machine that is provided with a lift control means that maintains the height of the work apparatus at a predetermined height above the ground by changing the height of the work apparatus with a lift mechanism.

〔従来の技術〕[Conventional technology]

上記したような1輪構成を有する一歩行型水田作業機に
あっては、車輪が推進する際の逆トルクを受けて機体が
後傾斜姿勢になろうとする傾向にある。特に、耕盤深さ
の深いところや硬い圃場では推進トルクが太き(なるの
で、機体に作用する逆トルクも大きくなって後傾斜の度
合が大きくなる傾向にあった。
In the single-wheeled paddy field work machine having the above-mentioned one-wheel configuration, the machine body tends to take a backward tilting position due to the reverse torque generated when the wheels are propelled. In particular, in areas where the plowing depth is deep or in hard fields, the propulsion torque is large, so the reverse torque acting on the aircraft body also becomes large, which tends to increase the degree of backward heeling.

このように逆トルクが大きく作用する場合には前記昇降
制御手段にも影響を与える。つまり、接地センサとして
例えば第1図で示す接地フロート形式のもので説明する
と、前記接地フロート(9)が前端部を残して略全面を
接地する姿勢で作業装置(6)の対地高さが所定高さに
あるときに、前記したように逆トルクによって機体(1
0)が後傾姿勢になると、接地フロート(9)も機体(
10)との相対姿勢を変化させないように後傾姿勢にな
り、深く沈んだ後端側の接地圧を増大させ、浮上った前
部側の接地圧残少を補う形で姿勢バランスをとり、安定
状態(制御中立状B)にある。
When a large amount of reverse torque acts as described above, it also affects the elevation control means. In other words, if the ground sensor is of the ground float type as shown in FIG. When the aircraft is at a high height, the reverse torque causes the aircraft (1
0) is tilted backwards, the grounding float (9) also tilts towards the aircraft (
10) It leans backwards so as not to change its relative attitude to the body, increases the ground pressure on the deeply submerged rear end side, and balances the attitude by compensating for the remaining ground pressure on the floating front side. It is in a stable state (control neutral state B).

したがって、機体及び接地フロート共に後傾姿勢で制御
の安定状態にあることになるので、逆トルクが大きくな
い状態での制御の安定状態で所定高さに位置されている
作業装置は、機体が後傾姿勢になることによって所定高
さより低い位置に位置するといった不都合があった。
Therefore, since both the aircraft and the ground float are in a stable state of control in the backward tilted position, the work equipment is positioned at a predetermined height in a stable state of control with no large reverse torque. Due to the tilted position, there is an inconvenience that the device is located at a position lower than a predetermined height.

本発明の目的は接地センサの対機体基準姿勢を変化させ
ることによって、前記逆トルクの変動にもかかわらず、
作業装置の対地高さを所定高さに維持できるものを提供
する点にある。
An object of the present invention is to change the reference posture of the ground sensor relative to the aircraft body, so that despite the fluctuation of the reverse torque,
The object of the present invention is to provide a work device that can maintain the height above the ground at a predetermined height.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明による特徴構成は、 ■ 制御中立時における前記接地センサの対機体基準姿
勢を変化させる姿勢切換機構を設ける点と、 ■ iiI記推進重輪が走行機体に対して低位に位置す
る程前記接地センサの対機体基準姿勢を前下り姿勢に自
動的に切換えるべく前記姿勢機構と車輪昇降機構とを連
係機構で連係してある点と、 にあり、その作用効果は次の通りである。
Characteristic configurations of the present invention include: (1) providing an attitude switching mechanism that changes the reference attitude of the ground sensor with respect to the aircraft during control neutral; and (3) the lower the propulsion heavy wheels are located with respect to the traveling aircraft, the more the ground contact is reduced. The above-mentioned attitude mechanism and the wheel lifting mechanism are linked by a linkage mechanism so as to automatically switch the reference attitude of the sensor relative to the aircraft to the forward downward attitude, and the effects thereof are as follows.

