JPH0231296A - Invader detector using hologram - Google Patents

Invader detector using hologram

Info

Publication number
JPH0231296A
JPH0231296A JP18029188A JP18029188A JPH0231296A JP H0231296 A JPH0231296 A JP H0231296A JP 18029188 A JP18029188 A JP 18029188A JP 18029188 A JP18029188 A JP 18029188A JP H0231296 A JPH0231296 A JP H0231296A
Authority
JP
Japan
Prior art keywords
light
hologram
indoor
optical component
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18029188A
Other languages
Japanese (ja)
Inventor
Junichi Yamaguchi
山口 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sohgo Security Services Co Ltd
Original Assignee
Sohgo Security Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sohgo Security Services Co Ltd filed Critical Sohgo Security Services Co Ltd
Priority to JP18029188A priority Critical patent/JPH0231296A/en
Publication of JPH0231296A publication Critical patent/JPH0231296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Burglar Alarm Systems (AREA)

Abstract

PURPOSE:To enlarge a detecting range by using hologram in optical parts, bidirectionally transmitting an infrared ray through the optical parts, diffracting the infrared ray with a constant diffracting angle at the time of transmission and forming a cone-shaped detecting area with the revolution of the optical parts. CONSTITUTION:An infrared ray beam 22A to transmit through a hologram disk 23 is diffracted and outgoing as outgoing beams 22b and 22c. These outgoing beams 22b and 22c are reflected on indoor constituting objects and incident to the hologram disk 23 as a diffused light 22d. Then, the light is diffracted again, condensed by a condenser lens 23 as a diffracted light 23A and incident to a photo-detecting element 25 as an incident light 24A. The photo-detecting element 25 outputs an electric signal to correspond to the light quantity of the incident light 24A. Then, the output of the photo-detecting element is caused to be numerical values by an A/D converter 27 and successively stored to a newest indoor data storing part 28. The hologram disk 23 is monotonously revolved and driven by a motor driving part 32 and a motor 33. Thus, the outgoing beams 22b and 22c also turn around the inside of a room so as to draw the surface of a cone respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は赤外線放射源及び赤外線受光素子を有する侵
入者検知器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intruder detector having an infrared radiation source and an infrared receiving element.

〔従来の技術〕[Conventional technology]

第2図は従来の侵入者検知器の構成を示し、1はパルス
変調信号を発生するパルス変調信号発生回路で、このパ
ルス変調信号を受けて放射源駆動部2は赤外線放射源3
を駆動し、赤外線放射源3から放射された赤外線(近赤
外光など)は放射層光部品4を介して床、壁、机、ロッ
カーなどの室内構成物に放射される。この放射光5は室
内構成物に当って反射し、散乱光6となる。この散乱光
6は受光用光部品7を介して受光素子8で受光され、受
光素子8は受光量に応じた電気信号を出力する。この信
号は検波器9及び増幅器10を介して比較判断処理部1
2に入力される。一方、無人時検出量記憶部11は無人
時検出量即ち無人時における増幅器10の出力を記憶し
ており、比較判断処理部12は増幅器10の出力と無人
時検出量記憶部11の出力とを比較し、その偏差が一定
値以上となったときに侵入者があると判断し、侵入者警
報Sを出力する。
FIG. 2 shows the configuration of a conventional intruder detector, in which 1 is a pulse modulation signal generation circuit that generates a pulse modulation signal, and in response to this pulse modulation signal, a radiation source driver 2 drives an infrared radiation source 3.
The infrared rays (near infrared light, etc.) emitted from the infrared radiation source 3 are radiated via the radiation layer optical component 4 to indoor components such as floors, walls, desks, and lockers. This emitted light 5 hits the indoor components and is reflected, becoming scattered light 6. This scattered light 6 is received by a light receiving element 8 via a light receiving optical component 7, and the light receiving element 8 outputs an electric signal according to the amount of light received. This signal is passed through a detector 9 and an amplifier 10 to a comparison/judgment processing section 1.
2 is input. On the other hand, the unmanned detected amount storage section 11 stores the unmanned detected amount, that is, the output of the amplifier 10 when unmanned, and the comparison judgment processing section 12 stores the output of the amplifier 10 and the output of the unmanned detected amount storage section 11. When the deviation exceeds a certain value, it is determined that there is an intruder, and an intruder alarm S is output.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来の侵入者検知器は一般に天井や壁などに設
置され、検知領域は床や壁における照射スポットあるい
は出射光が通過する空間など室内の一部に固定されてい
た。一方、ドアや窓など侵入可能個所が複数存在する室
においては、広範囲な検知領域が要求され、この要求を
満足させるためには検知器の数を増加しなければならず
、検知器の設置費や運用費が増加するという課題があっ
た。
The conventional intruder detector described above is generally installed on the ceiling or wall, and the detection area is fixed to a part of the room such as an irradiation spot on the floor or wall or a space through which the emitted light passes. On the other hand, in rooms where there are multiple places that can be penetrated, such as doors and windows, a wide detection area is required, and in order to satisfy this requirement, the number of detectors must be increased, which increases the installation cost of the detectors. There were issues such as increased operating costs.

