JPH02312291A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH02312291A
JPH02312291A JP13330689A JP13330689A JPH02312291A JP H02312291 A JPH02312291 A JP H02312291A JP 13330689 A JP13330689 A JP 13330689A JP 13330689 A JP13330689 A JP 13330689A JP H02312291 A JPH02312291 A JP H02312291A
Authority
JP
Japan
Prior art keywords
semiconductor laser
etching
film
gas
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13330689A
Other languages
Japanese (ja)
Inventor
Teruhito Matsui
松井 輝仁
Kenichi Otsuka
健一 大塚
Hiroshi Sugimoto
博司 杉本
Yuji Abe
雄次 阿部
Toshiyuki Oishi
敏之 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13330689A priority Critical patent/JPH02312291A/en
Publication of JPH02312291A publication Critical patent/JPH02312291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve a semiconductor laser of this design in dimensional accuracy and reproducibility by a method wherein a vertical plane used for the resonator mirror of a semiconductor laser and an inclined plane used for deflection are processed through a dry etching method using hydrocarbon gas. CONSTITUTION:An insulating film of silicon dioxide or silicon nitride is formed on the surface of a semiconductor laser crystal substrate 1, a window is provided to the film 2, and a groove 11 provided with vertical side faces 11a and 11b is formed on the surface of the substrate 1 through a reactive ion etching method using a mixed gas of hydrogen and methane or ethane as an etching gas and the film 2 as a mask. Then, the etching mask is removed, and side walls 6a and 6b provided with inclined planes are formed through a reactive etching method, using an insulating film 13 of silicon dioxide or silicon nitride provided with a window which covers the side wall 11a of the groove 11 but does not cover the other side wall 11b as a mask and hydrocarbon gas such as methane or ethane not mixed with hydrogen as an etching gas. As mentioned above, a semiconductor laser of this design is formed through a dry etching method, so that it is improved in dimensional accuracy and reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体レーザの出射光を基板表面と垂直方向
に偏向させて取り出す反射面とを一体化した面発光型の
半導体レーザの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing a surface-emitting semiconductor laser that integrates a reflecting surface that deflects the emitted light of the semiconductor laser in a direction perpendicular to the surface of a substrate. It is something.

〔従来の技術〕[Conventional technology]

第5図は、例えばリューおよびワルボール、アプライド
 フィジクス レターズ 第46JL No、2゜p、
115−117(1985)  ((Z、L、Liau
 and J、N、Walpole。
Figure 5 shows, for example, Liu and Walbor, Applied Physics Letters No. 46 JL No. 2°p.
115-117 (1985) ((Z, L, Liau
and J.N., Walpole.

Applied Physics Letters、 
Vol、46.No、2. p、115−117(19
85) )に示された従来の面発光型の半導体レーザの
斜視図であり、図において、lはn−EnP基板、3は
Ga1nAsP活性層、4はp −InPクラッド層、
16はp電極のAu/Zn(金/亜鉛)、17はn電極
のAu/Sn(金/錫)、18は放射面(45度)反射
鏡、9は半導体レーザから出射されたレーザビームであ
る。
Applied Physics Letters,
Vol, 46. No, 2. p, 115-117 (19
85) is a perspective view of the conventional surface-emitting semiconductor laser shown in ), in which l is an n-EnP substrate, 3 is a Ga1nAsP active layer, 4 is a p-InP cladding layer,
16 is the p-electrode Au/Zn (gold/zinc), 17 is the n-electrode Au/Sn (gold/tin), 18 is the radiation surface (45 degrees) reflecting mirror, and 9 is the laser beam emitted from the semiconductor laser. be.

次にこの従来の面発光型の半導体レーザの作製方法につ
いて第6図を用いて説明する。
Next, a method for manufacturing this conventional surface-emitting type semiconductor laser will be explained using FIG. 6.