〔作 用〕[For production]

第1図に基づいて説明すると、接地センサ(9)として
後支点で揺動する接地フロートの前端側センサロッド(
23)の長さを可変する構成によって、姿勢切換機構(
B)を構成できるが、勿論このような構成のものに限定
されるものではなく、後支点を上下させてもよい。ここ
で、このような姿勢切換機構(B)を利用して、推進車
輪(8)が走行機体(10)に対して低位に位置する場
合(つまり、耕盤が深くなった場合)には、前記センサ
ロッド(23)を伸して接地フロート(9)を前下り姿
勢にする(これは接地フロート(9)が絶対的に前下り
姿勢にあることを示すのではな(、変更前よりも接地フ
ロート(9)の前端が下方に位置することを示すだけで
ある)。
To explain based on FIG. 1, the front end side sensor rod (
23) The posture switching mechanism (
B), but of course the structure is not limited to this, and the rear fulcrum may be moved up and down. Here, when the propulsion wheel (8) is located at a lower position with respect to the traveling body (10) using such a posture switching mechanism (B) (that is, when the tiller becomes deeper), Extend the sensor rod (23) to place the ground float (9) in the forward downward position (this does not mean that the ground float (9) is absolutely in the forward downward position (but rather than before the change). It only shows that the front end of the ground float (9) is located downwards).

そうすると、逆トルクによって後傾斜姿勢にある接地フ
ロートの前端側か下降するので、接地フロート(9)と
しての接地面積が増大し接地圧が大きくなる。そこで、
接地圧を基準状態に戻すように機体が接地フロー1−(
9)及び作業装置とともに持ち上り、基準接地圧になっ
たところで安定停止する。
Then, the front end side of the grounding float (9) in the backward tilting position is lowered by the reverse torque, so that the grounding area of the grounding float (9) increases and the grounding pressure increases. Therefore,
The aircraft is grounding flow 1-(
9) and the work equipment, and comes to a stable stop when the standard ground pressure is reached.

したがって、作業装置は接地センサの姿勢変更前より高
い位置に位置することになり、対地所定高さに位置され
る。
Therefore, the working device is located at a higher position than before the attitude of the ground sensor was changed, and is located at a predetermined height above the ground.

〔発明の効果〕〔Effect of the invention〕

その結果、逆トルクによる後傾姿勢になっても作業装置
を所定の対地高さに維持でき、植付不良を招くことが少
なくなった。
As a result, the working device can be maintained at a predetermined height above the ground even when the plant is tilted backwards due to reverse torque, and planting defects are less likely to occur.

しかも、逆トルクに関連する推進車輪の昇降機構の動き
を捉えて接地センサの姿勢切換機構と連係することによ
って、姿勢切換を自動的に行なえるとともに、前下り量
も任意に設定でき、例えば実公昭56−18248号公
報又は実開昭57155018号公報等の手動で接地セ
ンサの対機体姿勢を切換えるものに比べて、特に、耕盤
深さの変動が大きい圃場での作業時に操作する必要がな
いだけに有利である。
Furthermore, by capturing the movement of the lifting mechanism of the propulsion wheel related to reverse torque and linking it with the posture switching mechanism of the ground sensor, posture switching can be performed automatically, and the amount of forward descent can also be set arbitrarily. Compared to systems such as those disclosed in Publication No. 56-18248 or Japanese Utility Model Application No. 57155018 in which the posture of the ground sensor relative to the aircraft body is manually switched, there is no need to operate it especially when working in fields where the depth of the plowing varies greatly. It is only advantageous.

[請求項2の作用効果] つまり、泥面が硬くなる場合も耕盤が深くなる場合と同
様に機体に作用する逆トルクが大きくなるので、機体後
傾斜が太き(なり、作業装置の対地高さが変化するので
、硬軟に対応して変化する悪疫調節機構のその調節作動
を捉えて接地センサの前下り姿勢に切換えることができ
、作業装置の対地高さを所定高さに維持できる。
[Operation and Effect of Claim 2] In other words, when the mud surface becomes hard, the reverse torque acting on the machine body becomes large in the same way as when the plowing platform becomes deep. Since the height changes, the adjustment operation of the pestilence adjustment mechanism that changes depending on the hardness and softness can be detected and the ground sensor can be switched to the forward downward posture, thereby maintaining the height of the work device above the ground at a predetermined height.

