JPH02312543A - Quality assessmeny of coffee bean - Google Patents

Quality assessmeny of coffee bean

Info

Publication number
JPH02312543A
JPH02312543A JP13144889A JP13144889A JPH02312543A JP H02312543 A JPH02312543 A JP H02312543A JP 13144889 A JP13144889 A JP 13144889A JP 13144889 A JP13144889 A JP 13144889A JP H02312543 A JPH02312543 A JP H02312543A
Authority
JP
Japan
Prior art keywords
absorbance
coffee
discriminant
coffee beans
extinction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13144889A
Other languages
Japanese (ja)
Inventor
Yoshiko Iizuka
佳子 飯塚
Hikotaka Hashimoto
橋本 彦堯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP13144889A priority Critical patent/JPH02312543A/en
Publication of JPH02312543A publication Critical patent/JPH02312543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tea And Coffee (AREA)

Abstract

PURPOSE:To quickly and accurately judge the grade and roasting degree of coffee bean without relying upon experience and perception by determining the extinction of coffee bean with a near infrared spectrophotometer, calculating a discrimination formula and storing the formula in a memory. CONSTITUTION:Coffee beans of known grade are crushed e.g. to 12 to 42 mesh, uniformly filled in a specimen container and placed and set on a drawer 4. The specimen is irradiated with near infrared radiation and the extinction of the coffee is determined from the standard irradiation intensity and the reflected light intensity. The obtained extinction is stored in the main body 5 of a controller and a discrimination formula is calculated based on a discrimination analysis method (SPSS PC+ program). The extinction of unknown coffee beans is measured and substituted in the discrimination formula and the grade of the coffee is determined based on the obtained numerical value.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、コーヒー豆の銘柄や焙煎度の判別法に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for determining the brand and degree of roasting of coffee beans.

〈従来技術及びその課題〉 コーヒーはアカネ科コーヒー属の植物で約25種あるが
、実用的な品種としてはその大半がアラビカ種とロブス
タ種であり、量的にみるとアラビカ種が大半を占めてお
り、レギュラーコーヒー用のポピユラーな豆はみなアラ
ビカ種である。そしてアラビカ種は産地によってモカ、
キリマンジャロ、ブルーマウンテレ、ブラジルサントス
等の銘柄に分けられ流通している。
<Prior art and its problems> Coffee belongs to the Rubiaceae family and there are approximately 25 species of coffee, but most of them are Arabica and Robusta as practical varieties, and Arabica accounts for the majority in terms of quantity. All the popular beans used for regular coffee are Arabica. And depending on the region of origin, Arabica varieties are mocha,
It is distributed under brands such as Kilimanjaro, Blue Mountain Tele, and Brazil Santos.

それぞれの銘柄は酸味、苦味、甘味、コク、香り等によ
って微妙な差異があり、銘柄の判別は熟練者によるカッ
プテスト(官能検査)に顧るのが一般的である。
Each brand has subtle differences in sourness, bitterness, sweetness, richness, aroma, etc., and brand discrimination is generally done through a cup test (sensory test) conducted by an expert.

またコーヒーの品質を左右する焙煎度合も、日本での浅
煎り、中煎り、深煎りの3段階程度なら外観的にも識別
が可能であるが、アメリカ式の8段階の焙煎度合の各段
階ごとの微妙な差は、豆のはじけ具合やコーヒー豆自体
の褐変度の具合を熟練者の経験に依存する場合が多い。
In addition, the degree of roasting, which determines the quality of coffee, can be distinguished visually from the three levels of light roast, medium roast, and dark roast in Japan, but there are 8 levels of roasting in the American style. The subtle differences between stages often depend on the experience of experts in determining the degree of bursting of the beans and the degree of browning of the coffee beans themselves.

