JPH0231504A - Parabola antenna system - Google Patents

Parabola antenna system

Info

Publication number
JPH0231504A
JPH0231504A JP18211488A JP18211488A JPH0231504A JP H0231504 A JPH0231504 A JP H0231504A JP 18211488 A JP18211488 A JP 18211488A JP 18211488 A JP18211488 A JP 18211488A JP H0231504 A JPH0231504 A JP H0231504A
Authority
JP
Japan
Prior art keywords
mirror
moving quantity
axis
intersection
parabolic antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18211488A
Other languages
Japanese (ja)
Inventor
Daisuke Ogata
大輔 緒方
Osamu Sakakibara
榊原 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18211488A priority Critical patent/JPH0231504A/en
Publication of JPH0231504A publication Critical patent/JPH0231504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To improve the observation accuracy of various kinds of observations, such as VLBI observation, etc., by finding the moving quantity of the intersection of AZ end EL axes by detecting the moving quantity of a mirror against a moving quantity detecting means and performing modification, etc., of the received wave arriving time based on the found moving quantity of the intersection. CONSTITUTION:A moving quantity detecting means 11 which detects the moving quantity of the intersection of the AZ and EL axes 7 and 8 of a parabola antenna main body by detecting the moving quantity of a mirror 10 united with the antenna to one body is provided to a collimator 2. When the antenna is deformed and moved in the mirror axis direction by means of an external force, etc., the mirror 10 united with the antenna main body is also moved and the moving quantity of the mirror is equal to the moving quantity of the intersection of the AX and EL axes resulting from the deformation. Therefore, when the moving quantity of the mirror against the moving quantity detecting means 11 is detected, the moving quantity of the intersection of the AZ and EL axes 7 and 8 can be found and the received wave arriving time is modified based on the moving quantity. Thus the measurement accuracy of various kinds of measurements, such as VLBI measurement, etc., can be improved sharply.

Description

【発明の詳細な説明】 [産業上の利用分野] コノ発明は、AZ−ELマウント方式を採用した大口径
パラボラアンテナとして用いて好適の装置に関し、特に
AZ軸(固定鉛直軸)とEL軸(可動水平軸)との交点
の外力による変位量を検出可能としたパラボラアンテナ
装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device suitable for use as a large-diameter parabolic antenna that adopts the AZ-EL mount system, and particularly relates to a device suitable for use as a large-diameter parabolic antenna that adopts the AZ-EL mount system. This invention relates to a parabolic antenna device that is capable of detecting the amount of displacement caused by an external force at the intersection with a movable horizontal axis.

[従来の技術] 第3図は一般的な大口径パラボラアンテナの電波経路を
説明するための概略図、第4図(a)は第3図のIVa
部を拡大して具体的に示す側面図、第4図(b)は第4
図(a)のIVb矢視図であり、これらの図において、
1は主反射鏡パラボラ面、2はパラボラアンテナ本体と
の接触点をもたない独立した基礎上に設けられたマスタ
コリメータ、3は主反射鏡パラボラ面1の焦点、4は副
反射鏡鏡面、5は集束反射鏡、6は集束点、7はAZ軸
、8はEL軸(集束点6はこのEL軸軸上上ある)、9
はパラボラアンテナによりVLBI(超長距離ベースラ
イン干渉)WA測を行なう際のベースライン基準点、1
0は集束反射鏡5の裏側に設けられたマスタコリメータ
2用のミラーである。
[Prior art] Fig. 3 is a schematic diagram for explaining the radio wave path of a general large-diameter parabolic antenna, and Fig. 4(a) is a schematic diagram for explaining the radio wave path of a general large-diameter parabolic antenna.
FIG. 4(b) is a side view showing a detailed enlarged view of the
It is a view taken along the IVb arrow in FIG.
1 is a main reflecting mirror parabolic surface, 2 is a master collimator provided on an independent foundation that has no contact point with the main body of the parabolic antenna, 3 is the focal point of the main reflecting mirror parabolic surface 1, 4 is a sub reflecting mirror mirror surface, 5 is a focusing reflector, 6 is a focusing point, 7 is an AZ axis, 8 is an EL axis (the focusing point 6 is on this EL axis), 9
1 is the baseline reference point when performing VLBI (Very Long Range Baseline Interference) WA measurement using a parabolic antenna.
0 is a mirror for the master collimator 2 provided on the back side of the focusing reflector 5.

