JPH02312381A - Method of interpolating scanning line - Google Patents
Method of interpolating scanning lineInfo
- Publication number
- JPH02312381A JPH02312381A JP1133868A JP13386889A JPH02312381A JP H02312381 A JPH02312381 A JP H02312381A JP 1133868 A JP1133868 A JP 1133868A JP 13386889 A JP13386889 A JP 13386889A JP H02312381 A JPH02312381 A JP H02312381A
- Authority
- JP
- Japan
- Prior art keywords
- scanning line
- interpolation
- interpolated
- pixel
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000003169 complementation method Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009978 visual deterioration Effects 0.000 description 1
Landscapes
- Television Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、テレビジョン受像器等の画像を扱う機器にお
いて、インターレースのテレビジョン信号をノンインタ
ーレースにしたり、走査線数の変換に用いられる走査線
補間方法に関する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a method for converting interlaced television signals into non-interlacing and converting the number of scanning lines in equipment that handles images such as television receivers. Concerning line interpolation methods.
現在、テレビ放送等で一般に使われているカラーテレビ
ジョン標準方式はインターレースとなっており、1フイ
ールドですべての走査線が送られるノンインターレース
に対して、走査線が1本おきに間引かれたものとなって
いる。この場合に伝送可能となる時空間周波数帯域は、
第4図のように時間周波数(f)と垂直周波数(ν)の
領域でひし形になっており、視角特性により適合した伝
送帯域を持っている。しかし、元となる信号の時空間周
波数帯域は必ずしも適切に制限されておらず、受像器や
視覚による帯域制限も十分でないので、画像は多くの折
返し成分を含むものとなる。Currently, the color television standard system commonly used in television broadcasting is interlaced, and in contrast to non-interlaced, in which all scanning lines are sent in one field, every other scanning line is thinned out. It has become a thing. In this case, the spatiotemporal frequency band that can be transmitted is
As shown in FIG. 4, it has a rhombic shape in the temporal frequency (f) and vertical frequency (ν) regions, and has a transmission band that is more suitable for viewing angle characteristics. However, the spatiotemporal frequency band of the original signal is not necessarily appropriately limited, and the band limitation by the receiver or vision is not sufficient, so the image contains many aliased components.
したがって、垂直高域成分は時間高域の折返し成分とな
ってラインフリッカとして視見妨害となる。Therefore, the vertical high-frequency component becomes a temporal high-frequency aliasing component, which obstructs viewing as line flicker.
また、これにより垂直解像度はノンインターレースの7
0%程度しか得られない。This also increases the vertical resolution to 7
Only about 0% can be obtained.
このような問題を解決する手段として動き適応型走査線
補間方式がある。これはモニターに表示する画像はノン
インターレースとし、インターレースで間引かれていた
走査線は、画像が静止している場合にはフレーム間で捕
間を行ない、静止領域で前記の問題を解決するものであ
る。その例として「信号処理回路」 (特開昭61−3
2681号)がある。これは静止画においては1フレ一
ム前後の画素、動画においてはフィールド内の上下の画
素を加算して「2」で割ったものを補間値としている。A motion adaptive scanning line interpolation method is available as a means to solve such problems. This solves the above problem in static areas by making the image displayed on the monitor non-interlaced, and scanning lines thinned out by interlacing are captured between frames when the image is still. It is. An example of this is the "signal processing circuit" (Japanese Patent Laid-Open No. 61-3
No. 2681). This is an interpolated value that is obtained by adding the pixels before and after one frame in a still image, and by adding the pixels above and below within a field in a moving image and dividing the result by "2".
これにより、静止画像ではフレーム間の補間で、間引か
れる前のノンインターレース信号と同じものが再生され
、フリッカのない高い垂直解像度の画像が得られる。一
方、画像が動いている部分では動き検出によりフィール
ド内処理とするため、二ff11等を生じることがない
。As a result, in a still image, the same non-interlaced signal before thinning out is reproduced by interpolation between frames, and a flicker-free image with high vertical resolution can be obtained. On the other hand, in a moving part of the image, intra-field processing is performed by motion detection, so that 2ff11 etc. do not occur.
ところで、このような走査線補間はノンインターレース
化のみならず、NTSCからHDTVなどに走査線数変
換する場合や、動画像の1フイールドを静止画とした場
合に片方のフィールドを補間して、フレーム画像を形成
する際にも使われる。By the way, such scanning line interpolation is used not only for non-interlacing, but also when converting the number of scanning lines from NTSC to HDTV, etc., or when one field of a moving image is used as a still image, by interpolating one field to create a frame. It is also used when forming images.
