JPH0231305A - Waveform equalizing circuit for magnetic disk device - Google Patents

Waveform equalizing circuit for magnetic disk device

Info

Publication number
JPH0231305A
JPH0231305A JP18112788A JP18112788A JPH0231305A JP H0231305 A JPH0231305 A JP H0231305A JP 18112788 A JP18112788 A JP 18112788A JP 18112788 A JP18112788 A JP 18112788A JP H0231305 A JPH0231305 A JP H0231305A
Authority
JP
Japan
Prior art keywords
wave
waveform equalization
amplitude
differential amplifier
agc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18112788A
Other languages
Japanese (ja)
Inventor
Akitoshi Iwata
岩田 章利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18112788A priority Critical patent/JPH0231305A/en
Publication of JPH0231305A publication Critical patent/JPH0231305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Magnetic Recording (AREA)

Abstract

PURPOSE:To prevent the erroneous detection of a peak position and to improve a reading margin by providing a means to control the amplitude of the synthesized wave of an incident wave and a reflected wave from a delay element in correspondence to a cylinder position and executing optimum waveform equalization in correspondence to the cylinder position. CONSTITUTION:An isolated wave to be reproduced by a magnetic head is inputted, delayed by a delay line 1 and inputted to the + side of a differential amplifier 4. An AGC AMP3 determines the amplitude of the synthesized wave of the incident wave and the reflected wave from the differential amplifier 4. However, the gain of this AGC AMP3 is set to the table of a CPU6 in advance and converted to be analog by a D/A converter 5. Then, the gain of the AGC AMP3 is controlled. In the differential amplifier 4, by respectively subtracting an output waveform, which comes from the AGC AMP3, from the input waveform of the + side, the bottom of the reproducing isolated wave is cut off. Then, the optimum waveform equalization is executed. Thus, the exact peak position can be detected and the reading margin can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は磁気ディスク装置の波形等化回路に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a waveform equalization circuit for a magnetic disk drive.

(従来の技術) 従来、磁気ディスク装置において、媒体に記録された磁
化反転を磁気ヘッドを用いて再生すると、第3図に示す
ような孤立波を得ることができる。ところが磁化反転の
間隔が狭くなると、孤立波どうしが干渉し合い第4図に
示すように孤立波のピーク位置が本来あるべき位置から
ずれてしまう。磁気記録においては、媒体に記録された
磁化反転の部分、すなわち再生された孤立波のピーク位
置に情報が含まれておシ、孤立波のピーク位置がずれる
と、結果として読み取シマージンが減少することになる
(Prior Art) Conventionally, in a magnetic disk device, when magnetization reversal recorded on a medium is reproduced using a magnetic head, a solitary wave as shown in FIG. 3 can be obtained. However, when the interval between magnetization reversals becomes narrower, the solitary waves interfere with each other, and the peak position of the solitary wave shifts from its original position as shown in FIG. In magnetic recording, information is contained in the magnetization reversal part recorded on the medium, that is, the peak position of the reproduced solitary wave, and if the peak position of the solitary wave shifts, the reading margin will decrease as a result. become.

磁気記憶装置においては、これを防ぐため、第5図に示
すような波形等化回路が用いられておシ、これによシ再
生孤立波のすそを切って磁化反転の間隔が狭くなった場
合の波形干渉によるピーク位置のずれを防止している。
In magnetic storage devices, in order to prevent this, a waveform equalization circuit as shown in Figure 5 is used. This prevents peak position shifts due to waveform interference.