そこで、室内に設置される検知器の数を最小限に抑える
ため、検知器の検知領域を広範囲にすることが必要とさ
れ、赤外線放射源3及び受光素子8を回転駆動すること
が考えられた。しかしながら、この場合、放射源3用及
び受光素子8用の信号線も回転してしまうため、信号線
が捻られたり、引き裂かれたりする課題が生じた。この
ため、信号線が回転しないように機械的構成に工夫を施
すことが必要とされたが、その構成が複雑になったり電
気的雑音が増加したりするため実用的でなかった争 又、ミラーやレンズなどの光学部品4,7を回転させる
ことも考えられ、この場合には放射及び受光の方向を光
学部品4,7の回転によって変更する。その結果、放射
aI3及び受光素子8を回転駆動する必要がなくなり、
その信号線が捻られたり引き裂かれたりすることがな(
なる。しかしながら、回転する光学部品4.7をコンパ
クトな検知器に収納するためには光学部品4.7におけ
る受光面積を大きくすることができず、微小な散乱光6
をより多く受光することが困難となった。このため、散
乱光60強度変化を検出することも困難となり、無人時
と侵入者存在時の差異を判別することが困難となった。
Therefore, in order to minimize the number of detectors installed indoors, it was necessary to widen the detection area of the detector, and it was considered to drive the infrared radiation source 3 and the light receiving element 8 in rotation. . However, in this case, the signal lines for the radiation source 3 and the light receiving element 8 also rotate, resulting in a problem that the signal lines are twisted or torn. For this reason, it was necessary to devise a mechanical configuration to prevent the signal line from rotating, but this made the configuration complicated and increased electrical noise, making it impractical. It is also conceivable to rotate the optical components 4 and 7 such as lenses and lenses, and in this case, the directions of radiation and light reception are changed by rotating the optical components 4 and 7. As a result, there is no need to rotate the radiation aI3 and the light receiving element 8,
The signal line will not be twisted or torn (
Become. However, in order to accommodate the rotating optical component 4.7 in a compact detector, it is not possible to increase the light receiving area of the optical component 4.7, and the minute scattered light 6
It became difficult to receive more light. For this reason, it became difficult to detect changes in the intensity of the scattered light 60, and it became difficult to distinguish between when no one was present and when an intruder was present.

又、光学部品4.7が回転するために、放射113と光
学部品4、あるいは受光素子8と光学部品7を結ぶ光路
を一定に保つことが難しくなった。このように、従来の
侵入者検知器においては、放射及び受光の方向を容易に
変更することができず、検知領域を広範囲にすることが
困難であるという課題があった。
Further, since the optical components 4.7 rotate, it becomes difficult to maintain a constant optical path connecting the radiation 113 and the optical component 4, or the light receiving element 8 and the optical component 7. As described above, conventional intruder detectors have a problem in that the directions of radiation and light reception cannot be easily changed, making it difficult to widen the detection area.