次に動作について説明する。主反射鏡パラボラ面1は、
その鏡軸が電波の到来する方向に向けられている。マス
タコリメータ2は、AZ軸7とEL軸8との交点に位置
し、ミラー10を指向することにより主反射鏡パラボラ
面1の向く方向を精密に検出する。
Next, the operation will be explained. The main reflecting mirror parabolic surface 1 is
Its mirror axis is oriented in the direction in which the radio waves arrive. The master collimator 2 is located at the intersection of the AZ axis 7 and the EL axis 8, and precisely detects the direction in which the main reflecting mirror parabolic surface 1 faces by pointing the mirror 10.

そして、主反射鏡パラボラ面1に入射した電波は、焦点
3に向かって反射され、主反射鏡パラボラ面1と焦点3
を共有する副反射鏡鏡面4にて反射された後、集束反射
鏡5を経て集束点6に到達する。
Then, the radio waves incident on the main reflecting mirror parabolic surface 1 are reflected toward the focal point 3, and the radio waves enter the main reflecting mirror parabolic surface 1 and the focal point 3.
After being reflected by the sub-reflector mirror surface 4 that shares the same, the light passes through the converging reflector 5 and reaches the converging point 6.

このようなパラボラアンテナを用いて例えばVLB I
@測を行なう場合、遠方から到来する電波が、主反射鏡
パラボラ面1で反射されずにベースライン基準点9を通
過する時刻のことを″受信波到達時刻″と呼び、ある決
められた電波の受信波到達時刻を精度よく記録すること
が必要である。
Using such a parabolic antenna, for example, VLB I
When performing @measurement, the time when a radio wave arriving from a distance passes the baseline reference point 9 without being reflected by the parabolic surface 1 of the main reflector is called the "received wave arrival time", It is necessary to accurately record the arrival time of received waves.

アンテナが受信する電波は、ベースライン基準点9を直
接通過する電波に比べ主反射鏡パラボラ面1等で反射さ
れる分だけ遅れて集束点6に到達する。この遅れは、′
アンテナ遅延″′と呼ばれ、電波経路長の計算あるいは
実測によりその概略値が求められる。ある決められた電
波に対する受信波到達時刻は、実際にその電波を受信し
た時刻からアンテナ遅延の時間分を差し引くことにより
得られる。
The radio waves received by the antenna arrive at the focusing point 6 with a delay corresponding to the amount reflected by the parabolic surface 1 of the main reflector, compared to radio waves that directly pass through the baseline reference point 9. This delay is
It is called antenna delay, and its approximate value can be obtained by calculating or actually measuring the radio wave path length.The arrival time of a received wave for a certain radio wave is calculated by subtracting the antenna delay time from the time when the radio wave was actually received. Obtained by subtracting.

[発明が解決しようとする課題] ところで、パラボラアンテナが外力を受けて変形しAZ
軸7とEL軸8との交点が主反射鏡パラボラ面1の鏡軸
方向に移動した場合には、アンテナ遅延が変化して受信
波到達時刻に誤差が生じ。
[Problem to be solved by the invention] By the way, the parabolic antenna deforms due to external force and
When the intersection of the axis 7 and the EL axis 8 moves in the mirror axis direction of the main reflecting mirror parabolic surface 1, the antenna delay changes and an error occurs in the arrival time of the received wave.

VLBI観測の精度を劣化させるという課題がある。There is a problem in that the accuracy of VLBI observation deteriorates.

