JPH02311726A - Manufacture of magnetostriction type stress detector - Google Patents

Manufacture of magnetostriction type stress detector

Info

Publication number
JPH02311726A
JPH02311726A JP1135203A JP13520389A JPH02311726A JP H02311726 A JPH02311726 A JP H02311726A JP 1135203 A JP1135203 A JP 1135203A JP 13520389 A JP13520389 A JP 13520389A JP H02311726 A JPH02311726 A JP H02311726A
Authority
JP
Japan
Prior art keywords
magnetic
shielding plate
passive shaft
slit
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1135203A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
博 佐藤
Yoshihiko Utsui
良彦 宇津井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1135203A priority Critical patent/JPH02311726A/en
Priority to US07/527,805 priority patent/US5142919A/en
Priority to KR1019900007590A priority patent/KR930005163B1/en
Priority to DE4016955A priority patent/DE4016955C2/en
Publication of JPH02311726A publication Critical patent/JPH02311726A/en
Priority to US07/873,765 priority patent/US5193267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a detector characterized by a low cost and mass productivity by winding a slitted magnetism shielding plate around a passive shaft. CONSTITUTION:A passive shaft 4 is formed of a high-permeability soft magnetic material. Slits 5a are formed in a magnetism shielding plate 5 by die blanking. Thereafter, electroless Ni plating is applied on the shielding plate 5, and a protecting layer is provided. Then, the shielding plate 5 is wound around the passive shaft 4 and bonded. As a result, a magnetic layer 6 is formed at a part of the passive shaft 4 which is exposed to the slit 5a. A detecting coil 3 is provided in correspondence with the magnetic layer 6. Since the shielding plate 5 blocks the penetration of magnetic flux with a magnetic skin effect, the part of the passive shaft 4 which is exposed to the slit 5a becomes the magnetic layer 6. The magnitude of stress can be detected by detecting the change in permeability of the magnetic layer 6 with the coil 3.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、駆動軸を有するロボット用モータあるいは
自動車用エンジンなどの計測制御に用いられる磁歪式応
力検出器の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a magnetostrictive stress detector used for measurement control of a robot motor having a drive shaft or an automobile engine.

〔従来の技術〕[Conventional technology]

例えば第2図は特開昭57−211030号に示された
従来の磁歪式応力検出器の構成を示し、lはトルクを受
ける受動軸、2は受動軸1の周囲に固着された一対の磁
性層で、各磁性層2は高透磁率軟磁性材からなり、複数
の短冊状素片から構成されており、左右対称に±45°
の角度を成すよう配設されている。3は磁性層2の周囲
に設けられた検出コイルである。
For example, FIG. 2 shows the configuration of a conventional magnetostrictive stress detector disclosed in Japanese Patent Application Laid-Open No. 57-211030, where l is a passive shaft that receives torque, and 2 is a pair of magnetic magnets fixed around the passive shaft 1. Each magnetic layer 2 is made of a soft magnetic material with high magnetic permeability, and is composed of a plurality of strip-shaped pieces, and is symmetrically arranged at ±45°.
They are arranged to form an angle of . 3 is a detection coil provided around the magnetic layer 2.

次に、動作について説明する。受動軸1に外部からトル
クが印加されると、磁性層2にはその長軸方向を主軸と
する応力が発生し、この応力は一方の磁性層2において
は引張力となり、他方の磁性層2においては圧縮力とな
る。このため、各磁性層2はその透磁率が変化し、磁歪
定数が正の場合には、引張力が働くと透磁率が増大し、
圧縮力が働くと透磁率が減少し、磁歪定数が負の場合に
はその逆となる。検出コイル3は磁束を発生して磁性層
2に通流させ、磁性層2の透磁率変化を磁気的インピー
ダンスの変化として検出し、応力を検出する。各検出コ
イル3の出力は磁性が逆であるから、その差動出力を得
ることにより大きな出力が得られる。
Next, the operation will be explained. When a torque is applied from the outside to the passive shaft 1, stress is generated in the magnetic layer 2 whose main axis is in the long axis direction, and this stress becomes a tensile force in one magnetic layer 2, and the other magnetic layer 2 becomes a compressive force. Therefore, the permeability of each magnetic layer 2 changes, and when the magnetostriction constant is positive, the permeability increases when a tensile force is applied.
When a compressive force is applied, the magnetic permeability decreases, and vice versa when the magnetostriction constant is negative. The detection coil 3 generates magnetic flux and causes it to flow through the magnetic layer 2, detects changes in magnetic permeability of the magnetic layer 2 as changes in magnetic impedance, and detects stress. Since the outputs of the detection coils 3 have opposite magnetic properties, a large output can be obtained by obtaining the differential output.