まず、n−1nP基板1上にn−Ga InAsPスト
ップエッチ層19、n−1nPバッファ層2、Ga1n
AsP活性層3、p−1nPクラツドII4、p−1n
Pキャップ層20を成長させたウェハに、エツチングマ
スクとして燐珪酸ガラス(PSG)21を塗布し、窓開
けを行う。
First, on an n-1nP substrate 1, an n-Ga InAsP stop etch layer 19, an n-1nP buffer layer 2, a Ga1n
AsP active layer 3, p-1nP cladding II4, p-1n
Phosphorsilicate glass (PSG) 21 is applied as an etching mask to the wafer on which the P cap layer 20 has been grown, and a window is opened.

そして、第1のエツチング液で、p−1nPキャンプN
20.p−rnPクラッドN4を工・ノチングし、第2
のエツチング液でGa1nAsP活性層3までエツチン
グし、垂直な側面を持つ溝11を形成する。
Then, with the first etching solution, p-1nP camp N
20. Machining and notching the p-rnP cladding N4, and
The Ga1nAsP active layer 3 is etched with an etching solution to form a groove 11 having vertical sides.

さらに、この溝11上の一方の燐珪酸ガラス(PSG)
マスク21の一部を除去し、もう一度エンチング液で、
同様にエツチングを行うと階段状の断面を持つ形状が得
られる。
Furthermore, one phosphosilicate glass (PSG) on this groove 11
Remove a part of the mask 21 and use the etching liquid again.
If etching is performed in the same manner, a shape with a stepped cross section will be obtained.

次に燐珪酸ガラス(PSG)マスク21を除去し、ウェ
ハを炉の中に入れ、水素(H2)とホスフィン(PH3
)雰囲気中で740°Cで熱処理を行うとマストランス
ポート(mass transport)現象により階
段形状が滑らかになり、放物面状になる。チタン(Ti
)と金(Au)をこの放物面に蒸着して反射鏡18を作
製し、また、p−電極、n−電極用にそれぞれAu/Z
n16、A u / 5n17を蒸着して面発光型の半
導体レーザはできあがる。上記活性層3から出射された
レーザビームはこの放物面反射鏡(45度反射鏡)1B
で反射され、ウェハに対して垂直方向に取り出される。
Next, the phosphosilicate glass (PSG) mask 21 is removed, the wafer is placed in a furnace, and hydrogen (H2) and phosphine (PH3) are removed.
) When heat treatment is performed at 740° C. in an atmosphere, the step shape becomes smooth due to the mass transport phenomenon and becomes paraboloidal. Titanium
) and gold (Au) were deposited on this paraboloid to fabricate the reflecting mirror 18, and Au/Z was deposited for the p-electrode and n-electrode, respectively.
By depositing n16 and A u /5n17, a surface emitting type semiconductor laser is completed. The laser beam emitted from the active layer 3 is transmitted through the parabolic reflecting mirror (45 degree reflecting mirror) 1B.
It is reflected by the wafer and taken out in a direction perpendicular to the wafer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の面発光型の半導体レーザは以上のように作製され
ているので、放物面反射鏡の形状はn −InPバッフ
ァ層2やp−1nPクラッド層4、p−1nPキヤツプ
Jii20の厚みに依存し、結晶では再現性に問題があ
り、また加工に化学エツチング法を用いているため形状
にバラツキが生じるといった問題があった。
Since the conventional surface-emitting type semiconductor laser is manufactured as described above, the shape of the parabolic reflector depends on the thickness of the n-InP buffer layer 2, the p-1nP cladding layer 4, and the p-1nP cap Jii 20. However, crystals have problems with reproducibility, and because a chemical etching method is used for processing, there are problems with variations in shape.