勿論、銘柄を判別するために成分組成を化学的に分析す
る方法もあるが、分析に煩雑な操作や長時間を要する場
合が多く、結局は熟練者の経験、カンに頼っているのが
現状である。また、焙煎度合を色差計を用いて判別する
方法についても時間の経過に伴って豆色か進むなどの欠
点を持っており、充分な判定とはいえない。
Of course, there is a method of chemically analyzing the component composition to identify the brand, but the analysis often requires complicated operations and a long time, and in the end it relies on the experience and intuition of experts. It is. Furthermore, the method of determining the degree of roasting using a colorimeter also has drawbacks such as the color of the beans progressing over time, and cannot be said to be a sufficient method for determining the degree of roasting.

〈課題を解決するための手段〉 この様な現状に鑑み本発明者等は、コーヒー豆の銘柄や
焙煎度合を迅速、的確に判別する方法について検討した
ところ、近赤外分光計を用いてコーヒー豆の吸光度を測
定することにより可能であるとの知見を得て、本発明を
完成させた。
<Means for Solving the Problems> In view of the current situation, the present inventors investigated a method for quickly and accurately determining the brand and roasting degree of coffee beans, and found that using a near-infrared spectrometer, The present invention was completed based on the knowledge that this is possible by measuring the absorbance of coffee beans.

即ち本発明は、銘柄既知のコーヒー豆を近赤外分光計を
用いてその吸光度を測定し、得られた吸光度から判別式
を求め、この判別式を記憶装置に記憶させ、他方銘柄未
知の試料コーヒー豆を上記と同様にしてその吸光度を測
定し、この測定値を上記判別式に基づいて演算し可視表
示することを特徴とするコーヒー豆の銘柄判別法であり
、また焙煎度既知のコーヒー豆を近赤外分光計を用いて
その吸光度を測定し、得られた吸光度から判別式を求め
、この判別式を記憶装置に記憶させ、他方焙煎度未知の
試料コーヒー豆を上記と同様にしてその吸光度を測定し
、この測定値を上記判別式に基づいて演算し可視表示す
ることを特徴とするコーヒー豆の焙煎度判別法である。
That is, the present invention measures the absorbance of coffee beans of known brand using a near-infrared spectrometer, calculates a discriminant from the obtained absorbance, stores this discriminant in a storage device, and measures the absorbance of coffee beans of known brand. This is a coffee bean brand identification method, which is characterized in that the absorbance of coffee beans is measured in the same manner as above, and the measured value is calculated based on the above-mentioned discriminant and visually displayed. The absorbance of the beans is measured using a near-infrared spectrometer, a discriminant is determined from the obtained absorbance, and this discriminant is stored in a storage device, while a sample coffee bean with an unknown degree of roasting is treated in the same manner as above. This method of determining the degree of roasting of coffee beans is characterized in that the absorbance of the roasted coffee beans is measured, and the measured value is calculated based on the above-mentioned discriminant and visually displayed.

以下、本発明を具体的に説明する。The present invention will be explained in detail below.

第1図は本発明方法を実施する装置の概略図である。FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the invention.

本装置は近赤外分光分析装置1、制御装置2とからなり
、近赤外分光分析装置1のキャビネット内には近赤外分
光計3と級測定試料を入れる試料容器を装着するための
ドロワー4か配設されている。
This device consists of a near-infrared spectrometer 1 and a control device 2. Inside the cabinet of the near-infrared spectrometer 1, there is a near-infrared spectrometer 3 and a drawer for mounting a sample container to hold a sample to be measured. 4 are arranged.

一方、制御装置2は制御装置本体5、プリンター6、デ
ィスプレー7、キーボード8から成り、近赤外分光分析
装置1と制御装置2は接続されている。
On the other hand, the control device 2 includes a control device main body 5, a printer 6, a display 7, and a keyboard 8, and the near-infrared spectrometer 1 and the control device 2 are connected.