ところが、受動軸lと磁性N2の間に大きな線膨張係数
の差違があるために磁性層2に熱応力が発生し、この熱
応力が測定すべき応力と重畳して応力測定を正確に行う
ことができなかった。そこで、従来では受動軸を高透磁
率軟磁性材により形成し、この受動軸上に磁束の浸入を
遮蔽する磁気遮蔽板を選択的に形成し、受動軸の磁気遮
蔽板非形成部分に磁性層を形成することが提案された。
However, because there is a large difference in linear expansion coefficient between the passive axis l and the magnetic N2, thermal stress is generated in the magnetic layer 2, and this thermal stress overlaps with the stress to be measured, making it difficult to accurately measure the stress. I couldn't do it. Therefore, in the past, the passive shaft was formed of a soft magnetic material with high magnetic permeability, a magnetic shielding plate was selectively formed on the passive shaft to block the penetration of magnetic flux, and a magnetic layer was formed on the part of the passive shaft where the magnetic shielding plate was not formed. It was proposed to form a

この従来例では、受動軸と磁性層が同一部材により形成
されているので熱応力は発生せず、応力測定を正確に行
うことができるようになった。
In this conventional example, since the passive shaft and the magnetic layer are formed of the same material, thermal stress does not occur and stress can be measured accurately.

〔発明が解決しようとする課B〕[Problem B that the invention attempts to solve]

しかしながら、上記したように受動軸と磁性層を同一部
材とした従来の応力検出器においては、受動軸上に磁気
遮蔽板を選択形成するために多くの時間と労力を要し、
高価で量産性がないという課題があった。
However, as mentioned above, in the conventional stress detector in which the passive shaft and the magnetic layer are made of the same material, it takes a lot of time and effort to selectively form the magnetic shielding plate on the passive shaft.
The problem was that it was expensive and not suitable for mass production.

この発明は上記のような課題を解決するために成された
ものであり、安価で量産性がある実用的な磁歪式応力検
出器の製造方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a practical method for manufacturing a magnetostrictive stress detector that is inexpensive and can be mass-produced.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る磁歪式応力検出器の製造方法は、高透磁
率軟磁性材からなる受動軸に非磁性高導電率材からなり
スリットを有する磁気遮蔽板を巻き付け固着したもので
ある。
A method of manufacturing a magnetostrictive stress detector according to the present invention involves wrapping and fixing a magnetic shield plate made of a non-magnetic high conductivity material and having slits around a passive shaft made of a soft magnetic material with high magnetic permeability.

又、この発明に係る磁歪式応力検出器の製造方法は、非
磁性高導電率材からなる磁気遮蔽板にスリットを形成し
た後半田めっきを施し、この磁気遮蔽板を高透磁率軟磁
性材からなる受動軸に巻き付け半田付けしたものである
In addition, the method for manufacturing a magnetostrictive stress detector according to the present invention includes applying solder plating with slits formed on a magnetic shielding plate made of a non-magnetic high conductivity material, and forming the magnetic shielding plate from a high magnetic permeability soft magnetic material. It is wrapped around a passive shaft and soldered.

さらに、この発明に係る磁歪式応力検出器の製造方法は
、高透磁率軟磁性材からなる受動軸の周囲に凹部を形成
するとともに、非磁性高導電率材からなる磁気遮蔽板に
スリットを形成した後、磁気遮蔽板を受動軸の周囲に少
くともスリット周辺部が受動軸の凹部に収納されるよう
に巻き付け固着したものである。
Further, in the method for manufacturing a magnetostrictive stress detector according to the present invention, a recess is formed around the passive shaft made of a soft magnetic material with high magnetic permeability, and a slit is formed in a magnetic shielding plate made of a non-magnetic high conductivity material. After that, the magnetic shielding plate is wound and fixed around the passive shaft so that at least the periphery of the slit is accommodated in the recess of the passive shaft.

〔作 用〕[For production]

この発明における磁歪式応力検出器は、受動軸の周囲に
ス・リフトを有する磁気遮蔽板を巻き付&−1固着する
ことにより形成され、受動軸のスリットに対応した部分
に磁性層が容易に形成される。
The magnetostrictive stress detector of this invention is formed by winding and fixing a magnetic shielding plate having a slit around a passive shaft, so that a magnetic layer can be easily attached to the part corresponding to the slit of the passive shaft. It is formed.