〔実施例〕〔Example〕

歩行型水田作業機の一例としての田植機について説明す
る。
A rice transplanter as an example of a walking rice paddy work machine will be described.

第2図に示すように、歩行型田植機は、機体前部にエン
ジン(1)及びミッションケース(2)、このミッショ
ンケース(2)より後方に延出された植付伝動ケース(
3)の後端に苗のせ台(4)、苗植付機構(5)等から
なる作業装置としての苗植付装置(6)及び操紺ハンド
ル(21)を配するとともに、機体中間部に施肥装置(
7)及び左右推進車輪(8) 、 (8)並びに接地セ
ンサとしてのセンタフロート(9)を配して構成されて
いる。
As shown in Figure 2, the walking rice transplanter has an engine (1) and a mission case (2) at the front of the machine, and a planting transmission case (2) that extends rearward from the mission case (2).
3) A seedling planting device (6) as a working device consisting of a seedling stand (4), a seedling planting mechanism (5), etc. and a navy blue handle (21) are arranged at the rear end, and a Fertilizer application device (
7), left and right propulsion wheels (8), (8), and a center float (9) as a ground sensor.

走行機体(10)に対する昇降・ローリング制御につい
て説明する。
Elevation/lowering/rolling control for the traveling aircraft (10) will be explained.

Ail記推進上輸(8)を先端に軸支した車輪伝動ケー
ス(11)をミッションケース(2)の横側面に上F揺
動可能に枢支するとともに、左右に配設された車輪伝動
ケース(IIL(11)を昇降シリンダ(12)によっ
て駆動揺動ずべく構成してある。
A wheel transmission case (11) with an Ail propulsion lift (8) pivotally supported at the tip is pivotally supported on the side surface of the mission case (2) so as to be able to swing upwards, and wheel transmission cases arranged on the left and right sides. (The IIL (11) is configured to be driven and moved by the lifting cylinder (12).

つまり、第3図に示すように、ミッションケース(2)
上面に設置された昇降シリンダ(12)のビス1−ンロ
ンド先端に縦軸芯(X)周りで水平揺動する天秤アーム
(13)を取付けるとともに、前記重輪伝動ケース(1
1) 、 (11) と一体で上下揺動する左右連結ア
ーム(14)、 (14)を揺動軸心(Y)近くに設け
、左連結用アーム(14)と天秤アーム(13)左端と
を連結ロツ)”(15)で連結するとともに、右連結用
アーム(14)と天秤アーム(13)右端とを右連結ロ
ッド(16)で連結して、昇降シリンダ(12)で天秤
アーム(13)を前後に移動させることによって、左右
推進車輪(8) 、 (8)を同方向に同昇降量だけ昇
降作動させ得る。以上を車輪昇降機構(A)と称する。
In other words, as shown in Figure 3, mission case (2)
A balance arm (13) that swings horizontally around the vertical axis (X) is attached to the tip of the screw 1-ron of the lifting cylinder (12) installed on the top surface, and the heavy wheel transmission case (1
1), (11) and the left and right connecting arms (14), (14) that swing vertically together are installed near the swing axis (Y), and the left connecting arm (14) and the left end of the balance arm (13) are connected to each other. At the same time, the right connecting arm (14) and the right end of the balance arm (13) are connected by the right connecting rod (16), and the lifting cylinder (12) connects the right end of the balance arm (13). ) can be moved back and forth, the left and right propulsion wheels (8), (8) can be raised and lowered by the same amount of elevation in the same direction.The above is referred to as a wheel elevation mechanism (A).

又、前記右連結ロッド(16)には伸縮可能なローリン
グシリンダ(17)カ介装されており、その伸縮によっ
て天秤アーム(13)を縦軸芯(X)周りで水平揺動さ
せることによって左右推進車輪(8) 、 (8)が背
反的に昇降する。
In addition, an extendable rolling cylinder (17) is installed in the right connecting rod (16), and by expanding and contracting the rolling cylinder (17), the balance arm (13) is horizontally swung around the vertical axis (X), thereby allowing the balance arm (13) to swing horizontally around the vertical axis (X). The propulsion wheels (8), (8) move up and down in a contradictory manner.