この発明は上記のような課題を解消するためになされた
もので、外力によるパラボラアンテナの変形に伴うAZ
軸とEL軸との交点の移動量を検出できるようにして、
VLBIR測等の種々の観測精度の向上をはかったパラ
ボラアンテナ装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems.
By making it possible to detect the amount of movement at the intersection of the axis and the EL axis,
The object of the present invention is to obtain a parabolic antenna device that improves the accuracy of various observations such as VLBIR measurement.

[課題を解決するための手段] この発明に係るパラボラアンテナ装置は、コリメータに
、パラボラアンテナと一体的なミラーの移動量を検出し
て上記パラボラアンテナ本体のAZ軸とEL軸との交点
の移動量を検出しうる移動量検出手段を設けたものであ
る。
[Means for Solving the Problems] A parabolic antenna device according to the present invention includes a collimator that detects the amount of movement of a mirror that is integrated with the parabolic antenna, and detects the movement of the intersection of the AZ axis and the EL axis of the parabolic antenna main body. A moving amount detecting means capable of detecting the amount of movement is provided.

[作   用] この発明におけるパラボラアンテナ装置では、パラボラ
アンテナが外力等により゛変形して鏡軸方向に移動する
と、その移動量だけパラボラアンテナ本体と一体的なミ
ラーも移動する。この移動量は、上記変形に伴うAZ軸
とEL軸との交点の移動量にも等しい。従って、パラボ
ラアンテナ本体とから独立したコリメータに設けられた
移動量検出手段を用いて、この移動量検出手段に対する
ミラーの移動量を検出することで、AZ軸とEL軸との
交点の移動量を求めることができる。
[Function] In the parabolic antenna device of the present invention, when the parabolic antenna is deformed by an external force or the like and moves in the direction of the mirror axis, the mirror integrated with the parabolic antenna main body also moves by the amount of movement. This amount of movement is also equal to the amount of movement of the intersection of the AZ axis and the EL axis due to the above deformation. Therefore, by detecting the amount of movement of the mirror with respect to this movement amount detection means using a movement amount detection means provided on a collimator that is independent from the parabolic antenna body, the amount of movement at the intersection of the AZ axis and the EL axis can be determined. You can ask for it.

[発明の実施例] 以下、この発明の一実施例を図について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)、(b)において、2はパラボラアンテナ
本体から独立した基礎上に設けられたマスタコリメータ
で、AZ軸7とEL軸8との交点に配置され、ミラー1
0を指向することにより主反射鏡パラボラ面(第3図の
符号1参照)の向く方向を検出するものである。また、
5は集束反射鏡、9はパラボラアンテナによりVLBI
WA測を行なう際のベースライン基準点、10は集束反
射鏡5の裏側に設けられパラボラアンテナ本体と一体的
なマスタコリメータ2用のミラー 11はマスタコリメ
ータ2の上部に取り付けられたレーザ式変位計(移動量
検出手段)で、このレーザ式変位計11は、ミラー10
を指向してこのミラー10へ向けてレーザ光を照射しそ
の反射を得ることで変位計11とミラー10との間の距
離を検出してミラー1oの変位計11に対する移動量を
検出しうるものである。
In FIGS. 1(a) and 1(b), reference numeral 2 denotes a master collimator installed on a foundation independent from the parabolic antenna main body, and is placed at the intersection of the AZ axis 7 and the EL axis 8, and the mirror 1
0, the direction in which the main reflecting mirror parabolic surface (see reference numeral 1 in FIG. 3) faces is detected. Also,
5 is a focusing reflector, 9 is a parabolic antenna for VLBI
Baseline reference point when performing WA measurement, 10 is a mirror for the master collimator 2 that is provided on the back side of the focusing reflector 5 and is integrated with the parabolic antenna body. 11 is a laser displacement meter attached to the top of the master collimator 2. (movement amount detection means), this laser displacement meter 11 is a mirror 10
A device capable of detecting the distance between the displacement meter 11 and the mirror 10 by irradiating a laser beam toward the mirror 10 and obtaining the reflection, thereby detecting the amount of movement of the mirror 1o with respect to the displacement meter 11. It is.