尚、近赤外分光分析装置はインフラアライザ−500(
テクニコン社)等が、制御装置はI BM−PC^T 
 (18M社)等が具体例として挙げることができる。
The near-infrared spectrometer is Infra-Alyzer-500 (
Technicon) etc., but the control device is IBM-PC^T.
(Company 18M) etc. can be cited as a specific example.

この様な装置を用いて例えば銘柄を判別するには、まず
銘柄既知のコーヒー豆の吸光度を測定する。コーヒー豆
の吸光度の測定はコーヒー豆を12〜42メツシユに粉
砕し、破測定試料容器に均一に充填したのち、ドロワー
4に載置し、所定位置にセットする。次いで試料に近赤
外線を照射し、基準照射光量と反射光量とから吸光度を
求める。
For example, in order to identify a brand using such an apparatus, the absorbance of coffee beans of a known brand is first measured. To measure the absorbance of coffee beans, the coffee beans are ground into 12 to 42 meshes, uniformly filled into a broken measurement sample container, and then placed in the drawer 4 and set at a predetermined position. Next, the sample is irradiated with near-infrared rays, and the absorbance is determined from the reference amount of irradiation light and the amount of reflected light.

ここで測定する吸光度は以下の19波長の吸光度である
。(単位nm) 1445、1680. +722.1734.1759
.1778゜1818、 1940. 1982. 2
100. 2139. 2180゜2190、220B
、 2230.2270.2310.233B。
The absorbance measured here is the absorbance at the following 19 wavelengths. (Unit: nm) 1445, 1680. +722.1734.1759
.. 1778°1818, 1940. 1982. 2
100. 2139. 2180°2190, 220B
, 2230.2270.2310.233B.

2348゜ −4= 得られた吸光度は制御装置本体5に記憶させ、その吸光
度から判別分析法(spss pc+プログラム)に基
づき判別式を作成する。銘柄未知のコーヒー豆について
は、判別式で用いた波長の吸光度のみを測定し、上記の
判別式に代入し、得られた結果から銘柄を判別する。
2348°-4= The obtained absorbance is stored in the control device main body 5, and a discriminant is created from the absorbance based on the discriminant analysis method (SPSS PC+ program). For coffee beans of unknown brand, only the absorbance at the wavelength used in the discriminant is measured and substituted into the above discriminant, and the brand is determined from the obtained results.

焙煎度合の判別法も上記と全く同様にして行なうことが
できる。
The method for determining the degree of roasting can be performed in exactly the same manner as described above.

〈実施例〉 以下、実施例に基づき更に詳細に本発明を説明する。<Example> Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 (銘柄判別) ブラジルサントス(S)、モカ(M)、コロンビア(C
)、ガテマラ(G)、キリマンジャロ(に)、マンゾリ
ン(A)、ブルーマウンテン(8)の7種を粉砕し、そ
れぞれインフラアライザ−500を使用し上記と同様に
して吸光度を30回測定し、下記の3つの判別式り、〜
D3を作成した。
Example 1 (Brand identification) Brazil Santos (S), Mocha (M), Colombia (C
), Guatemala (G), Kilimanjaro (2), Manzoline (A), and Blue Mountain (8) were crushed, and the absorbance was measured 30 times in the same manner as above using Infra-Alyzer-500. The following three discriminants, ~
I created D3.