一方、前記センタフロート(9)は左右推進車輪(8)
 、 (8)の間でこの推進車輪(8)より前方から後
方に至る範囲に亘って接地するロングフロートであって
、その後端で−1−字揺動式ブラケット(18)を介し
て植付伝動ケース(3)に取付けられている。つまり、
このブラケット(18)での前後軸芯(P、)周りでロ
ーリング作動自在に、がっ、後支点としての横軸芯(P
2)周りで上下揺動自在にセンタフロート(9)が取付
けである。
On the other hand, the center float (9) is connected to the left and right propulsion wheels (8).
, (8) is a long float that touches the ground over a range from the front to the rear of this propulsion wheel (8), and is used for planting via a -1-shaped swinging bracket (18) at its rear end. It is attached to the transmission case (3). In other words,
This bracket (18) can be freely rolled around the front and back axis (P,), and the horizontal axis (P,) serves as the rear fulcrum.
2) A center float (9) is attached so that it can freely swing up and down.

したがって、耕盤の深さ変化に起因する接地圧変動によ
って、例えば、センタフロート(9)が上昇1.B動す
ると昇降シリンダ(12)を伸張させ、それによって、
左右ttIif!車輪(8) 、 (8)を下降させて
相対的に走行機体(10)を上昇させて苗植付装置(6
)の対地高さを一定に保持するようにし、又反対に、セ
ンタフロート(9)が下降揺動すると推進車輪(8) 
、 (8)を上界させて苗植付装置(6)の高さを一定
に保持する昇降制御手段を構成する。
Therefore, due to ground pressure fluctuations caused by changes in the depth of the tiller, for example, the center float (9) rises. B movement extends the lifting cylinder (12), thereby
Left and right ttIif! The wheels (8) and (8) are lowered to relatively raise the traveling body (10) and the seedling planting device (6) is raised.
) is kept constant above the ground, and conversely, when the center float (9) swings downward, the propulsion wheel (8)
, (8) constitutes a lifting control means for keeping the height of the seedling planting device (6) constant.

又、接地圧変動によって、センタフロート(9)が左右
一対にローリング作動すると、傾いた側の推進車輪(8
)を下降させ、背反的に反対側の推進車輪(8)を上昇
させて走行機体(1o)を圃面に沿う姿勢に維持するロ
ーリング制?11手段を構成する。
Also, when the center float (9) rolls on the left and right pairs due to ground pressure fluctuations, the propulsion wheel (8) on the inclined side
) is lowered, and the propulsion wheel (8) on the opposite side is raised to maintain the traveling body (1o) along the field surface? 11 means.

尚、第1図中(19)は昇降シリンダ(12)に対する
昇降制御バルブであって、(20)はローリングシリン
ダ(17)に対するローリング制御バルブである。
In FIG. 1, (19) is an elevation control valve for the elevation cylinder (12), and (20) is a rolling control valve for the rolling cylinder (17).