一方、動画像の効能率符号化で、片方のフィールドから
もう片方のフィールドを予測してその予測残差を符号化
する方法がある。そので、このような予測符号化におい
てもフィールド補間信号を予4−1信号として使うこと
が考えられる。この場合、より適切な予測を行うことで
、予flll残差を少なくすることができ、高いデータ
圧縮率が得られる。On the other hand, in efficiency encoding of moving images, there is a method of predicting one field from the other and encoding the prediction residual. Therefore, it is conceivable to use the field interpolation signal as the pre-4-1 signal in such predictive coding as well. In this case, by performing more appropriate prediction, the preliminary full residual can be reduced and a high data compression rate can be obtained.
しかしながら、上記従来の補血法において、動領域の処
理は上下画素からの補間であるために画像の形状によっ
ては動領域での垂直解像度が改善されず、補間により鮮
鋭度が低下するという問題があった。However, in the above-mentioned conventional blood complementation method, processing of the moving region involves interpolation from the upper and lower pixels, so depending on the shape of the image, the vertical resolution in the moving region may not be improved, and the sharpness may decrease due to interpolation. Ta.
さらに、”インターレース信号は、通常、送信側で第4
図に示したような時空間帯域制限がされているわけでな
く、1フイールドの画像は単に1本毎に走査線が間引か
れた形になっており、折返し成分を含んでいる。そのた
め、フィールド内袖間した場合、斜めのエツジは、第4
図(a)に示したような階段状になり、著しい視覚劣化
を生じる。Furthermore, ``interlaced signals usually have a fourth
There is no spatiotemporal band limitation as shown in the figure, and the image of one field simply has scanning lines thinned out one by one, and includes aliasing components. Therefore, in the case of field inner sleeve, the diagonal edge is the fourth
The image becomes step-like as shown in Figure (a), resulting in significant visual deterioration.
また、送信側で時空間周波数に帯域制限されるていると
、階段状の歪みは解像度が低下し、なまったエツジとな
る。Furthermore, if the transmission side is band-limited by spatiotemporal frequency, the resolution of the step-like distortion will decrease, resulting in rounded edges.
そこで、本発明は、フィールド内袖間を画像の形状に応
じて行うようにした走査線補間方法を提供することを目
的とする。SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a scanning line interpolation method that performs interpolation between fields in accordance with the shape of an image.
本発明の走査線補間方法は、それぞれ捕間対称画素から
所定の方向に位置する画素からなる複数の画素組各々に
おいてその画素同士の変化の度合を検出し、複数の画素
組のうちその検出値が最も小さいものの画素値を用いて
補間対称画素の補間値を決定することを特徴とする。The scanning line interpolation method of the present invention detects the degree of change between pixels in each of a plurality of pixel sets consisting of pixels located in a predetermined direction from the interpolated symmetrical pixel, and detects the degree of change between the pixels among the plurality of pixel sets. is characterized in that the interpolation value of the interpolation target pixel is determined using the pixel value of the smallest pixel.
本発明によれば、各画素組の画素同士を結ぶ線はそれぞ
れ異なる方向性を持つから、その画素同士の変化の度合
いを見てこれが最も小さいものを用いて補間値を決定す
ることは、画像のエツジがどのような方向に変化してい
るかを探り当て、補間対称画素をそのエツジの線に乗せ
るように補間値を決定することができることとなり、画
像の形状に応じた補間を行うことができる。According to the present invention, since the lines connecting the pixels of each pixel group have different directions, determining the interpolation value by looking at the degree of change between the pixels and using the one with the smallest change is a By finding out in what direction the edge of the image is changing, it is possible to determine the interpolation value so that the pixel to be interpolated is placed on the line of that edge, and it is possible to perform interpolation according to the shape of the image.
以下に本発明の一実施例について図面を参照、しつつ説
明する。An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例に係る補間方法の概念図であ
る。FIG. 1 is a conceptual diagram of an interpolation method according to an embodiment of the present invention.