判別式 り、=  0J7X F + + 0.70X F 2
 + 2.55xF  、 +   1.92XF4 
− 0.94XF5−0、l7XF6 + 1.19x
F7+ 0.23XF8− 0.41xFe  −0,
D8xF、。 −0,02xF1+ +0.17XF1
.−0.l8XF、4+0、21X F I5+O,I
IX F I□−〇、04XF 18+o、oax F
 1g D  、 =  0.77x  F  1 +  0.
04X  F2 − 0.03X  F3−0.67x
F4−0.54xF5− 1.l2xF6+ 1.72
XFy −0,22XFa 十1、50X F e +
 0.45x F +o   0.54xF ++  
 0.38X F 12 + 0.19X F +3−
〇、28X F 14 + 0.71X F 、、 +
 0.21XF +s   O,I4x F B D3  ”   1.I4X F +  +  2.2
8X F 2   0.64xF 3  +  0.4
9X F a    0.28x F s  −1,2
6xFa  +  1.41XFT十 0.22XFg
−2,72XF9 − 0.31xF+o  −0,2
1xFll  +  1.02XF、2 +  0.9
4XF13  →−0,20X F 14 + 0.0
6X F 16 十〇、 I!ixF+6  +  0
.42X  F  IB  +   0.09X  F
  1eF +  1445 nmの吸光度 F2 16flOnmの吸光度 F3 1722nmの吸光度 F、  1734nmの吸光度 F5 1759nmの吸光度 Fa  1778nmの吸光度 F71818nmの吸光度 Fa  1940nmの吸光度 Fs  19B2nmの吸光度 F +o  2100 nmの吸光度 F z  2139 nmの吸光度 F 12 2180 nmの吸光度 F 13 2190 nmの吸光度 F 14 2208 nmの吸光度 F 15 2230 nmの吸光度 F +s  2270 nmの吸光度 F 17 2310 nmの吸光度 F 、a  2336 nmの吸光度 F re  2348 nmの吸光度 上記判別式り、 、D2、D、、のうち2つの式D1の
値を横軸にD2の値を縦軸にプロットした結果を第2図
に示す。
Discriminant: = 0J7X F + + 0.70X F 2
+2.55xF, +1.92XF4
- 0.94XF5-0, l7XF6 + 1.19x
F7+ 0.23XF8- 0.41xFe -0,
D8xF. -0.02xF1+ +0.17XF1
.. -0. l8XF, 4+0, 21X F I5+O,I
IX F I□-〇, 04XF 18+o, oax F
1g D, = 0.77x F 1 + 0.
04X F2-0.03X F3-0.67x
F4-0.54xF5- 1. l2xF6+ 1.72
XFy −0,22XFa 11,50X Fe +
0.45xF+o 0.54xF++
0.38X F 12 + 0.19X F +3-
〇, 28X F 14 + 0.71X F ,, +
0.21XF +s O, I4x F B D3 ” 1.I4X F + + 2.2
8X F2 0.64xF3 + 0.4
9X F a 0.28x F s -1,2
6xFa + 1.41XFT + 0.22XFg
-2,72XF9 - 0.31xF+o -0,2
1xFll + 1.02XF, 2 + 0.9
4XF13 → -0,20X F14 + 0.0
6X F 16 10, I! ixF+6+0
.. 42X F IB + 0.09X F
1eF + Absorbance at 1445 nm F2 Absorbance at 16flOnm F3 Absorbance at 1722 nm F, Absorbance at 1734 nm F5 Absorbance at 1759 nm Fa Absorbance at 1778 nm F7 Absorbance at 1818 nm Fa Absorbance at 1940 nm Fs Absorbance at 19B2 nm F + o Absorbance at 2100 nm F z Absorbance at 2139 nm F 12 Absorbance at 2180 nm F 13 Absorbance at 2190 nm F 14 Absorbance at 2208 nm F 15 Absorbance at 2230 nm F +s Absorbance at 2270 nm F 17 Absorbance at 2310 nm F , a Absorbance at 2336 nm F re 2348 absorbance above nm FIG. 2 shows the result of plotting the values of two equations D1 out of the discriminants, D2, D, on the horizontal axis and the value of D2 on the vertical axis.

第2図から明らかな様にコーヒーの各銘柄は判別式によ
り明確に判別される。
As is clear from FIG. 2, each brand of coffee can be clearly distinguished by the discriminant.

次に銘柄未知の試料を上記と同様に測定したところ、第
2図0点にプロットされ、この試料はブルーマウンテン
であると判別された。
Next, when a sample of unknown brand was measured in the same manner as above, it was plotted at point 0 in Figure 2, and this sample was determined to be Blue Mountain.