次に、センタフロート(9)の対機体姿勢の切換機構(
B)を説明するとともに、この姿勢切換機構(B)と車
輪昇降機構(A)との連係機構(C)について説明する
。第1図に示すようJこ、センタフロート(9)前端の
十字揺動式ブラケット(22)よりセンサロッド(23
)が立設されるとともに、このセンサロッド(23)の
上端は前記昇降制御バルブ(I9)の操作アーム(24
)に連動連結されである。この操作アーム(24)に対
してはこのセンサロッド(23)を下向き付勢する回動
アーム(25)が接当作用し、この回動アーム(25)
にセンタフロート(9)の接地センサとしての感知感度
を設定する設定バネ(26)が連係されである。前記セ
ンサロッド(23)の中間位置には、略ひし形に配置さ
れた屈折リンク(27)が設けてあり、この屈折リンク
(27)が伸張すると前記センサロッド(23)の全長
が長くなり、この屈折リンク(27)が短縮すると前記
センサロッド(23)の全長が短くなる。つまり、後支
点(P2)で揺動するセンタフロート(9)は前記セン
サロッド(23)が短くなると走行機体(10)に対す
るその基準姿勢を前上り姿勢になる状態に切換え、前記
センサロッド(23)が長くなると走行機体(10)に
対する基準姿勢を前下り姿勢になる状態に切換える。
Next, the switching mechanism for the attitude of the center float (9) toward the aircraft (
B) will be explained, and a linkage mechanism (C) between the attitude switching mechanism (B) and the wheel lifting mechanism (A) will be explained. As shown in Figure 1, the sensor rod (23
) is erected, and the upper end of this sensor rod (23) is connected to the operating arm (24) of the lift control valve (I9).
) is interlocked and connected. A rotating arm (25) that biases this sensor rod (23) downward comes into contact with this operating arm (24), and this rotating arm (25)
A setting spring (26) is linked to set the sensing sensitivity of the center float (9) as a ground sensor. A bending link (27) arranged in a substantially diamond shape is provided at an intermediate position of the sensor rod (23), and when this bending link (27) extends, the entire length of the sensor rod (23) becomes longer. When the bending link (27) is shortened, the overall length of the sensor rod (23) is shortened. In other words, when the sensor rod (23) becomes short, the center float (9) swinging at the rear fulcrum (P2) switches its reference attitude with respect to the traveling aircraft (10) to the forward upward attitude, and the center float (9) swings at the rear fulcrum (P2). ) becomes longer, the reference attitude with respect to the traveling body (10) is switched to a forward downward attitude.

このセンサロッド(23)に設けられた屈折リンク(2
7)をセンタフロート(9)の姿勢切換機構(B)と称
する。
A bending link (2) provided on this sensor rod (23)
7) is referred to as the attitude switching mechanism (B) of the center float (9).

次に、車輪昇降機構(A)と姿勢切換機構(B)との連
係機構(C)を説明する。
Next, a linkage mechanism (C) between the wheel lifting mechanism (A) and the posture switching mechanism (B) will be explained.

重輪昇降用の昇降シリンダ(12)の天秤アーム(13
)と前記屈折リンク(27)との闇に連結ロッド(28
)と揺動リンク(29)とからなる連係機構(C)を設
け、前記連結ロッド(28)の一端を屈折リンク(27
)に連結してある。一方、AN記屈折リンク(27)は
引張バネ(30)によって伸縮方向に付勢されている。
The balance arm (13) of the lifting cylinder (12) for lifting heavy wheels.
) and the refractive link (27), the connecting rod (28
) and a swinging link (29), and one end of the connecting rod (28) is connected to a bending link (27).
). On the other hand, the AN bending link (27) is biased in the direction of expansion and contraction by a tension spring (30).

そこで、例えば第1図に示すように、耕盤が深くなり、
推進車輪(8)が下降すると前記連係機構(C)が矢印
方向に作動して、屈折リンク(27)が伸張する。
Therefore, as shown in Figure 1, for example, the plowing platform becomes deeper,
When the propulsion wheel (8) descends, the linkage mechanism (C) operates in the direction of the arrow, and the bending link (27) extends.

以上の状態より、車輪(8)の昇降中点位置での前記セ
ンサロッド(23)の全長を基準長さとして、それより
車輪(8)が下降すれば前記センサロッド(23)の長
さが長くなり、車輪(8)が上昇すれば短くなる。した
がって、耕盤が深くなる程前記センサロッド(23)が
長くなり、センタフロート(9)が走行機体(10)に
対する基準姿勢を前下り姿勢に切換える。したがって、
逆トルクを受けて後傾する走行機体(10)に取付けた
苗植付装置(6)の植付深さ変動を少なくできる。以上
、記述したセンタフロート(9)の対機体姿勢はセンタ
フロート(9)の接地圧と車輪昇降とがバランスして安
定状態にある制御の中立時における姿勢をいう。
Based on the above conditions, if the entire length of the sensor rod (23) at the midpoint position of the wheel (8) is taken as the reference length, and the wheel (8) is lowered from that point, the length of the sensor rod (23) is It becomes longer and becomes shorter as the wheel (8) rises. Therefore, the deeper the tiller is, the longer the sensor rod (23) becomes, and the center float (9) switches the reference attitude with respect to the traveling body (10) to the forward downward attitude. therefore,
It is possible to reduce variations in the planting depth of the seedling planting device (6) attached to the traveling body (10) that tilts backward due to reverse torque. The attitude of the center float (9) with respect to the aircraft described above refers to the attitude in the neutral state of control, where the ground pressure of the center float (9) and the wheel elevation are in a stable state in balance.