まず、本実施例においては、補間対称走査線の上下に位
置する下走査線ならびに下走査線の画素における補間対
称走査線の補間対称画素を中心にして相互に点対称位置
に在るもの同士からなる複数の点対称画素対各々におい
てその画素同士の変化の度合いを検出し、当該複数の点
対称画素対のうちその検出値が最も小さいものの画素値
を用いて捕間対称画素の補間値を決定する。First, in this embodiment, from the lower scanning line located above and below the interpolation symmetrical scanning line and the pixels of the lower scanning line that are located at points symmetrical positions with respect to the interpolation symmetrical pixel of the interpolation symmetrical scanning line, Detect the degree of change between pixels in each of a plurality of point-symmetric pixel pairs, and use the pixel value of the one whose detected value is the smallest among the point-symmetric pixel pairs to determine the interpolated value of the captured symmetric pixel. do.
その様子は第1図に示されている。補間の対称となる画
素Xは、下走査線の画素a、b、c、d。The situation is shown in FIG. The pixels X to be interpolated are pixels a, b, c, and d of the lower scanning line.
eと、下走査線の画素f、 g、 h、 t、
jとで各方向の変化1a−jl、1b−it、1c−
hl。e, and the pixels of the lower scanning line f, g, h, t,
j and changes in each direction 1a-jl, 1b-it, 1c-
hl.
ld−gl、1e−flを求め、5方向の変化のうちで
、
1a−jlが最小のときには(a+j)/2を、Ib−
1fが最小のときには(b+i)/2を、1c−hlが
最小のときには(c+h)/2を、ld−glが最小の
ときには(d+g)/2を、Ie−flが最小のときに
は(e+f)/2を、補間値として決定するものである
。Find ld-gl and 1e-fl, and when 1a-jl is the smallest among the changes in 5 directions, (a+j)/2, Ib-
When 1f is the minimum, use (b+i)/2, when 1c-hl is the minimum, use (c+h)/2, when ld-gl is the minimum, use (d+g)/2, and when Ie-fl is the minimum, use (e+f). /2 is determined as the interpolation value.
例えば、第3図の場合にはエツジ部分でld−glが最
小になるため、(d+g)/2が補間対称画素Xの補間
値となる。これにより、同図(b)に示すように滑らか
な斜めエツジが得られる。捕間値はエツジの形状により
、垂直方向に延びるエツジでは(c十h)/2が、水平
方向に近いエツジでは(a+j)/2または(e+f)
/2が捕間対称画素Xの補間値となる。For example, in the case of FIG. 3, since ld-gl is minimum at the edge portion, (d+g)/2 becomes the interpolation value of the interpolation target pixel X. As a result, smooth diagonal edges can be obtained as shown in FIG. 2(b). The interpolation value depends on the shape of the edge; for edges that extend vertically, it is (c + h)/2, and for edges that are close to the horizontal direction, it is (a + j) / 2 or (e + f).
/2 becomes the interpolated value of the interpolated symmetrical pixel X.
よって、従来、固定的に(c十h)/2が補間値として
用いられていたのに対し、画像の変化の方向に応じて適
切な補間が行われ、従来問題となっていた階段状の歪み
が改善される。このことは、動領域の垂直解像度が改善
されたことを意味する。Therefore, whereas conventionally, (c + h) / 2 was used as the fixed interpolation value, appropriate interpolation is performed according to the direction of image change, and the step-like problem that has been a problem in the past is solved. Distortion is improved. This means that the vertical resolution of the moving area is improved.
第2図はかかる補間法の実施に使用する装置のブロック
図である。FIG. 2 is a block diagram of the apparatus used to implement such an interpolation method.
この図において、補間信号入力端10より入力された信
号は画素遅延器12,14,16.18で各1画素(サ
ンプル間隔T)に相当する時間だけ遅延させられた後、
遅延器20で1水平走査線(H)から4画素分少ない分
遅延させられ、さらに画素遅延器22,24.26.2
8で各1画素分遅延させられる。In this figure, a signal input from an interpolation signal input terminal 10 is delayed by a time corresponding to one pixel (sample interval T) in pixel delay devices 12, 14, 16, and 18, and then
The delay device 20 delays one horizontal scanning line (H) by 4 pixels, and the pixel delay devices 22, 24, 26, 2
8, each pixel is delayed by one pixel.
補間信号入力端10における入力信号は第1図の画素j
に、画素遅延器12.14,16.18の出力はt、
h、 g、 fに、遅延器20の出力はeに、画
素遅延器22,24,26.28の出力はd、 c、
b、 aにそれぞれ該当する。これら各出力は加
算器30,32,34,36.38で(a+j)/2.