実施例2(焙煎度判別) コロンビアコーヒーを以下の条件で熱風焙煎し、焙煎度
既知の試料を調整した。
Example 2 (Determination of degree of roasting) Colombian coffee was roasted with hot air under the following conditions to prepare a sample with a known degree of roasting.

投入時温度 終了時温度 時間 焙煎度1190〜200°C210℃  15分〃2〃
22016 〃31/23017 〃   4      ノ/            
 240        1 B〃5〃25019 それぞれの試料の吸光度を実施例1と同様に30回測定
し、以下の3つの判別式を作成した。
Temperature at time of addition Temperature at end Time Roasting degree 1190-200°C 210°C 15 minutes〃2〃
22016 〃31/23017 〃 4 ノ/
240 1 B〃5〃25019 The absorbance of each sample was measured 30 times in the same manner as in Example 1, and the following three discriminants were created.

(F+ 、Fa 、Feは実施例1と同じ)判別式 %式% 上記判別式D+ 、D2 、D3のうち2つの式D1の
値を横軸にD2の値を縦軸にプロ・ノドした結果を第3
図に示す。
(F+, Fa, and Fe are the same as in Example 1) Discriminant % Formula % Results of pro-nod of the above discriminants D+, D2, and D3, with the value of two formulas D1 on the horizontal axis and the value of D2 on the vertical axis The third
As shown in the figure.

一方、焙煎度未知の試料の吸光度を上記と同様に測定し
たところ、0点にプロットされ、この試料の焙煎度は3
であると判別した。
On the other hand, when the absorbance of a sample with unknown roasting degree was measured in the same manner as above, it was plotted at 0 points, and the roasting degree of this sample was 3.
It was determined that

なお、この方法をさらに発展させることにより、ある一
定の規格基準内に判定されないコーヒー豆は規格外品と
して判定させることが可能である。
Note that by further developing this method, coffee beans that are not judged to be within a certain standard can be judged as non-standard products.

〈発明の効果〉 本発明方法によれば、コーヒー豆の銘柄や焙煎度を経験
やカンに頼ることなく迅速、的確に判別可能であり、コ
ーヒー豆の流通業界や焙煎業界の品質管理に有効な方法
である。
<Effects of the Invention> According to the method of the present invention, the brand and degree of roasting of coffee beans can be quickly and accurately determined without relying on experience or intuition, and is useful for quality control in the coffee bean distribution industry and roasting industry. This is an effective method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられる装置の概略説明図、第2図
はコーヒー豆の銘柄判別式のプロット図、第3図は焙煎
度判別式のプロット図である。
FIG. 1 is a schematic explanatory diagram of the apparatus used in the present invention, FIG. 2 is a plot diagram of a coffee bean brand discrimination formula, and FIG. 3 is a plot diagram of a roast degree determination formula.

Claims (2)

【特許請求の範囲】[Claims] (1)銘柄既知のコーヒー豆を近赤外分光計を用いてそ
の吸光度を測定し、得られた吸光度から判別式を求め、
この判別式を記憶装置に記憶させ、他方銘柄未知の試料
コーヒー豆を上記と同様にしてその吸光度を測定し、こ
の測定値を上記判別式に基づいて演算し可視表示するこ
とを特徴とするコーヒー豆の銘柄判別法。
(1) Measure the absorbance of coffee beans of known brand using a near-infrared spectrometer, calculate the discriminant from the obtained absorbance,
This discriminant is stored in a storage device, the absorbance of a sample coffee bean of unknown brand is measured in the same manner as above, and the measured value is calculated based on the discriminant and visually displayed. How to identify bean brands.
(2)焙煎度既知のコーヒー豆を近赤外分光計を用いて
その吸光度を測定し、得られた吸光度から判別式を求め
、この判別式を記憶装置に記憶させ、他方焙煎度未知の
試料コーヒー豆を上記と同様にしてその吸光度を測定し
、この測定値を上記判別式に基づいて演算し可視表示す
ることを特徴とするコーヒー豆の焙煎度判別法。
(2) Measure the absorbance of coffee beans with a known degree of roasting using a near-infrared spectrometer, calculate a discriminant from the obtained absorbance, store this discriminant in a storage device, and A method for determining the degree of roasting of coffee beans, which comprises measuring the absorbance of a sample of coffee beans in the same manner as described above, calculating the measured value based on the discriminant formula, and visually displaying the measured value.
JP13144889A 1989-05-26 1989-05-26 Quality assessmeny of coffee bean Pending JPH02312543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13144889A JPH02312543A (en) 1989-05-26 1989-05-26 Quality assessmeny of coffee bean