〔別実施例〕[Another example]

■ 第4図に示すように、接地センサ(9)の感度調節
機構としてのその下端部を接地した棒状の泥硬さ検出セ
ンサ(31)を設け、この泥硬さ検出センサ(31)と
、センタフロート(9)の接地付勢用設定バネ(26)
とを連係して、接地センサとしてのセンタフロート(9
)の感度を泥面硬さが硬くなる程敏感にするように設定
バネ付勢力を強くする構成を採っている。そこで、前記
泥硬さ検出センサ(31)と前記屈折リンク(27)と
をワイヤ(32)で連係して、前記泥硬さ検出センサ(
31)が上方に揺動する程屈折リンク(27)を伸張状
態にして、センタフロー ト(9)を前下、り姿勢に切
換える。
■ As shown in FIG. 4, a rod-shaped mud hardness detection sensor (31) whose lower end is grounded is provided as a sensitivity adjustment mechanism for the ground sensor (9), and this mud hardness detection sensor (31), Setting spring (26) for grounding bias of center float (9)
In conjunction with the center float (9) as a ground sensor,
) is configured to increase the set spring biasing force so that the harder the mud surface is, the more sensitive it becomes. Therefore, the mud hardness detection sensor (31) and the refraction link (27) are linked by a wire (32), and the mud hardness detection sensor (
The bending link (27) is extended so that the center float (9) swings upward, and the center float (9) is switched to a forward and downward position.

以上の場合は、泥硬さ検出センサ(31)による自動感
度変更構造に適した場合を示したが、センタフロート(
9)の感知感度を変更する感度調節機構としての人為操
作レバー(33)を使用したものにおいても、第5図に
示すように、同様な構成となる。つまり、前記人為操作
レバー(33)と、前記設定バネ(26)及び屈折リン
ク(27)とを夫々ワイヤ連係すればよい。
The above case is suitable for the automatic sensitivity change structure using the mud hardness detection sensor (31), but the center float (
9), which uses a manually operated lever (33) as a sensitivity adjustment mechanism for changing the sensing sensitivity, has a similar configuration as shown in FIG. In other words, the manual operation lever (33), the setting spring (26) and the bending link (27) may be linked by wire, respectively.

■ 車輪昇降機構(A)としてはアクチュエータで直接
昇降させるものでもよ(、前記したものに限定されるも
のではない。
(2) The wheel lifting mechanism (A) may be one in which the wheel is lifted and lowered directly by an actuator (but is not limited to the one described above).

■ 姿勢切換機構(B)としてはセンタフロート(9)
の後支点を機体側取付点に対して上下変位させるもので
もよく、又は、前記センサロアF’(23)自体を機体
側枢支点周りで上下揺動させるものでもよい。
■ Center float (9) as posture switching mechanism (B)
The rear fulcrum may be vertically displaced with respect to the attachment point on the body side, or the sensor lower F' (23) itself may be vertically swung around the pivot point on the body side.

■ 連係機構(C) としては連結ロッド(28)及び
連結リンク(29)を組合せたちの以外のものも考えら
れ、又は、ブシュプルワイヤ等を利用してもよい。或い
は、前記屈折リンク(27)をアクチュエータで駆動し
、このアクチュエータを昇降シリンダ(12)の伸縮量
を検出するセンサの検知結果を基に作動させるようにし
て、耕盤深さに応じてセンタフロート(9)の姿勢を切
換えるように電気制御による形態を採ってもよい。
(2) As the linking mechanism (C), other mechanisms than the combination of the connecting rod (28) and the connecting link (29) may be considered, or a bush-pull wire or the like may be used. Alternatively, the bending link (27) is driven by an actuator, and this actuator is operated based on the detection result of a sensor that detects the amount of expansion and contraction of the lifting cylinder (12), so that the center float is adjusted according to the plowing depth. (9) Electrical control may be used to switch the posture.