以下に第5図に示す従来の波形等化回路の動作について
説明する。第5図(4)において、51は、信号をΔT
だけ遅らせるための遅延素子、52は遅延素子51の入
力インピーダンスと整合をとるための入力抵抗、53は
遅延素子の入力端に発生する入力波と反射波から成る信
号をバッファするための増幅器、54は入力波と反射波
の合成波の振幅を決める減衰器、55は遅延素子51に
ょシ遅れた信号と、減衰器54により信号振幅を決めら
れた合成波の差をとシ増幅する差動増幅器である。第5
図03)において、1のような孤立波が入力信号として
得られたとすると、差動増幅器55の+側には遅延素子
51によシ、入力よシΔTだけ遅れた信号すが発生する
。又、差動増幅器55の一側には入力信号と差動増幅器
55の+側からの反射波との合成波が増幅器53によっ
て振幅が決定され、信号Cとして入力し、差動増幅器s
Hcよりdのような出力波形が得られる。dの波形はb
の波形からCの波形を減じたものなので、孤立波すのす
そが切られた結果となシ、磁化反転の間隔が狭くなった
際の孤立波どうしの干渉を防ぐことができる。
The operation of the conventional waveform equalization circuit shown in FIG. 5 will be explained below. In FIG. 5(4), 51 indicates the signal ΔT
52 is an input resistor for matching the input impedance of the delay element 51; 53 is an amplifier for buffering a signal consisting of an input wave and a reflected wave generated at the input terminal of the delay element; 54; 55 is an attenuator that determines the amplitude of the composite wave of the input wave and the reflected wave, and 55 is a differential amplifier that amplifies the difference between the signal delayed by the delay element 51 and the composite wave whose signal amplitude is determined by the attenuator 54. It is. Fifth
In FIG. 3), if a solitary wave like 1 is obtained as an input signal, a signal delayed by ΔT from the input is generated on the + side of the differential amplifier 55 due to the delay element 51. Further, a composite wave of the input signal and the reflected wave from the + side of the differential amplifier 55 is inputted as a signal C to one side of the differential amplifier 55, and the amplitude is determined by the amplifier 53.
An output waveform like d can be obtained from Hc. The waveform of d is b
Since the waveform of C is subtracted from the waveform of C, the bottom of the solitary wave is cut off, and interference between the solitary waves when the interval between magnetization reversals becomes narrow can be prevented.

一般に、磁気記録媒体に記録された磁化反転をヘッドを
用いて再生する場合、内周よシも外周の方がヘッド速度
が大きいため、内周と比較して外周の方が孤立波の幅が
狭くなる。しかし前記従来例では、入射波と反射波との
合成波の振幅を決める減衰器54のrインが固定のため
、外周も内周と同じ量の波形等化がなされ、第6図に示
すように、過修正の状態が発生し、ピーク検出で誤検出
を生じ、結果的に読み取シマージンの減少等の問題があ
った。
Generally, when reproducing magnetization reversal recorded on a magnetic recording medium using a head, the head speed is higher on the outer circumference than on the inner circumference, so the width of the solitary wave is larger on the outer circumference than on the inner circumference. It gets narrower. However, in the conventional example, since the r-in of the attenuator 54, which determines the amplitude of the composite wave of the incident wave and the reflected wave, is fixed, the outer circumference is equalized by the same amount as the inner circumference, as shown in FIG. In addition, an overcorrection condition occurs, resulting in false detection in peak detection, resulting in problems such as a decrease in reading simmering margin.

(発明が解決しようとする課題) 本発明の課題は、上記従来の問題点を解消し、ピーク位
置の誤検出を防止し、読み取シマージンの向上を図るこ
とができる磁気ディスク装置の波形等化回路を提供する
ことである。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned conventional problems, prevent false detection of peak positions, and improve the read shimarine by a waveform equalization circuit for a magnetic disk device. The goal is to provide the following.

[発明の構成コ (課題を解決するための手段) 本発明による磁気ディスク装置の波形等化回路は、(1
)入力信号を遅延させる遅延素子と、この遅延素子の入
力インピーダンスとの整合をとる入力抵抗とを有する磁
気ディスク装置の波形等化回路において、シリンダ位置
における最適な波形等化が得られるように、入射波と前
記遅延素子からの反射波との合成波の振幅を前記シリン
ダ位置に応じて制御する手段を具備してなることを特徴
とする。(2)前記入射波と前記遅延素子からの反射波
との合成波の振幅を前記シリンダ位置に応じて制御する
手段は、CPUのテーブルを利用して行なわれることを
特徴とする。
[Configuration of the Invention (Means for Solving the Problems) The waveform equalization circuit of the magnetic disk device according to the present invention comprises (1)
) In a waveform equalization circuit of a magnetic disk drive having a delay element that delays an input signal and an input resistor that matches the input impedance of this delay element, in order to obtain optimal waveform equalization at the cylinder position, It is characterized by comprising means for controlling the amplitude of a composite wave of an incident wave and a reflected wave from the delay element in accordance with the cylinder position. (2) The means for controlling the amplitude of the composite wave of the incident wave and the reflected wave from the delay element according to the cylinder position is characterized by using a table of the CPU.