(b+f)/2. (c+h)/2、(d+g)/2
.(e+f)/2が求められる。一方、減算器40,4
2,44,46.48で(a j)、 (b−i)、
(c−h)、 (d −g)、(e−f)が求められ
、絶対値化器50゜52.56,58.60で1a−j
f。The input signal at the interpolation signal input terminal 10 is the pixel j in FIG.
, the outputs of pixel delay devices 12.14 and 16.18 are t,
h, g, f, the output of the delay device 20 is e, and the output of the pixel delay devices 22, 24, 26.28 is d, c,
This applies to b and a, respectively. These respective outputs are converted to (a+j)/2. by adders 30, 32, 34, 36.
(b+f)/2. (c+h)/2, (d+g)/2
.. (e+f)/2 is obtained. On the other hand, subtractors 40, 4
2,44,46.48 (a j), (b-i),
(c-h), (d-g), (e-f) are obtained, and 1a-j is obtained using an absolute value converter 50°52.56, 58.60.
f.
1b−it、 1c−hl、 I d−g I。1b-it, 1c-hl, I d-g I.
Ie−flに変換される。It is converted to Ie-fl.
加算器30,32,34,36.38の出力は2で割ら
れて選択器60に入力され、絶対呟化器50.52,5
6.58の出力は最小値検出器62に人力される。最小
値検出器62では、入力された5種類の信号から最小の
ものがどれであるか橋出しその情報を選択器60に送る
。選択器60ではその情報により入力された5種類の信
号のうち一つを選択し、補間値出力端64から出力する
。The outputs of the adders 30, 32, 34, 36.38 are divided by 2 and input to the selector 60, and the outputs of the adders 30, 32, 34, 36.
The output of 6.58 is input to the minimum value detector 62. The minimum value detector 62 determines which one is the minimum among the five types of input signals and sends this information to the selector 60. The selector 60 selects one of the five types of signals input based on the information, and outputs it from the interpolated value output terminal 64.
動き適応型の走査線補間では、このようにして作られた
フィールド内補間値と、フレーム間補間値とを、動領域
検出によって混合比を変えながら混合し、捕間走査線と
する。さらに、ノンインターレース化では、補間走査線
と元から存在する走査線を時間圧縮して交互に走査線と
することでノンインターレース信号が得られる。In motion-adaptive scanning line interpolation, the intra-field interpolated values thus created and the inter-frame interpolated values are mixed while changing the mixing ratio by motion area detection to form an interpolated scanning line. Furthermore, in non-interlacing, a non-interlaced signal can be obtained by time-compressing interpolated scanning lines and originally existing scanning lines to alternately form scanning lines.
上記実施例においては、補間画木組として補間対称画素
を中心にした複数の点対称画素女・tを用いることにし
たが、本発明はこれに限定されるものではない。In the above embodiment, a plurality of point symmetric pixels centered around the interpolation symmetric pixel are used as the interpolation drawing set, but the present invention is not limited to this.
すなわち、まず、第1図の場合、上走査線の画素と下走
査線の画素との間に補間対称画素Xを中心にした点対称
の関係が得られるか、フィールドオフセットサンプリン
グの場合、そのサンプル点の走査線間のオフセットによ
り、かかる点対称の関係が得られない。例えば、上走査
線の画素a〜eと下走査線の画素f−jとの間に点対称
の関係が得られなくても、上記実施例と同様に、これら
の画素を用いて変化を検出し、補間に用いることができ
る。That is, in the case of FIG. 1, first, whether a point-symmetric relationship is obtained between the pixels of the upper scanning line and the pixels of the lower scanning line with the interpolation symmetric pixel X as the center, or in the case of field offset sampling, the sample Offsets between the scan lines of points prevent such point symmetry relationships. For example, even if a point-symmetrical relationship cannot be obtained between pixels a to e on the upper scanning line and pixels f to j on the lower scanning line, changes can be detected using these pixels in the same way as in the above embodiment. and can be used for interpolation.
また、上記実施例においては、補間対称走査線の補間を
その上下に位置する走査線を用いて行なっているが、上
記いずれか片側の走査線を用いて行っても良い。Further, in the above embodiment, the interpolation of the interpolation symmetrical scanning line is performed using the scanning lines located above and below it, but it may be performed using the scanning line on either side.
この場合、例えば捕間対称走査線の上側に位置する2本
の走査線を用い、その補間対称画素に対して同じ方向に
位置する2つの画素値から変化を検出するようにすれば
良い。In this case, for example, two scanning lines located above the interpolation symmetrical scanning line may be used, and changes may be detected from two pixel values located in the same direction with respect to the interpolation symmetrical pixel.