次に、本実施例装置の動作について説明する。Next, the operation of the device of this embodiment will be explained.

本実施例でも、従来装置と同様に、マスタコリメータ2
は、AZ軸7とEL軸8との交点に位置し、ミラー10
を指向することにより主反射鏡パラボラ面1の向く方向
を精密に検出している。
In this embodiment as well, the master collimator 2
is located at the intersection of the AZ axis 7 and the EL axis 8, and the mirror 10
By pointing the main reflecting mirror parabolic surface 1, the direction in which the main reflecting mirror parabolic surface 1 faces is precisely detected.

そして、レーザ式変位計11もまたミラー1゜を指向し
て、レーザ式変位計11とミラー10との間の距離がレ
ーザ光反射時間に基づいて検出される。
The laser displacement meter 11 also points toward the mirror 1°, and the distance between the laser displacement meter 11 and the mirror 10 is detected based on the laser beam reflection time.

パラボラアンテナ本体が外力を受けて集束反射鏡5がベ
ースライン基準点9に対して移動するような変形を生じ
ると、ミラー10も集束反射鏡5とともに移動する一方
、マスタコリメータ2およびレーザ式変位計11は、ア
ンテナと接触点をもたず独立しているので移動しない。
When the parabolic antenna main body receives external force and deforms so that the focusing reflector 5 moves relative to the baseline reference point 9, the mirror 10 also moves together with the focusing reflector 5, while the master collimator 2 and laser displacement meter 11 does not move because it is independent and has no contact point with the antenna.

従って、ミラー10とレーザ式変位計11との間の距離
が変イヒし、その変化量の鏡軸方向成分がレーザ式変位
計11により検出される。
Therefore, the distance between the mirror 10 and the laser displacement meter 11 changes, and the laser displacement meter 11 detects the mirror axis direction component of the amount of change.

ここで、AZ軸7とEL軸8との交点からミラー10ま
での距離は、パラボラアンテナ本体の大きさに比べて十
分小さいので、パラボラアンテナ本体が外力により変形
した際のAZ軸7とEL軸8との交点の移動量と、ミラ
ー1oとの移動量とはほとんど同じである。
Here, since the distance from the intersection of the AZ axis 7 and the EL axis 8 to the mirror 10 is sufficiently small compared to the size of the parabolic antenna body, the distance between the AZ axis 7 and the EL axis when the parabolic antenna body is deformed by external force is The amount of movement of the intersection with 8 and the amount of movement with mirror 1o are almost the same.

このように、本実施例の装置によれば、パラボラアンテ
ナ本体の変形に伴うレーザ式変位計11によりAZ軸7
とEL軸8との交点の鏡軸方向の移動量を検出すること
が可能となるので、検出された移動量に基づいて受信波
到達時刻の修正を行なうことによって、VLBIl!測
等の種々の観測精度が大幅に向上するのである。
As described above, according to the device of this embodiment, the laser displacement meter 11 can measure the AZ axis 7 as the parabolic antenna main body deforms.
Since it is possible to detect the amount of movement in the mirror axis direction of the intersection of the EL axis 8 and the EL axis 8, by correcting the received wave arrival time based on the detected amount of movement, VLBIl! This will greatly improve the accuracy of various observations such as measurements.

なお、上記実施例では、移動量検出手段としてレーザ式
距離計11を用いた場合について説明したが、このレー
ザ式距離計11に代えて第2図に示すようなx−yトラ
ッカー12を用いてもよい。
In the above embodiment, a case was explained in which the laser distance meter 11 was used as the movement amount detection means, but instead of the laser distance meter 11, an x-y tracker 12 as shown in FIG. 2 was used. Good too.