(作 用) 本発明によれば、入射波と反射波との合成波を用いて波
形等化を行なう場合、外周においてはヘッド速度が内周
と比較して大きく、孤立波の幅が狭くなるため、内周と
同じ合成波を用いると過修正となり、ピーク位置の誤検
出が発生するおそれがあるので、例えば、CPU Kよ
シ制御される増幅器(例えばAGCAMP )を設け、
この増幅器の増幅度を制御して合成波の振幅をシリンダ
位置に応じて最適に制御することによシ、そのシリンダ
位置におけるピーク位置検出に最適な波形等化を行なう
ことができる。
(Function) According to the present invention, when waveform equalization is performed using a composite wave of an incident wave and a reflected wave, the head speed is greater at the outer circumference than at the inner circumference, and the width of the solitary wave becomes narrower. Therefore, if the same synthesized wave as that for the inner frequency is used, overcorrection may occur and false detection of the peak position may occur. Therefore, for example, an amplifier (for example, AGCAMP) controlled by the CPU K may be provided.
By controlling the amplification degree of this amplifier to optimally control the amplitude of the composite wave according to the cylinder position, it is possible to perform waveform equalization optimal for peak position detection at that cylinder position.

(実施例) 第1図は本発明の一実施例の構成を示す回路図である。(Example) FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention.

第1図において、1は信号を3丁だけ遅らせるための遅
延素子、2は遅延素子1の入力インピーダンスとの整合
をとるための入力抵抗、3は入射波と差動増幅器4から
の反射波との合成波の振幅を最適にするための増幅器で
、例えばAGCAMP 、 4は遅延素子1からの入力
信号からAGCAMP 3で振幅を最適にされた合成波
を減じて再生波のすそを切る差動増幅器、5はCPU 
6からのシリンダに応じたAGCAMP jの増幅度を
アナログ値に変換してAGCAMP Jに供給するいコ
ンバータ、6は予め設定されたテーブルからシリンダ位
置に応じたAGCAMPの振幅変をいコンバータに供給
するCPUを示す。
In FIG. 1, 1 is a delay element for delaying the signal by three signals, 2 is an input resistor for matching the input impedance of delay element 1, and 3 is for connecting the incident wave and the reflected wave from the differential amplifier 4. For example, AGCAMP 4 is a differential amplifier that subtracts the synthesized wave whose amplitude has been optimized by AGCAMP 3 from the input signal from the delay element 1 to cut the base of the reproduced wave. , 5 is CPU
Converter 6 converts the amplification degree of AGCAMP j according to the cylinder into an analog value and supplies it to AGCAMP J. 6 supplies the amplitude change of AGCAMP according to the cylinder position from a preset table to the converter. Indicates a CPU.

第2図は第1図において、AGCAMP 3のrイン制
御を用いた場合の内外周における波形等化を示す図で、
第2図1は、第1図の差動増幅器4の+側へ入力する内
周における再生孤立波、第2図すは第1図の差動増幅器
4の一側へ入力する内周における入射波と反射波の合成
波、第2図Cは内周における波形等化後の孤立波、第2
図dは第1図の差動増幅器4の+側へ入力する外周にお
ける再生孤立波、第2図eは第1図の差動増幅器4の一
側へ入力する外周における入射波と反射波の合成波、第
2図fは外周における波形等化後の孤立波を示す。
FIG. 2 is a diagram showing waveform equalization at the inner and outer circumferences when using the r-in control of AGCAMP 3 in FIG.
FIG. 2 1 shows a regenerated solitary wave on the inner circumference that is input to the + side of the differential amplifier 4 in FIG. 1, and FIG. The composite wave of the wave and the reflected wave, Figure 2C is the solitary wave after waveform equalization at the inner circumference, and the second
Figure d shows the reproduced solitary wave at the outer periphery inputting to the + side of the differential amplifier 4 in Figure 1, and Figure 2 e shows the incident wave and reflected wave at the outer periphery inputting to one side of the differential amplifier 4 in Figure 1. The composite wave, FIG. 2f, shows a solitary wave after waveform equalization at the outer periphery.

上記本発明の一実施例の作用について以下に説明する。The operation of the embodiment of the present invention described above will be explained below.