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13144889A JPH02312543A (en) 1989-05-26 1989-05-26 Quality assessmeny of coffee bean

Publications (1)

Publication Number Publication Date
JPH02312543A true JPH02312543A (en) 1990-12-27

Family

ID=15058198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13144889A Pending JPH02312543A (en) 1989-05-26 1989-05-26 Quality assessmeny of coffee bean

Country Status (1)

Country Link
JP (1) JPH02312543A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262890A (en) * 2004-09-30 2006-10-05 Tama Tlo Kk Coffee-like supplement and supplementary food
JP2006296414A (en) * 2004-09-30 2006-11-02 Tama Tlo Kk Modified coffee and roasting method for coffee bean

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262890A (en) * 2004-09-30 2006-10-05 Tama Tlo Kk Coffee-like supplement and supplementary food
JP2006296414A (en) * 2004-09-30 2006-11-02 Tama Tlo Kk Modified coffee and roasting method for coffee bean

Similar Documents

Publication Publication Date Title
Baqueta et al. Brazilian coffee blends: A simple and fast method by near‐infrared spectroscopy for the determination of the sensory attributes elicited in professional coffee cupping
Santos et al. Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting
US5721005A (en) Fast roasted coffee providing increased brew strength and darker cup color with desirable brew acidity
EP1038445B1 (en) Roasted coffee and coffee roasting method
Catelani et al. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study
EP3004842B1 (en) A device and a method of sensing characteristics of a food material and a machine and a method of brewing coffee
Yeager et al. Roast level and brew temperature significantly affect the color of brewed coffee
Frost et al. Effects of brew strength, brew yield, and roast on the sensory quality of drip brewed coffee
CN107427150A (en) For preparing the machine of the drink with reproducible speciality
CN109008620A (en) Automatic tea-making machine with tea analytical equipment and the method for automatic coffee making tea-drinking
Levate Macedo et al. Evaluation of chemical properties of intact green coffee beans using near‐infrared spectroscopy
US20170156362A1 (en) Ccontrolling a roasting process of coffee beans
JPH02312543A (en) Quality assessmeny of coffee bean
US11517026B2 (en) Method for controlling a process of roasting coffee beans and device for use in a process for roasting coffee beans
Crippen et al. Defining roasted peanut flavor quality. Part 2. Correlation of GC volatiles and sensory flavor attributes
JP2022511898A (en) Equipment and methods for roasting coffee beans
Clarke et al. Potassium and other mineral contents of green, roasted and instant coffees
CN110308102A (en) A kind of nicotinic alcohol extract absorbance value measurement and the method for judging alcoholization process
Kawano New application of nondestructive methods for quality evaluation of fruits and vegetables in Japan (quality and its evaluation of horticultural products, for further development of horticulture in East Asia)
JP3665286B2 (en) Method for producing roasted coffee beans
Barbosa et al. Correlation between antioxidant activity and coffee beverage quality by Electron Spin Resonance Spectroscopic
Fiore et al. Study of physical properties of coffee beans during roasting. Application of hyperspectral image analysis
Murray et al. Effect of home grinding on properties of brewed coffee
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
CN110850045A (en) Method and device for identifying smell of coffee beans, storage medium and electronic device