以上説明したように本発明によれば、フィールド内の走
査線補間を上下方向のみでなく、斜め方向からも捕間し
、どの方向から補間するかは、各方向の画素の変化の程
度を検出し、最も変化の少ないものを選ぶようにして行
うことにより、従来問題となっていた斜めエツジの階段
状の歪みがなくなり、滑らかな画像になる。このことは
、動領域の垂直解像度が改善されることを意味するもの
である。これにより、動き適応型の走査線補間で、動画
処理でも画質が改善され、静止処理とのつながりもスム
ーズになる。As explained above, according to the present invention, scanning line interpolation within a field is performed not only in the vertical direction but also in the diagonal direction, and the direction from which interpolation is performed is determined by detecting the degree of change in pixels in each direction. However, by selecting the one with the least amount of change, the step-like distortion of diagonal edges, which has been a problem in the past, is eliminated, resulting in a smooth image. This means that the vertical resolution of the moving area is improved. As a result, motion-adaptive scan line interpolation improves image quality even in video processing, and seamlessly integrates with still processing.
この手法は、ノンインターレース化のみならず、動画像
をフィールドで静止した場合の片フィールドの形成や、
走査線数の変換、画像の高能率符号化において、フィー
ルド間予測方法としても用いることができる。This method is useful not only for non-interlacing, but also for forming a single field when a moving image is frozen in a field,
It can also be used as an inter-field prediction method in converting the number of scanning lines and in high-efficiency encoding of images.
このフィールド間予測に応用した場合、第3図の例で説
明すれば、従来、エツジの部分において階段状になるが
ため、1走査線あたり2画素(斜線の画素)分を符号化
しなければならないこととなっていたが、本発明方法に
よって符号化せずに済むこととなる。よって、圧縮率の
向上に大きく寄与することとなる。When applied to this inter-field prediction, as explained using the example in Figure 3, conventionally, the edge part becomes step-like, so two pixels (hatched pixels) must be encoded per scanning line. However, the method of the present invention eliminates the need for encoding. Therefore, this greatly contributes to improving the compression ratio.
さらに、従来例に対してフィールドメモリーやラインメ
モリーの増加もないので、LSI化も容易である。Furthermore, since there is no increase in field memory or line memory compared to the conventional example, it is easy to implement it into an LSI.
第1図は本発明の一実施例に係る補間法の概念図、第2
図はその実施に使用する装置のブロック図、第3図は従
来法と本発明法との補間結果の比較図、第4図はインタ
ーレース信号の時空間特性図である。
10・・・補間信号入力端、12,14,16゜18.
22,24,26.28・・・画素(1T)遅延器、2
0・・・(iH−47)遅延器、30,32゜34.3
6.38・・・補間値候補を算出する加算器、40.4
2.44,46.48・・・画素対における画素同士の
変化度合いを求める減算器、50.52,54,56.
58・・・同絶対値化器、60・・・補間値選択器、6
2・・・最小値検出器、補間値出力端、X・・・補間対
称画素、a−j・・・補間対画素組を構成する画素。
出願人代理人 佐 藤 −雄
(α)従来例 (b)本手范第
3図
を
第4図FIG. 1 is a conceptual diagram of an interpolation method according to an embodiment of the present invention, and FIG.
The figure is a block diagram of a device used for implementing the method, FIG. 3 is a comparison diagram of interpolation results between the conventional method and the method of the present invention, and FIG. 4 is a diagram of spatio-temporal characteristics of an interlace signal. 10... Interpolation signal input end, 12, 14, 16° 18.
22, 24, 26.28... Pixel (1T) delay device, 2
0...(iH-47) Delay device, 30,32°34.3
6.38... Adder for calculating interpolated value candidates, 40.4
2.44, 46.48...Subtractor for determining the degree of change between pixels in a pixel pair, 50.52, 54, 56.