■ 作業装置としては施肥装置又は直播装置単独のもの
でもよい。
■ The working device may be a fertilizing device or a direct sowing device alone.

■ 接地センサ(9)としては、フロート式ではなく前
記した泥硬さセンサとして使用した小型のソリ式のもの
でもよく、フロート式のものに限定されない。
(2) The ground sensor (9) may be a small sled type used as the mud hardness sensor described above instead of a float type, and is not limited to a float type.

■ 4;I記推進車輪は−φ角形式のものでもよい。■4; The propulsion wheel described in I may be of the -φ square type.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すか、該記入により本発明は添付図面の構造
に限定されるものではない。
It should be noted that the present invention is not limited to the structure shown in the accompanying drawings by adding reference numerals in the claims for convenient comparison with the drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は未発明に係る歩行型水田作業機の実施例を示し、
第1図は姿勢切換機構を示す側面図、第2図は全体側面
図、第3図は全体平面図、第4圓は泥硬さ検出センサと
姿勢切換機構を連係する状態を示す側面図、第5図は感
度調節機構と姿勢切換機構を連係する状態を示す側面図
である。 (A)・・・・・・車輪昇降機構、 (B)・・・・・
・姿勢切換機構、(C)・・・・・・連係機構、(6)
・・・・・・作業装置、(8)・・・・・・推進重輪、
 (9)・・・・・・接地センサ、(lO)・・・・・
・走行機体、(26)・・・・・・接地付勢機構、(3
1) 、 (33)・・・・・・感度調節機構。
The drawing shows an example of a walking type paddy field work machine according to the invention,
FIG. 1 is a side view showing the posture switching mechanism, FIG. 2 is an overall side view, FIG. 3 is an overall plan view, and the fourth circle is a side view showing a state in which the mud hardness detection sensor and the attitude switching mechanism are linked. FIG. 5 is a side view showing a state in which the sensitivity adjustment mechanism and the attitude switching mechanism are linked. (A)... Wheel lifting mechanism, (B)...
・Attitude switching mechanism, (C)...Linkage mechanism, (6)
・・・・・・Working device, (8)・・・Propulsion heavy wheels,
(9)... Ground sensor, (lO)...
・Traveling body, (26)... Ground biasing mechanism, (3
1), (33)... Sensitivity adjustment mechanism.

Claims (1)