第1図および第2図において、磁気ヘッドによって再生
された孤立波がfjlc1図の波形等化回路に入力し、
遅延線1で遅延された誤差動増幅器4の+側へ入力する
波形を第2図a、dとする。ここで孤立波の幅が外周の
方が狭いのは、外周が内周と比較してヘッド速度が大き
いためである。又、AGCAMP Jの入力には、入射
波と差動増幅器4の+側からの反射波が位相差2・2丁
を持って入力する。AGCAMP Jは入射波と反射波
の合成波の振幅を決定するが、このダインはCPU 6
のテーブルにあらかじめ設定されておシ、内周から外周
へ行くほど減衰が大きくなるように命令が出され、諺コ
ンバータ5によシアナログに変換されてAGCAMPJ
のダインが制御される。すなわちAGCAMP3の出力
波形は、第2図す、・のようになる。外周の方が孤立波
の幅が狭くなりているので、それに応じて外周における
AGCAMP 3の出力波形・も内周におけるAGCA
MP 3の出力波形すと比較して振幅が小さく調節され
ていることがわかる。このようにシリンダの位置、つま
シ、再生孤立波の幅の広さに応じた振幅を持った合成波
がAGCAMP jの出力から差動増幅器4の一側へ供
給される。差動増幅器4では+側の入力波形a、dから
AGCAMPJからの出力波形す、・をそれぞれ減じる
ことによシ、再生孤立波のすそが切られ、波形干渉を防
ぐことができる。
In FIGS. 1 and 2, the solitary wave reproduced by the magnetic head is input to the waveform equalization circuit shown in fjlc1,
The waveforms delayed by the delay line 1 and input to the + side of the error dynamic amplifier 4 are shown in FIG. 2 a and d. The reason why the width of the solitary wave is narrower at the outer circumference is that the head speed is greater at the outer circumference than at the inner circumference. Further, the incident wave and the reflected wave from the + side of the differential amplifier 4 are inputted to the input of AGCAMP J with a phase difference of 2.2. AGCAMP J determines the amplitude of the composite wave of the incident wave and the reflected wave, but this dyne is
A command is set in the table in advance so that the attenuation increases from the inner circumference to the outer circumference, and is converted into an analog signal by the converter 5.
dyne is controlled. That is, the output waveform of AGCAMP3 is as shown in FIG. Since the width of the solitary wave is narrower on the outer circumference, the output waveform of AGCAMP 3 on the outer circumference and AGCA on the inner circumference will change accordingly.
It can be seen that the amplitude has been adjusted to be smaller than the output waveform of MP3. In this way, a composite wave having an amplitude corresponding to the position of the cylinder, the width of the pick, and the width of the reproduced solitary wave is supplied from the output of AGCAMP j to one side of the differential amplifier 4. In the differential amplifier 4, by subtracting the output waveforms from AGCAMPJ from the input waveforms a and d on the + side, the base of the reproduced solitary wave is cut, and waveform interference can be prevented.

波形等化後の孤立波は、第2図e、fであるが、AGC
AMP 3によって、合成波の振幅が調節されるため、
再生孤立波の幅が狭く、内周に比べて孤立波のすそが少
ない外周においても過修正されることなく、最適な波形
等化が行なえる。
The solitary waves after waveform equalization are shown in Figure 2 e and f, but the AGC
Since the amplitude of the composite wave is adjusted by AMP 3,
Optimal waveform equalization can be performed without overcorrection even at the outer periphery where the width of the reproduced solitary wave is narrow and the base of the solitary wave is smaller than at the inner periphery.

[発明の効果コ 本発明によれば、例えばCPUによシ制御されるAGC
AMPを設け、入射波と反射波との合成波の振幅をシリ
ンダ位置に応じて増減することにより、そのシリンダに
おける最適な波形等化を行なうことができるので、正確
なピーク位置の検出可能となシ、読み取りマージンの向
上を図ることができる。
[Effects of the Invention] According to the present invention, for example, the AGC controlled by the CPU
By installing an AMP and increasing or decreasing the amplitude of the composite wave of the incident wave and reflected wave according to the cylinder position, it is possible to perform optimal waveform equalization for that cylinder, making it possible to accurately detect the peak position. Furthermore, it is possible to improve the reading margin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す回路図、第2図
は第1図に示す実施例の波形等化を示す図、第3図およ
び第4図はそれぞれ波形干渉を説明するための図、第5
図は従来例を示す図で、第1図 図である。 3・・・AGCAMP 、 4・・・差動増幅器、5・
・・D/Aコンバータ、6・・・CPU。 七n、イヒ反勇ム 第 図 第 図 図 (A) CB) 第 図
Fig. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a diagram showing waveform equalization of the embodiment shown in Fig. 1, and Figs. 3 and 4 respectively explain waveform interference. Figure for, No. 5
The figure shows a conventional example, and is FIG. 1. 3...AGCAMP, 4...Differential amplifier, 5...
...D/A converter, 6...CPU. 7n, Ihi Anti-Yam Diagram (A) CB)