この発明は上記のような問題点を解消するためになされ
たもので、レーザ結晶の層厚が変化しても、それに応じ
て寸法精度の高い良好な反射面の作製が可能な面発光型
半導体レーザの製造方法を提供することを目的としてい
る。
This invention was made to solve the above-mentioned problems, and it is a surface-emitting semiconductor that can produce a good reflective surface with high dimensional accuracy even if the layer thickness of the laser crystal changes. The purpose of this invention is to provide a method for manufacturing a laser.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る面発光型半導体レーザの製造方法は、半
導体レーザの共振器ミラー用の垂直面と偏向用の45度
面の加工を、化学的エツチングを使用せず、エツチング
ガスに炭化水素系ガスを使用したドライエツチングによ
り行うようにしたものである。
The method for manufacturing a surface-emitting semiconductor laser according to the present invention processes the vertical plane for the resonator mirror and the 45-degree plane for deflection of the semiconductor laser without using chemical etching and using hydrocarbon-based gas as the etching gas. This is done by dry etching using.

〔作用〕[Effect]

この発明においては、レーザ共振器ミラーおよび偏向用
の反射鏡は、ドライエツチング法で形成されるため、寸
法精度の高い、再現性に優れたものが得られる。
In this invention, since the laser resonator mirror and the deflecting mirror are formed by dry etching, it is possible to obtain products with high dimensional accuracy and excellent reproducibility.

(実施例) 以下、この発明の実施例を図について説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1はn−1nP基板、2はnT n 
P バッファ層、3はGa1nAsP活性層、4はp−
InPクラッド層、5はP  Ga1nAsPキャップ
層、6は45度反射面、7はp −1極用金/クロム(
Au/Cr)、8はn−電極用金/ニッケル/金−ゲル
マニウム(Au/N)/AuGe)、9は半導体レーザ
から出射されたレーザビームである。
In FIG. 1, 1 is an n-1nP substrate, 2 is an nT n
P buffer layer, 3 is Ga1nAsP active layer, 4 is p-
InP cladding layer, 5 is P Ga1nAsP cap layer, 6 is 45 degree reflective surface, 7 is gold/chromium for p-1 electrode (
8 is gold/nickel/gold-germanium (Au/N)/AuGe) for an n-electrode, and 9 is a laser beam emitted from a semiconductor laser.

InPやGaAs等のm−V族化合物半導体やGa 1
’nAs、Ga InAs P等の混晶半導体は、二酸
化珪素(SiO□)や窒化珪素(SiNx)膜をエツチ
ングマスクとしてメタン(CH4)あるいはエタンCc
t H& )等の炭化水素系のガスと水素(H2)の混
合ガスをエツチングガスとして、反応性イオンエツチン
グ(Reactive Ion Etching)を行
うと、垂直な側壁を持つ溝を形成することができる。こ
の際、マスクの二酸化珪素(Si0、)JJiはエツチ
ングされず、股上には炭化水素系のポリマーが形成され
る。
m-V group compound semiconductors such as InP and GaAs, and Ga 1
Mixed crystal semiconductors such as 'nAs and Ga InAs P are etched using methane (CH4) or ethane Cc using a silicon dioxide (SiO□) or silicon nitride (SiNx) film as an etching mask.
When reactive ion etching is performed using a mixed gas of a hydrocarbon gas such as tH&) and hydrogen (H2) as an etching gas, a groove having vertical sidewalls can be formed. At this time, the silicon dioxide (Si0,) JJi of the mask is not etched, and a hydrocarbon-based polymer is formed on the crotch.

また、エツチングガスに水素を混合せず、メタン(CH
4)あるいはエタン(CZ H& )等の炭化水素系の
ガスのみを使用すると、■−V族化合物半導体がエツチ
ングされるのみならず、二酸化珪素(SiO□)膜もエ
ツチングされる。この際、Si0g膜も膜厚の減少だけ
でなく、縁から横方向へのエツチングも進み後退するの
で、II[−V族化合物半導体の溝の側壁は傾斜角を持
ったものが得られる。特に、SiO□膜の縁に傾斜角を
持っていると顕著になる。
In addition, methane (CH
4) Alternatively, if only a hydrocarbon gas such as ethane (CZ H&) is used, not only the ■-V group compound semiconductor but also the silicon dioxide (SiO□) film is etched. At this time, the Si0g film not only decreases in film thickness, but also undergoes etching in the lateral direction from the edge and recedes, so that the side walls of the groove of the II[-V group compound semiconductor have an inclined angle. This is particularly noticeable when the edge of the SiO□ film has an inclined angle.