【特許請求の範囲】 1、接地センサ(9)の接地圧変動による上下動に基づ
いて、左右に一対備えられた又は単一の推進車輪(8)
の対機体高さを車輪昇降機構(A)で変更することによ
って、作業装置(6)の対地高さを所定高さに維持する
昇降制御手段を設けてある歩行型水田作業機であって、
制御中立時における前記接地センサ(9)の対機体基準
姿勢を変化させる姿勢切換機構(B)を設けるとともに
、前記推進車輪(8)が走行機体(10)に対して低位
に位置する程前記接地センサ(9)の対機体基準姿勢を
前下り姿勢に自動的に切換えるべく前記姿勢切換機構(
B)と車輪昇降機構(A)とを連係機構(C)で連係し
てある歩行型水田作業機。 2、接地センサ(9)の接地圧変動による上下動に基づ
いて、左右に一対備えられた又は単一の推進車輪(8)
の対機体高さを車輪昇降機構(A)で変更することによ
って、作業装置(6)の対地高さを所定高さに維持する
昇降制御手段を設けてある歩行型水田作業機であって、
制御中立時における前記接地センサ(9)の対機体基準
姿勢を変化させる姿勢切換機構(B)を設けるとともに
、泥面が硬くなる程接地センサ(9)の接地付勢機構(
26)の付勢力を大きくする接地センサ(9)の感度調
節機構(31)、(33)を設け、接地付勢機構(26
)の付勢力を大きくすると前記接地センサ(9)の対機
体基準姿勢を前下り姿勢に自動的に切換えるように姿勢
切換機構(B)と感度調節機構(31)、(33)とを
連係機構(C)で連係してある歩行型水田作業機。
[Claims] 1. A pair of left and right propulsion wheels (8) or a single propulsion wheel (8) based on vertical movement due to ground pressure fluctuations of the ground sensor (9).
A walking paddy field working machine equipped with a lifting control means for maintaining the height of the working device (6) above the ground at a predetermined height by changing the height of the working device (6) relative to the machine body using a wheel lifting mechanism (A),
An attitude switching mechanism (B) is provided that changes the reference attitude of the ground contact sensor (9) relative to the aircraft during neutral control, and the lower the propulsion wheel (8) is located with respect to the traveling aircraft (10), the more the ground contact is reduced. The attitude switching mechanism (
A walking type paddy field working machine in which the wheel lifting mechanism (A) and the wheel lifting mechanism (A) are linked by a linking mechanism (C). 2. A pair of propulsion wheels (8) on the left and right or a single propulsion wheel (8) based on the vertical movement due to ground pressure fluctuations of the ground sensor (9).
A walking paddy field working machine equipped with a lifting control means for maintaining the height of the working device (6) above the ground at a predetermined height by changing the height of the working device (6) relative to the machine body using a wheel lifting mechanism (A),
A posture switching mechanism (B) is provided to change the reference posture of the ground sensor (9) relative to the aircraft during neutral control, and a ground biasing mechanism (B) for the ground sensor (9) is provided as the mud surface becomes harder.
Sensitivity adjustment mechanisms (31) and (33) of the ground sensor (9) are provided to increase the biasing force of the ground biasing mechanism (26).
), the attitude switching mechanism (B) and the sensitivity adjustment mechanisms (31) and (33) are linked so that when the biasing force of the ground sensor (9) is increased, the reference attitude of the ground sensor (9) relative to the aircraft is automatically switched to the forward downward attitude. Walking-type paddy field work machine linked in (C).
JP18258488A 1988-07-21 1988-07-21 Walking type paddy field working machine Pending JPH0231605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18258488A JPH0231605A (en) 1988-07-21 1988-07-21 Walking type paddy field working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18258488A JPH0231605A (en) 1988-07-21 1988-07-21 Walking type paddy field working machine

Publications (1)

Publication Number Publication Date
JPH0231605A true JPH0231605A (en) 1990-02-01

Family

ID=16120840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18258488A Pending JPH0231605A (en) 1988-07-21 1988-07-21 Walking type paddy field working machine

Country Status (1)

Country Link
JP (1) JPH0231605A (en)

Similar Documents

Publication Publication Date Title
JPH0231605A (en) Walking type paddy field working machine
JPS631773Y2 (en)
JPH0233466Y2 (en)
JP3697923B2 (en) Elevating control device for working section of paddy field agricultural machine
JPH0244669Y2 (en)
JP2588873B2 (en) Rice transplanter
JPH10295126A (en) Elevating and lowering controller for riding type rice transplanter
JP3405795B2 (en) Rice transplanter
JPH0771417B2 (en) Attitude control device for agricultural work machines
JPH0233631Y2 (en)
JPH01117708A (en) Walking type paddy working machine
JPH0687691B2 (en) Walk-type paddy work machine
JPH0310806Y2 (en)
JP3538582B2 (en) Working device lifting and lowering control device
JPS6347408B2 (en)
JP2000245210A (en) Lift control structure for sulky rice transplanter
JPS6320267Y2 (en)
JPH0458923B2 (en)
JPH01304809A (en) Rolling control device of movable agricultural machine
JPH0687688B2 (en) Walk-type paddy work machine
JPH01211418A (en) Device returning the body of a paddy-working machine to parallel position
JP2001269019A (en) Agricultural working vehicle
JPH119033A (en) Rice transplanter
JP2000236716A (en) Rolling control apparatus seedling planter
JPH01277406A (en) Posture controller for working machine