この発明は上記のような課題を解決するために成された
ものであり、光部品が放射側と入射側を兼ねることがで
き、光部品の回転も容易であり、コンパクトな構成で検
知範囲を拡大することができる侵入者検知器を得ること
を目的とする。
This invention was made to solve the above-mentioned problems; the optical component can serve as both the radiation side and the incident side, the optical component can be easily rotated, and the detection range can be expanded with a compact configuration. The purpose is to obtain an intruder detector that can be expanded.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る侵入者検知器は、赤外線放射光と散乱光
を一定の回折角で透過するホログラムを用いた光部品と
、光部品を回転駆動する回転駆動手段と、光部品を透過
した散乱光の受光量を光部品の各方位において最新室内
データとして記憶する記憶手段と、同じく無人時の受光
量を無人時室内データとして記憶する記憶手段と、この
両データの差に応じて侵入者警報を出力する比較判断処
理手段を設けたものである。
An intruder detector according to the present invention includes an optical component using a hologram that transmits infrared radiation and scattered light at a constant diffraction angle, a rotation drive means for rotationally driving the optical component, and a scattered light transmitted through the optical component. A storage means for storing the amount of light received in each direction of the optical component as the latest indoor data, a storage means for storing the amount of light received when unattended as the unattended indoor data, and an intruder alarm according to the difference between the two data. A comparison judgment processing means for outputting the information is provided.

〔作 用〕[For production]

この発明における光部品はホログラムを用いており、赤
外線は光部品を双方向に透過し、透過の際に一定の回折
角で回折され、光部品の回転により円錐状の検知領域が
形成される。
The optical component in this invention uses a hologram, and infrared rays pass through the optical component in both directions, and are diffracted at a certain diffraction angle during transmission, and a conical detection area is formed by rotation of the optical component.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図はこの実施例による侵入者検知器の構成を示し、21
はレーザダイオード22をパルス変調信号によりくする
レーザ駆動部であり、レーザダイオード22は赤外線ビ
ーム22Aを出射する。23は赤外線ビーム22Aを入
射されるホログラムディスクであり、放射光及び散乱光
を一定の回折角で双方向に透過するホログラムを用いた
光部品である。24はホログラムディスク23を透過し
た光を集光する集光レンズ、25は集光された光を受光
する受光素子、26は受光素子25の出力を信号処理す
るアナログ信号処理部、27はアナログ信号処理部26
の出力をA/D変換するA/D変換器、28はA/D変
換器27の出力を記憶する最新室内データ記憶部、29
は無人室内データ即ち侵入者が存在しない場合の最新室
内データを記憶する無人室内データ記憶部、30は無人
室内データと最新室内データを比較する比較判断処理部
、31はホログラムディスク23の回転基準方位を検出
するフォトインクラブタ、32はモータ33を駆動する
モータ駆動部で、モータ33はホログラムディスク23
をその中心軸を回転軸として回転駆動する。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of an intruder detector according to this embodiment, and shows 21
is a laser drive unit that drives the laser diode 22 with a pulse modulation signal, and the laser diode 22 emits an infrared beam 22A. A hologram disk 23 receives the infrared beam 22A, and is an optical component using a hologram that transmits emitted light and scattered light in both directions at a constant diffraction angle. 24 is a condenser lens that condenses the light transmitted through the hologram disk 23, 25 is a light receiving element that receives the focused light, 26 is an analog signal processing unit that processes the output of the light receiving element 25, and 27 is an analog signal Processing section 26
28 is the latest indoor data storage unit that stores the output of the A/D converter 27; 29
3 is an unmanned room data storage unit that stores unmanned room data, that is, the latest indoor data when there is no intruder; 30 is a comparison judgment processing unit that compares the unmanned room data with the latest indoor data; 31 is a rotation reference direction of the hologram disk 23; 32 is a motor drive unit that drives a motor 33, and the motor 33 detects the hologram disk 23.
is driven to rotate with its central axis as the rotation axis.