この発明は、このI−V族化合物半導体におけるエツチ
ングの特性を利用したものであり、以下、この発明の一
実施例の製造方法について、第2図を用いて説明する。
The present invention utilizes the etching characteristics of this IV group compound semiconductor, and a manufacturing method according to an embodiment of the present invention will be described below with reference to FIG.

まず、n−1nP基板1上に、n−1nPバッファ層2
、Ga1nAsP活性層3、p−1nPクラッド層4、
p−GaInAsP層キャップ5を順次エピタキシャル
結晶成長させ、Ga1nAsP活性層3をストライプ状
に加工した後、活性層の横において屈折率および禁制帯
幅の大きい【nPNを再成長させ、埋め込み構造(Bu
rjed Hetero 5tructure ) と
した半導体レーザ用のウェハを作製する。
First, an n-1nP buffer layer 2 is placed on an n-1nP substrate 1.
, Ga1nAsP active layer 3, p-1nP cladding layer 4,
After epitaxially growing the p-GaInAsP layer cap 5 and processing the Ga1nAsP active layer 3 into a stripe shape, next to the active layer, [nPN with a large refractive index and forbidden band width] is regrown, and a buried structure (Bu
A wafer for a semiconductor laser is manufactured.

このウェハ上に、ドライエツチングマスクとして、二酸
化珪素(SiO□)膜10をプラズマ化学気相成長(P
−CVD)等を使って形成し、フォトリソグラフィ(写
真製版)技術を使って窓を開ける(第2図(a))。
A silicon dioxide (SiO□) film 10 is deposited on this wafer as a dry etching mask by plasma chemical vapor deposition (P
- CVD), etc., and the window is opened using photolithography (photoengraving) technology (FIG. 2(a)).

次に、エタン(Cz Hb )と水素(H2)の混合ガ
スをエツチングガスとして、反応性イオンエツチング法
を使って、p−1nPクラッド層4の一部をエツチング
する深さまで、垂直な工・ンチング側壁11a、Ilb
を持つ溝11を形成する(第2図(b))。
Next, using a reactive ion etching method using a mixed gas of ethane (Cz Hb ) and hydrogen (H2) as an etching gas, vertical etching is performed to a depth that etches a part of the p-1nP cladding layer 4. Side wall 11a, Ilb
A groove 11 having a diameter is formed (FIG. 2(b)).

次に、緩衝フン酸(BHF)液を使って、SiO□l!
JIOマスク上にエツチング中に生成された炭化水素ポ
リマー12をSiO□膜10と一緒に除去する。さらに
、溝11の側壁の一方11aを覆い、他方の側壁11b
上には残らないように窓を開けたSiO□膜13を、新
たにエツチングマスクとして、P−CVD等やフォトリ
ソグラフィ技術を使って形成する。エツチングガスとし
て、今度は水素を混合せず、メタン(CH4)ガスのみ
を使って、Ga1nAs活性層3よりも深くエツチング
し、二酸化珪素(Sin、)膜13の横方向のエツチン
グによる後退を利用して、傾斜を持つ側壁6a、6bを
作製する(第2図(切)。
Next, using a buffered fluoric acid (BHF) solution, SiO□l!
The hydrocarbon polymer 12 produced on the JIO mask during etching is removed together with the SiO□ film 10. Furthermore, one side wall 11a of the groove 11 is covered, and the other side wall 11b is covered.
A new SiO□ film 13 with a window opened so as not to remain on the film is formed as an etching mask using P-CVD or photolithography technology. This time, only methane (CH4) gas was used as the etching gas, without mixing hydrogen, to etch deeper than the Ga1nAs active layer 3, and to take advantage of the receding of the silicon dioxide (Sin) film 13 due to lateral etching. Then, the inclined side walls 6a and 6b are manufactured (FIG. 2 (cut)).