第2図において、12はマスタコリメータ2の上部に取
り付けられたX−Y トラッカー(移動量検出手段)、
13は集束反射鏡5の裏側においてAZ軸7と平行に且
つEL軸8と垂直になるように設けられた目盛板、14
は集束反射鏡5の裏側に設けられたプリズムである。目
盛板13の表面には、AZ軸7およびEL軸8にそれぞ
れ直交する準線が等間隔に多数描かれている。
In FIG. 2, 12 is an X-Y tracker (movement amount detection means) attached to the upper part of the master collimator 2;
13 is a scale plate provided on the back side of the focusing reflector 5 so as to be parallel to the AZ axis 7 and perpendicular to the EL axis 8;
is a prism provided on the back side of the focusing reflector 5. On the surface of the scale plate 13, a large number of directrix lines perpendicular to the AZ axis 7 and the EL axis 8 are drawn at equal intervals.

このようにX−Y トラッカー12を用いた装置の場合
も、前記実施例と同様に、パラボラアンテナ本体が外力
を受けて変形したとき、ミラー10のベースライン基準
点9に対する鏡軸方向移動量が、プリズム14を介して
目盛板13の準線の移動をx−yトラッカー12で読み
取ることにより検出される。従って、X−Y トラッカ
ー12を用いても前記実施例と同様の作用効果が得られ
る。
In the case of a device using the X-Y tracker 12 as described above, when the parabolic antenna main body is deformed by receiving an external force, the amount of movement of the mirror 10 in the mirror axis direction with respect to the baseline reference point 9 is , is detected by reading the movement of the directrix of the scale plate 13 through the prism 14 with the x-y tracker 12. Therefore, even if the XY tracker 12 is used, the same effects as in the above embodiment can be obtained.

[発明の効果コ 以上のように、この発明によれば、移動量検出手段によ
り、この移動量検出手段に対するミラーの移動量を検出
しAZ軸とEL軸との交点の移動量を得られるように構
成したので、検出された移動量に基づいて受信波到達時
刻の修正などを行なうことでVLBI観測等の種々の観
測精度を大幅に向上できる効果がある。
[Effects of the Invention] As described above, according to the present invention, the movement amount of the mirror relative to the movement amount detection means can be detected by the movement amount detection means to obtain the movement amount of the intersection of the AZ axis and the EL axis. With this configuration, the accuracy of various observations such as VLBI observation can be greatly improved by correcting the arrival time of the received wave based on the detected amount of movement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)はこの発明の一実施例によるパラ
ボラアンテナ装置を示すもので、第1図(a)はその要
部を示す側面図〔第4図(a)に対応する図〕、第1図
(b)は第1図(a)のIb矢視図、第2図はこの発明
の他の実施例によるパラボラアンテナ装置の要部を示す
側面図、第3図は一般的な大口径パラボラアンテナの電
波経路を説明するための概略図、第4図(、)は第3図
のIVa部を拡大して具体的に示す側面図、第4図(b
)は第4図(a)のrVb矢視図である。 図において、1・−主反射鏡パラボラ面、2−・マスタ
コリメータ、5−集束反射鏡、7・−AZ軸、8−EL
軸、10−ミラー、11−・−レーザ式変位計(移動量
検出手段)、12−X−Yトラッカー(移動量検出手段
)。 なお1図中、同一の符号は同一、又は相当部分を示して
いる。
FIGS. 1(a) and 1(b) show a parabolic antenna device according to an embodiment of the present invention, and FIG. 1(a) is a side view showing the main parts [corresponding to FIG. 4(a)]. ], FIG. 1(b) is a view in the direction of arrow Ib in FIG. 1(a), FIG. 2 is a side view showing the main parts of a parabolic antenna device according to another embodiment of the present invention, and FIG. 3 is a general view. 4(a) is a schematic diagram for explaining the radio wave path of a large-diameter parabolic antenna, and FIG.
) is a view taken along the rVb arrow in FIG. 4(a). In the figure, 1 - main reflector parabolic surface, 2 - master collimator, 5 - focusing reflector, 7 - AZ axis, 8 - EL
axis, 10-mirror, 11-.-laser type displacement meter (movement amount detection means), 12-XY tracker (movement amount detection means). In addition, in FIG. 1, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] パラボラアンテナ本体から独立した基礎上にコリメータ
をそなえるとともに、上記パラボラアンテナ本体と一体
的なミラーをそなえ、上記コリメータを上記ミラーへ指
向させることにより上記パラボラアンテナの鏡軸の方向
を調整しうるパラボラアンテナにおいて、上記コリメー
タに、上記ミラーの移動量を検出して上記パラボラアン
テナ本体のAZ軸とEL軸との交点の移動量を検出しう
る移動量検出手段が設けられたことを特徴とするパラボ
ラアンテナ装置。
A parabolic antenna comprising a collimator on a foundation independent of a parabolic antenna body and a mirror integrated with the parabolic antenna body, the direction of the mirror axis of the parabolic antenna being adjustable by directing the collimator toward the mirror. In the parabolic antenna, the collimator is provided with movement amount detection means capable of detecting the movement amount of the mirror and detecting the movement amount of the intersection of the AZ axis and the EL axis of the parabolic antenna main body. Device.
JP18211488A 1988-07-21 1988-07-21 Parabola antenna system Pending JPH0231504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18211488A JPH0231504A (en) 1988-07-21 1988-07-21 Parabola antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18211488A JPH0231504A (en) 1988-07-21 1988-07-21 Parabola antenna system