次に、上記構成の動作を説明する。レーザ駆動部21が
発生したパルス変調信号により駆動されたレーザダイオ
ード22は赤外線ビーム22Aを出射し、ホログラムデ
ィスク23に入射する。ホログラムディスク23を通過
した赤外線ビーム22Aはホログラム作製時の条件で決
まる回折角で回折し、検知器外に出射ビーム22b、2
2Cとして出射される。この出射ビーム22b、 22
cは室内構成物に当って反射され、散乱光22dとして
ホログラムディスク23に入射し、再び回折されて回折
光23Aとして集光レンズ23により集光され、入射光
24Aとして受光素子25に入射される。受光素子25
は入射光24Aの光量に応じた電気信号を出力し、この
電気信号はアナログ信号処理部26で増幅及びサンプル
ホールドされた後、A/D変換器27により数値化され
、最新室内データ記憶部28に順次記憶される。一方、
ホログラムディスク23はモータ駆動部32及びモータ
33によって単調に回転駆動され、このため出射ビーム
22b、22cもそれぞれ円錐の錐面を描くように室内
を周回する。ホログラムディスク23の回転基準方位は
、フォトインクラブタ31がホログラムディスク23に
設けられた微小孔を検出することにより検知され、この
際に出射ビーム22b、22cが向いている方向を室内
基準方位(0度)とする、このようにホログラムディス
ク23を回転させることにより、例えば0.1度毎など
の方位毎の数値化データが得られ、この数値化データを
順次最新室内データ記憶部2日に記憶することにより最
新室内データが生成され、−周期毎に最新室内データ記
憶部28のデータが更新される。又、無人室内データ記
憶部29には侵入者がいないときの最新室内データが複
写され、記憶されている。比較判断処理部3oは無人室
内データと最新室内データを例えば0.1度毎の回転方
位毎に比較し、この両者の間に所定値以上の差異を検出
した場合には侵入者があると判断し、侵入者警報Sを出
力する。
Next, the operation of the above configuration will be explained. The laser diode 22 driven by the pulse modulation signal generated by the laser drive section 21 emits an infrared beam 22A, which is incident on the hologram disk 23. The infrared beam 22A that has passed through the hologram disk 23 is diffracted at a diffraction angle determined by the conditions at the time of hologram production, and output beams 22b and 2 exit the detector.
It is emitted as 2C. This output beam 22b, 22
The light c hits the indoor components and is reflected, enters the hologram disk 23 as scattered light 22d, is diffracted again, is focused by the condenser lens 23 as diffracted light 23A, and enters the light receiving element 25 as incident light 24A. . Light receiving element 25
outputs an electric signal according to the amount of incident light 24A, and this electric signal is amplified and sampled and held in the analog signal processing section 26, then digitized by the A/D converter 27, and stored in the latest indoor data storage section 28. are stored sequentially. on the other hand,
The hologram disk 23 is driven to rotate monotonically by the motor drive unit 32 and the motor 33, and therefore the emitted beams 22b and 22c also orbit inside the room so as to draw conical surfaces, respectively. The rotation reference direction of the hologram disk 23 is detected by the photo ink clubter 31 detecting a microhole provided in the hologram disk 23, and at this time, the direction in which the emitted beams 22b and 22c are facing is determined as the indoor reference direction ( By rotating the hologram disk 23 in this way, digitized data for each direction, such as every 0.1 degree, is obtained, and this digitized data is sequentially stored in the latest indoor data storage unit 2. By storing the latest indoor data, the latest indoor data is generated, and the data in the latest indoor data storage section 28 is updated every - period. Furthermore, the latest indoor data when there is no intruder is copied and stored in the unmanned indoor data storage section 29. The comparison/judgment processing unit 3o compares the unmanned indoor data and the latest indoor data, for example, every 0.1 degree rotational direction, and if a difference of more than a predetermined value is detected between the two, it is determined that there is an intruder. and outputs an intruder alarm S.

第3図(al、(blはホログラム23を回転させた場
合に出射ビーム22b、22cの方向が変る様子を示し
、出射ビーム22b、22Cの方向は赤外線ビーム22
Aがホログラムディスク23に入射する際の入射位置2
3Bにおいて連続的に変ることを示している。なお、ホ
ログラムディスク23の中央の小さな矢印は、ホログラ
ムディスク23が回転していることを示すために便宜的
に記載したものである。
Figure 3 (al, (bl) shows how the directions of the outgoing beams 22b, 22c change when the hologram 23 is rotated, and the directions of the outgoing beams 22b, 22C are the same as those of the infrared beam 22.
Incidence position 2 when A enters the hologram disk 23
It shows that it changes continuously in 3B. Note that the small arrow in the center of the hologram disk 23 is drawn for convenience to indicate that the hologram disk 23 is rotating.