その後、Ga1nAsP活性層3に対向する傾斜した側
壁6aに、Au等レーザ光を反射する膜7を作製する(
図ではこの反射膜7はp−電極を兼ねており、一度に作
製される)。半導体レーザ共振器ミラーの一方は、ドラ
イエツチングで得られた溝の垂直面を利用し、もう一方
のミラーは他端をへき関して形成する。
After that, a film 7 such as Au that reflects laser light is formed on the inclined side wall 6a facing the Ga1nAsP active layer 3 (
In the figure, this reflective film 7 also serves as a p-electrode and is fabricated at one time). One of the semiconductor laser resonator mirrors is formed using the vertical surface of the groove obtained by dry etching, and the other mirror is formed by separating the other end.

本実施例では、このように、反応性イオンエツチング装
置を利用し、■−V族化合物半導体材料ののエツチング
に炭化水素系のガスを反応ガスとして使用し、また、エ
ツチングマスクとして、半導体材料に近いエツチング速
度を持つものを使用することにより、再現性に優れた良
好な偏向用反射面およびレーザ共振器端面が得られ、面
発光型の半導体レーザを容易に得られるものである。
In this example, a reactive ion etching apparatus is used as described above, and a hydrocarbon gas is used as a reactive gas for etching the semiconductor material of the -V group compound. By using etching rates that are similar to each other, a good deflection reflecting surface and a laser resonator end face with excellent reproducibility can be obtained, and a surface-emitting type semiconductor laser can be easily obtained.

なお、上記実施例では、ドライエツチング法として反応
性イオンエツチング法を使用する場合について述べたが
、反応性イオンビームエツチング(Reactive 
ton Beam Etching)法やECR(El
ectron Cyclotron Re5onanc
e)エンチング法等、他のドライエツチング法を用いて
もよく、同じく炭化水素系ガスを使用することによって
同様の効果が期待できる。
Incidentally, in the above embodiment, the case where reactive ion etching was used as the dry etching method was described, but reactive ion beam etching (Reactive
ton beam etching) method and ECR (El
ectron Cyclotron Re5onanc
Other dry etching methods such as e) etching method may be used, and similar effects can be expected by using hydrocarbon gas.

また、上記実施例では、エツチングガスとして、−回目
のエツチングにエタン(C2H,)と水素(H2)の混
合ガス、二回目のエツチングにメタン(CH4)を使用
する場合について述べたが、−回目のエツチングにメタ
ンと水素の混合ガス、二回目のエツチングにエタンを使
用してもよい。
Furthermore, in the above embodiment, a case was described in which a mixed gas of ethane (C2H, ) and hydrogen (H2) was used as the etching gas for the -th etching, and methane (CH4) was used for the second etching. A mixed gas of methane and hydrogen may be used for the first etching, and ethane may be used for the second etching.

さらに、上記実施例においては、半導体レーザについて
はInP系の例を示したが、本発明はGaAsや他の■
−V族化合物半導体レーザにも同様に適用できる。また
レーザ構造としては埋め造型のものについて説明したが
、本発明は勿論他の構造のレーザにも、また、分布帰還
型(DFB)レーザ等にも適用でき、上記と同様の効果
が期待できる。
Furthermore, in the above embodiments, an example of an InP-based semiconductor laser was shown, but the present invention is also applicable to GaAs or other semiconductor lasers.
-V group compound semiconductor lasers can also be similarly applied. Further, although the laser structure has been described as a buried type, the present invention can of course be applied to lasers with other structures, as well as distributed feedback (DFB) lasers, etc., and the same effects as described above can be expected.

また、上記実施例では、二度目のエツチング時にエツチ
ングガスの流量を変化させない場合について述べたが、
エツチングガスの流量をエツチング中に連続的に増加さ
せて行けば、第3図の本発明の他の実施例に示すように
、深さ方向に曲率を持った側壁14を作製することが可
能である。
Furthermore, in the above embodiment, a case was described in which the flow rate of the etching gas was not changed during the second etching.
If the flow rate of the etching gas is continuously increased during etching, it is possible to fabricate a side wall 14 having a curvature in the depth direction, as shown in another embodiment of the present invention shown in FIG. be.