58... Absolute value converter, 60... Interpolated value selector, 6
2: Minimum value detector, interpolation value output terminal, X: Interpolation target pixel, a-j: Pixel forming the interpolation pair pixel group. Applicant's agent Mr. Sato (α) Conventional example (b) Hontefan Figure 3 is shown in Figure 4
Claims (1)
らなる複数の画素組各々においてその画素同士の変化の
度合を検出し、 前記複数の画素組のうちその検出値が最も小さいものの
画素値を用いて前記補間対称画素の補間値を決定する、 ことを特徴とする走査線補間方法。[Claims] In intra-field interpolation of scanning lines, the degree of change between pixels is detected in each of a plurality of pixel sets each consisting of pixels located in a predetermined direction from the interpolation target pixel, and the degree of change between the pixels is detected, A scanning line interpolation method characterized in that the interpolation value of the interpolation target pixel is determined using the pixel value of which the detected value is the smallest.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1133868A JPH02312381A (en) | 1989-05-26 | 1989-05-26 | Method of interpolating scanning line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1133868A JPH02312381A (en) | 1989-05-26 | 1989-05-26 | Method of interpolating scanning line |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02312381A true JPH02312381A (en) | 1990-12-27 |
Family
ID=15114936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1133868A Pending JPH02312381A (en) | 1989-05-26 | 1989-05-26 | Method of interpolating scanning line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02312381A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0686239A (en) * | 1991-12-23 | 1994-03-25 | Gold Star Co Ltd | Apparatus for interpolation of scanning lines of television signal |
JPH0686237A (en) * | 1991-12-27 | 1994-03-25 | Gold Star Co Ltd | Method and apparatus for interpolation of scanning lines of television |
WO2001017243A1 (en) * | 1999-08-31 | 2001-03-08 | Sharp Kabushiki Kaisha | Image interpolation system and image interpoloation method |
WO2001056282A1 (en) * | 2000-01-28 | 2001-08-02 | Fujitsu General Limited | Scanning conversion circuit |
-
1989
- 1989-05-26 JP JP1133868A patent/JPH02312381A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0686239A (en) * | 1991-12-23 | 1994-03-25 | Gold Star Co Ltd | Apparatus for interpolation of scanning lines of television signal |
JPH0686237A (en) * | 1991-12-27 | 1994-03-25 | Gold Star Co Ltd | Method and apparatus for interpolation of scanning lines of television |
WO2001017243A1 (en) * | 1999-08-31 | 2001-03-08 | Sharp Kabushiki Kaisha | Image interpolation system and image interpoloation method |
AU762673B2 (en) * | 1999-08-31 | 2003-07-03 | Sharp Kabushiki Kaisha | Image interpolation system and image interpoloation method |
US6980254B1 (en) | 1999-08-31 | 2005-12-27 | Sharp Kabushiki Kaisha | Image interpolation system and image interpolation method |
WO2001056282A1 (en) * | 2000-01-28 | 2001-08-02 | Fujitsu General Limited | Scanning conversion circuit |
US7092032B1 (en) | 2000-01-28 | 2006-08-15 | Fujitsu General Limited | Scanning conversion circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6473460B1 (en) | Method and apparatus for calculating motion vectors | |
US6118488A (en) | Method and apparatus for adaptive edge-based scan line interpolation using 1-D pixel array motion detection | |
EP1164792A2 (en) | Format converter using bidirectional motion vector and method thereof | |
EP0677958A2 (en) | Motion adaptive scan conversion using directional edge interpolation | |
JPH01318376A (en) | Method of suppressing static picture flicker and method of detecting movement of displayed object | |
JPH09172621A (en) | Interpolation device and interpolation method for compressed high resolution video signal | |
JPH02312381A (en) | Method of interpolating scanning line | |
EP1418754B1 (en) | Progressive conversion of interlaced video based on coded bitstream analysis | |
JP2596166B2 (en) | Motion adaptive scanning line interpolator | |
KR960012490B1 (en) | Video format converting apparatus and method for hdtv | |
JP2000156846A (en) | Device and method for converting moving image format | |
JPH0715700A (en) | Apparatus and method for movement corrected processing of video signal | |
JP2784806B2 (en) | Motion area detection circuit | |
JP3285892B2 (en) | Offset subsampling decoding device | |
JP2006121568A (en) | Image processor and image processing method | |
JPH04355581A (en) | Scanning line interpolation circuit | |
JP3311791B2 (en) | Motion vector detection method and apparatus | |
JP2519526B2 (en) | Signal processor | |
JPS62143581A (en) | Television signal system | |
JPH07123373A (en) | Decoder of television signal | |
JPH0646390A (en) | Signal conversion device | |
JP2001103433A (en) | Scanning double-speed signal output method | |
JP2001326912A (en) | Scanning line interpolation device | |
JPH04238485A (en) | Television signal converter | |
JP2001189919A (en) | Image information converter and image information conversion method |