第4図は赤外線ビーム22Aがパルス変調されているこ
とを示すタイミングチャートと散乱光受光強度及びその
数値化データの一例を示し、(alは赤外線ビーム22
Aの強度、山)は散乱光22dの受光強度、(C1はこ
の受光強度の数値化データを示す。
FIG. 4 shows a timing chart showing that the infrared beam 22A is pulse-modulated, an example of the received scattered light intensity and its numerical data, (al is the infrared beam 22A)
The intensity of A, the peak) indicates the received light intensity of the scattered light 22d, and (C1 indicates numerical data of this received light intensity).

又、第5図はこの実施例による実験データを示すもので
あり、(a)は無人室内データ記憶部29に記憶された
無人室内データを示し、横軸は周回の方位(0〜360
度)であり、縦軸は散乱光受光強度(数値は検出電圧値
V)である、(b)は検知領域内に人が存在する場合の
最新室内データを示し、矢印部分が無人の場合と出力が
異なるため人が存在することが判明する。(C)は無人
室内データと最新室内データとの差を示し、検知領域内
を人が動いていることを示している。 thは侵入者が
存在すると判定する場合の両データの差である。
Further, FIG. 5 shows experimental data according to this example, in which (a) shows the unmanned indoor data stored in the unmanned indoor data storage section 29, and the horizontal axis indicates the direction of rotation (0 to 360
(degrees), and the vertical axis is the received scattered light intensity (the numerical value is the detection voltage value V). (b) shows the latest indoor data when there is a person in the detection area, and the arrow part shows the case when there is no person. It turns out that there is a person because the outputs are different. (C) shows the difference between the unoccupied indoor data and the latest indoor data, indicating that a person is moving within the detection area. th is the difference between both data when it is determined that there is an intruder.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、光部品としてホログラ
ムを用いており、この光部品を透過した赤外線は回折す
る。このため、光部品を回転させることにより円錐吠の
検知領域が形成され、広範囲の検知領域が得られる。又
、光部品は単調に回転させるだけでよく、しかも赤外線
の放射側と受光側を兼ねて全面を有効に利用することが
でき、光学系及びその回転機構を簡単で安価な構成とす
ることができ、また受光面積を比較的大きくとれるとと
もに光部品の回転による光路の変動は生じず、信頼性の
ある検知器が得られる。さらに、光部品の回転方位が検
知可能であるために侵入者の存在する方向を検出するこ
とができ、これを記録することにより、侵入者の移動も
検知することができ、より確かな侵入者検知を行うこと
ができる。
As described above, according to the present invention, a hologram is used as an optical component, and infrared rays transmitted through this optical component are diffracted. Therefore, the conical bark detection area is formed by rotating the optical component, and a wide range of detection area can be obtained. In addition, the optical components only need to be rotated monotonously, and the entire surface can be used effectively as both the infrared radiation side and the light receiving side, and the optical system and its rotation mechanism can be constructed easily and inexpensively. In addition, a relatively large light-receiving area can be obtained, and the optical path does not fluctuate due to the rotation of optical components, making it possible to obtain a reliable detector. Furthermore, since the rotation direction of the optical component can be detected, the direction in which the intruder is present can be detected, and by recording this, the movement of the intruder can also be detected, making it possible to more accurately identify the intruder. Detection can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による侵入者検知器の構成図、第2図
は従来の侵入者検知器の構成図、第3図はこの発明によ
るホログラムディスクを回転させた場合に出射ビームの
方向が変ることを示す図、第4図はこの発明による各部
の動作を示すタイミングチャート、第5図はこの発明の
侵入者検知器により得られたデータ図である。 21・・・レーザ駆動部、22・・・レーザダイオード
、23・・・ホログラムディスク、24・・・集光レン
ズ、25・・・受光素子、28・・・最新室内データ記
憶部、29・・・無人室内データ記憶部、30・・・比
較判断処理部、32・・・モータ駆動部、33・・・モ
ータ。 第 図 第 図 (b)
Fig. 1 is a block diagram of an intruder detector according to the present invention, Fig. 2 is a block diagram of a conventional intruder detector, and Fig. 3 is a diagram showing how the direction of the emitted beam changes when the hologram disk according to the present invention is rotated. FIG. 4 is a timing chart showing the operation of each part according to the present invention, and FIG. 5 is a data diagram obtained by the intruder detector of the present invention. 21... Laser drive unit, 22... Laser diode, 23... Hologram disk, 24... Condensing lens, 25... Light receiving element, 28... Latest indoor data storage unit, 29... - Unmanned room data storage unit, 30... Comparison judgment processing unit, 32... Motor drive unit, 33... Motor. Figure (b)