また、第4図の本発明のさらに他の実施例に示すように
、エツチングマスク13の窓の縁に直線ではなく曲率1
5を持たせることにより、形成される側壁の形状に曲率
を持たせることもできる。
Further, as shown in still another embodiment of the present invention shown in FIG.
5, it is also possible to give a curvature to the shape of the formed side wall.

これらの曲率を持った側壁は、レンズ作用のある反射面
として利用でき、所望の光素子に適用できることは言う
までもない。
It goes without saying that the side walls having these curvatures can be used as reflective surfaces with a lens effect, and can be applied to desired optical elements.

また、上記実施例では半導体レーザの共振ミラーの一方
をへき開によって作製したが、これはドライエンチング
により形成してもよく、また、へき開面等に高反射膜を
取りつけて、表面方向の出射出力を増加させるようにし
てもよい。
Furthermore, in the above embodiment, one of the resonant mirrors of the semiconductor laser was fabricated by cleavage, but it may also be formed by dry etching, or by attaching a high reflection film to the cleavage plane etc., the output power in the surface direction is may be increased.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、■−v族化合物半導
体材料の反応性イオンエツチングを利用してレーザ共振
器端面および偏向用傾斜面を形成するようにし、該半導
体材料のエツチングガスに炭化水素系のガスを使用し、
また、エツチングマスクとして、半導体材料に近いエツ
チング速度を持つものを使用するようにしたので、再現
性に優れた良好な偏向用反射面が得られ、面発光型の半
導体レーザを容易に得られる効果がある。
As described above, according to the present invention, the laser resonator end face and the deflection slope are formed using reactive ion etching of the ■-V group compound semiconductor material, and carbonization is added to the etching gas of the semiconductor material. Using hydrogen-based gas,
In addition, because we used an etching mask with an etching rate close to that of semiconductor materials, we were able to obtain a good deflection reflecting surface with excellent reproducibility, and the effect of easily obtaining a surface-emitting semiconductor laser. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例により得られる面発光型の
半導体レーザを示す断面側面図、第2図はこの発明の一
実施例による面発光型の半導体レーザの製造方法を示す
説明図、第3図はこの発明の他の実施例により得られる
面発光型の半導体レーザを示す断面側面図、第4図はこ
の発明のさらに他の実施例による製造方法を示す略斜視
図、第5図は従来例により得られる面発光型の半導体レ
ーザを示す斜視図、第6図は従来例による面発光型の半
導体レーザの製造方法を示す説明図である。 1はInP基板、2はn−InPバフ77層、5iOz
膜、3はGa1nAsP活性層、4はp−InPキャッ
プ層、6は45度反射面、7はp−電極、8はn−電極
、9はレーザビームである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional side view showing a surface-emitting semiconductor laser obtained according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a method for manufacturing a surface-emitting semiconductor laser according to an embodiment of the present invention. FIG. 3 is a cross-sectional side view showing a surface-emitting type semiconductor laser obtained according to another embodiment of the present invention, FIG. 4 is a schematic perspective view showing a manufacturing method according to still another embodiment of the present invention, and FIG. 6 is a perspective view showing a surface emitting type semiconductor laser obtained according to the conventional example, and FIG. 6 is an explanatory view showing a method of manufacturing the surface emitting type semiconductor laser according to the conventional example. 1 is InP substrate, 2 is n-InP buff 77 layers, 5iOz
3 is a Ga1nAsP active layer, 4 is a p-InP cap layer, 6 is a 45 degree reflective surface, 7 is a p-electrode, 8 is an n-electrode, and 9 is a laser beam. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体レーザと、その出射光を基板表面と垂直方
向に偏向させて取り出す反射面とを一体化した面発光型
半導体レーザを製造する方法において、 上記半導体レーザ結晶基板表面に、二酸化珪素膜あるい
は窒化珪素膜等の絶縁膜を形成する工程と、 上記膜に窓開けを行い、該膜をエッチングマスクとして
メタンあるいはエタンと水素の混合ガスをエッチングガ
スとする反応性イオンエッチングにより、上記基板表面
に垂直な側面を持つ溝を形成する工程と、 上記エッチングマスクを除去する工程と、 上記溝の側壁の一方を覆い、他方の側壁を覆わない窓を
有する二酸化珪素あるいは窒化珪素膜等の絶縁膜をエッ
チングマスクとして用い、水素を混合しないメタンある
いはエタン等の炭化水素系ガスをエッチングガスとする
反応性イオンエッチングにより、傾斜した面を持つ側壁
を作製する工程とを備え、 上記傾斜面を反射面とする半導体レーザを製造すること
を特徴とする半導体レーザの製造方法。
(1) In a method for manufacturing a surface-emitting semiconductor laser that integrates a semiconductor laser and a reflective surface that deflects the emitted light in a direction perpendicular to the substrate surface and extracts the emitted light, a silicon dioxide film is applied to the surface of the semiconductor laser crystal substrate. Alternatively, the substrate surface is formed by forming an insulating film such as a silicon nitride film, opening a window in the film, using the film as an etching mask, and performing reactive ion etching using methane or a mixed gas of ethane and hydrogen as the etching gas. a step of forming a groove with side walls perpendicular to the etching mask; a step of removing the etching mask; and an insulating film such as a silicon dioxide or silicon nitride film having a window that covers one side wall of the groove and does not cover the other side wall. and forming a side wall with an inclined surface by reactive ion etching using a hydrocarbon gas such as methane or ethane that does not contain hydrogen as an etching mask, and converting the inclined surface into a reflective surface. A method for manufacturing a semiconductor laser, comprising manufacturing a semiconductor laser.
JP13330689A 1989-05-26 1989-05-26 Manufacture of semiconductor laser Pending JPH02312291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13330689A JPH02312291A (en) 1989-05-26 1989-05-26 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13330689A JPH02312291A (en) 1989-05-26 1989-05-26 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02312291A true JPH02312291A (en) 1990-12-27