Publications (1)

Publication Number Publication Date
JPH0231504A true JPH0231504A (en) 1990-02-01

Family

ID=16112578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18211488A Pending JPH0231504A (en) 1988-07-21 1988-07-21 Parabola antenna system

Country Status (1)

Country Link
JP (1) JPH0231504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023063A (en) * 2016-08-05 2018-02-08 三菱電機株式会社 Antenna orientation direction control device and system, antenna system, and control device
JP2020020532A (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Temperature homogenization device, structure, and parabolic antenna device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023063A (en) * 2016-08-05 2018-02-08 三菱電機株式会社 Antenna orientation direction control device and system, antenna system, and control device
JP2020020532A (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Temperature homogenization device, structure, and parabolic antenna device

Similar Documents

Publication Publication Date Title
US4068955A (en) Contact-free thickness measuring method and device
US4483618A (en) Laser measurement system, virtual detector probe and carriage yaw compensator
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
US3802774A (en) Method and apparatus for determining the thickness or width of work pieces
AU5800000A (en) Method and device for determining spatial positions and orientations
JPH02140604A (en) Method and apparatus for measuring thickness of thin insulating film
JPS6149602B2 (en)
US4776699A (en) Optical measuring device
CN116164673A (en) Straightness interferometry method based on optical interference principle
CN108444396B (en) Light path consistent displacement sensor and measuring method thereof
US4509858A (en) Compact, linear measurement interferometer with zero abbe error
CN105737758B (en) A kind of long-range profile measuring instrument
JPH0231504A (en) Parabola antenna system
CN109696129B (en) Precise displacement sensor and measuring method thereof
JPH095059A (en) Flatness measuring device
CN208833182U (en) Differential type displacement sensor with refracting telescope
CN208751507U (en) A kind of continuous angular transducer of novel smooth arm scale-up version high-precision
JPS6228707A (en) Apparatus having telecentric objective mirror f-theta corrected for non-contact measurement
US4425041A (en) Measuring apparatus
US3984153A (en) Apparatus to transform a single laser beam into two parallel beams of adjustable spacing and intensity
CN110793468B (en) Optical element position detection device, control device and detection method
US4595288A (en) Method and apparatus for measuring deep mirrors
CN208366292U (en) Reflection component and novel angle sensor applied to angular transducer
JPH0721409B2 (en) Optical distance detector
CN117367327B (en) Pentagonal prism perpendicularity detection system and method