Claims (1)

【特許請求の範囲】[Claims]  パルス変調された赤外線を放射する赤外線放射源と、
この赤外線放射光を一定の回折角で透過するとともに透
過した赤外線放射光が室内構成物に当って反射した散乱
光を一定の回折角で透過するホログラムを用いた光部品
と、光部品を透過した散乱光を受光する受光素子と、光
部品を回転駆動する回転駆動手段と、光部品の各方位に
おける受光素子の受光量を最新室内データとして順次記
憶する最新室内データ記憶手段と、室内が無人時に光部
品の各方位における受光素子の受光量を無人室内データ
として記憶する無人室内データ記憶手段と、最新室内デ
ータと無人室内データを比較し、その差異に応じて侵入
者警報を出力する比較判断処理手段を備えたことを特徴
とするホログラムを用いた侵入者検知器。
an infrared radiation source that emits pulse-modulated infrared radiation;
This infrared radiation is transmitted at a certain diffraction angle, and the transmitted infrared radiation hits indoor components and reflected scattered light is transmitted at a certain diffraction angle. A light-receiving element for receiving scattered light, a rotational drive means for rotationally driving the optical component, an up-to-date indoor data storage means for sequentially storing the amount of light received by the light-receiving element in each direction of the optical component as the latest indoor data; An unmanned room data storage means that stores the amount of light received by the light receiving element in each direction of the optical component as unmanned room data, and a comparison judgment process that compares the latest indoor data with the unmanned room data and outputs an intruder alarm according to the difference. An intruder detector using a hologram, characterized in that it is equipped with a means.
JP18029188A 1988-07-21 1988-07-21 Invader detector using hologram Pending JPH0231296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18029188A JPH0231296A (en) 1988-07-21 1988-07-21 Invader detector using hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18029188A JPH0231296A (en) 1988-07-21 1988-07-21 Invader detector using hologram

Publications (1)

Publication Number Publication Date
JPH0231296A true JPH0231296A (en) 1990-02-01

Family

ID=16080642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18029188A Pending JPH0231296A (en) 1988-07-21 1988-07-21 Invader detector using hologram

Country Status (1)

Country Link
JP (1) JPH0231296A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62825A (en) * 1985-06-26 1987-01-06 Toshiba Heating Appliances Co Scanning type infrared detecting device
JPS62112120A (en) * 1985-11-11 1987-05-23 Fujitsu Ltd Hologram scanner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62825A (en) * 1985-06-26 1987-01-06 Toshiba Heating Appliances Co Scanning type infrared detecting device
JPS62112120A (en) * 1985-11-11 1987-05-23 Fujitsu Ltd Hologram scanner

Similar Documents

Publication Publication Date Title
US4949074A (en) Method of intrusion detection
US5165064A (en) Mobile robot guidance and navigation system
US4952911A (en) Scanning intrusion detection device
US4321594A (en) Passive infrared detector
JP3563735B2 (en) Method and system for locating and confining a robot
US4967183A (en) Method of intrusion detection over a wide area
US4849737A (en) Person-number detecting system
US4903009A (en) Intrusion detection device
JPH06169376A (en) Input device
US5414255A (en) Intrusion detector having a generally planar fresnel lens provided on a planar mirror surface
US5726451A (en) Scan type fire detecting apparatus
JPS6012527A (en) Infrared beam scanner
JPH0231296A (en) Invader detector using hologram
RU2131133C1 (en) Target detection device
US4398184A (en) Intrusion alarm system for buildings utilizing the building structure as a communications path for alarm signals or for security system activation signals
CN86106890B (en) All-direction ultrared warner
JP3534281B2 (en) Detection device
JP2741981B2 (en) Object position detection device
US4220859A (en) Infra red radiation detector
JP3027597B2 (en) Smoke detector
JP3058565B2 (en) Fire detection and extinguishing equipment
JPS6133592A (en) Invader detection system
JPH09282567A (en) Abnormality detector
JPS6318498A (en) Infrared rays type invader detector
JP2003139835A (en) Device and method for detecting laser light