Family

ID=15101586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13330689A Pending JPH02312291A (en) 1989-05-26 1989-05-26 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02312291A (en)

Similar Documents

Publication Publication Date Title
US6365237B1 (en) Method of making non-planar micro-optical structures
US4894840A (en) Surface emitting laser
US4851368A (en) Method of making travelling wave semi-conductor laser
US20160268769A1 (en) Lasers with beam-shape modification
US4718070A (en) Surface emitting diode laser
US20050145965A1 (en) Light receiving element and method of manufacturing the same
US4990465A (en) Method of forming a surface emitting laser
JPH0864906A (en) Manufacture of semiconductor device
CA1067989A (en) Semiconductor laser with a light guide
JPS6163031A (en) Method of producing semiconductor device
CA1206572A (en) Semiconductor laser with non-absorbing mirror facet
US4865684A (en) Process for producing a semiconductor laser mirror by ionic machining
Appelman et al. Self-aligned chemically assisted ion-beam-etched GaAs/(Al, Ga) As turning mirrors for photonic applications
JPH02312291A (en) Manufacture of semiconductor laser
US6630693B1 (en) Electro-optic semiconductor devices and method for making the same
JPH01283892A (en) Semiconductor laser element
JPH0834336B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0715080A (en) Semiconductor optical component
JP3535201B2 (en) Semiconductor laser device
JPS63200591A (en) Semiconductor laser device and manufacture thereof
JPH0722705A (en) Semiconductor light emitting device
JPS5834988A (en) Manufacture of semiconductor laser
JPS6393187A (en) Distributed feedback semiconductor laser
JPH0613700A (en) Semiconductor laser and its production
JPH02119285A (en) Manufacture of semiconductor laser