Claims (2)

【特許請求の範囲】[Claims] (1)入力信号を遅延させる遅延素子と、この遅延素子
の入力インピーダンスとの整合をとる入力抵抗とを有す
る磁気ディスク装置の波形等化回路において、シリンダ
位置における最適な波形等化が得られるように、入射波
と前記遅延素子からの反射波との合成波の振幅を前記シ
リンダ位置に応じて制御する手段を具備してなることを
特徴とする磁気ディスク装置の波形等化回路。
(1) In a waveform equalization circuit of a magnetic disk drive that has a delay element that delays an input signal and an input resistor that matches the input impedance of this delay element, optimal waveform equalization at the cylinder position can be obtained. 1. A waveform equalization circuit for a magnetic disk drive, comprising means for controlling the amplitude of a composite wave of an incident wave and a reflected wave from the delay element in accordance with the cylinder position.
(2)前記入射波と前記遅延素子からの反射波との合成
波の振幅を前記シリンダ位置に応じて制御する手段は、
CPUのテーブルを利用して行なわれることを特徴とす
る前記特許請求の範囲第1項記載の磁気ディスク装置の
波形等化回路。
(2) means for controlling the amplitude of a composite wave of the incident wave and the reflected wave from the delay element according to the cylinder position;
2. The waveform equalization circuit for a magnetic disk drive according to claim 1, wherein the waveform equalization circuit is implemented using a table of a CPU.
JP18112788A 1988-07-20 1988-07-20 Waveform equalizing circuit for magnetic disk device Pending JPH0231305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18112788A JPH0231305A (en) 1988-07-20 1988-07-20 Waveform equalizing circuit for magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18112788A JPH0231305A (en) 1988-07-20 1988-07-20 Waveform equalizing circuit for magnetic disk device

Publications (1)

Publication Number Publication Date
JPH0231305A true JPH0231305A (en) 1990-02-01

Family

ID=16095340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18112788A Pending JPH0231305A (en) 1988-07-20 1988-07-20 Waveform equalizing circuit for magnetic disk device

Country Status (1)

Country Link
JP (1) JPH0231305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983571A (en) * 1995-07-26 1999-11-16 Aisin Seiki Kabushiki Kaisha Door frame and method for forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983571A (en) * 1995-07-26 1999-11-16 Aisin Seiki Kabushiki Kaisha Door frame and method for forming the same
US6016630A (en) * 1995-07-26 2000-01-25 Aisin Seiki Kabushiki Kaisha Door frame and method for forming the same

Similar Documents

Publication Publication Date Title
JP2799071B2 (en) Magnetic recording / reproducing device
JPH0231305A (en) Waveform equalizing circuit for magnetic disk device
US5166837A (en) Magnetic disc regenerating circuit
US5223946A (en) Apparatus using comparator to detect drop-out of recorded video signal
JPH02137169A (en) Signal processing circuit
JPH01204204A (en) Cosine equalizing circuit
JPH07118048B2 (en) Playback waveform equalization circuit
JPH0287306A (en) Magnetic disk device
KR910008984Y1 (en) Audio recording control device by frequency
KR970004065B1 (en) Reproducing equalizer circuit of digital magnetic recording and reproducing apparatus
JPH0640367B2 (en) Perpendicular magnetic recording / reproduction equalization method
JP2526796Y2 (en) Tape recorder
KR910001211B1 (en) Control signal recording method and its apparatus for dat
JPH01178168A (en) Wave equalization circuit for disk recording medium regenerating signal
JPH04126354U (en) Tape recorder recording circuit
JPH05225508A (en) Magnetic disk device
JPS61208606A (en) Reproducing circuit for magnetic recording and reproducing device
KR200147519Y1 (en) High frequency stabilization circuit
JPH04248103A (en) Waveform shaping circuit
JPH07118047B2 (en) Waveform equalization circuit
JPS6251004A (en) Waveform equalizing circuit
JPH0335473A (en) Magnetic recording and reproducing device
JPS6124314A (en) Characteristic variable type amplifier circuit
JPH03150707A (en) Magnetic recording/reproducing system
JPH04134706A (en) Magnetic disk medium and magnetic disk device