又、この発明における磁気遮蔽板は、半田めっきを施さ
れ、この半田めっきにより腐食などに対する保護層を形
成されるとともに、受動軸に固着される。
Further, the magnetic shielding plate according to the present invention is subjected to solder plating, and the solder plating forms a protective layer against corrosion and the like, and is fixed to the passive shaft.

さらに、この発明における磁気遮蔽板は、少くともその
スリット周辺部が受動軸の凹部に収納され、磁気遮蔽板
の保護及び位置決めが行われる。
Further, in the magnetic shielding plate according to the present invention, at least the periphery of the slit is housed in the recess of the passive shaft, so that the magnetic shielding plate is protected and positioned.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。第1
図はこの発明の第1の実施例による磁歪式応力検出器の
断面図を示し、第3図はその製造工程を示すフローチャ
ートである。まず、受動軸4をPB、パーマロイ、PE
パーマロイ、純鉄、鉄、純ニッケルなどの高透磁率軟磁
性材により形成する0次に、銅板からなる磁気遮蔽板5
に第4図に示すように金型打ち抜き加工によりスリット
5aを形成した後、磁気遮蔽板5に無電解のNiめっき
(非磁性)を施し、保護層とする0次に、この磁気遮蔽
板5を受動軸4の周囲に巻き付けて接着する。この結果
、受動軸4のスリット5aから露出した部分に第2図と
同様な形状の磁性層6が形成され、この磁性層6と対応
して検出、コイル3が設けられる。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows a sectional view of a magnetostrictive stress detector according to the first embodiment of the present invention, and FIG. 3 is a flowchart showing the manufacturing process thereof. First, the passive shaft 4 is made of PB, permalloy, PE.
A zero-order magnetic shielding plate 5 made of a copper plate made of a high permeability soft magnetic material such as permalloy, pure iron, iron, pure nickel, etc.
As shown in FIG. 4, after forming slits 5a by die punching, electroless Ni plating (non-magnetic) is applied to the magnetic shielding plate 5 to form a protective layer. is wrapped around the passive shaft 4 and glued. As a result, a magnetic layer 6 having a shape similar to that shown in FIG. 2 is formed on the portion of the passive shaft 4 exposed through the slit 5a, and a detection coil 3 is provided corresponding to this magnetic layer 6.

上記構成において、磁気遮蔽板5は磁気表皮効果により
磁束の浸入を阻止するため、受動軸4のスリット5aか
ら露出した部分が磁性層6となり、検出コイル3により
磁性層6の透磁率変化を検出することにより応力の大き
さを検出することができる。この例では予めスリット5
aを設けた磁気遮蔽Fi5を受動軸4に巻き付けて固着
することにより磁性層6を形成しており、磁性層6の形
成が容易であり、安価で量産性を高めることができる。
In the above configuration, the magnetic shielding plate 5 prevents the infiltration of magnetic flux due to the magnetic skin effect, so the portion exposed through the slit 5a of the passive shaft 4 becomes the magnetic layer 6, and the detection coil 3 detects changes in magnetic permeability of the magnetic layer 6. By doing so, the magnitude of stress can be detected. In this example, the slit 5 is
The magnetic layer 6 is formed by winding and fixing the magnetic shielding Fi5 provided with a to the passive shaft 4. The magnetic layer 6 is easy to form, and mass production can be improved at low cost.

なお、受動軸4は高透磁率軟磁性材により形成されてい
るので、着磁は抑制され、磁性層6の磁歪は大きい。
Note that since the passive shaft 4 is made of a soft magnetic material with high magnetic permeability, magnetization is suppressed and the magnetostriction of the magnetic layer 6 is large.

第5図はこの発明の第2の実施例を示し、この実施例で
は受動軸4の周囲に凹部4aを設け、この凹部4a内に
磁気遮蔽板5を収納して巻き付け固着している。従って
、磁気遮蔽板5は損傷を受は難(なるとともに、凹部5
aに規制されて位置決めが容易となる。
FIG. 5 shows a second embodiment of the present invention. In this embodiment, a recess 4a is provided around the passive shaft 4, and a magnetic shielding plate 5 is housed in the recess 4a and is wound and fixed therein. Therefore, the magnetic shielding plate 5 is not easily damaged (and the recessed portion 5
Positioning is facilitated by the regulation of a.

第6図及び第7図はこの発明の第3の実施例による磁歪
式応力検出器の断面図及び製造工程を示し、まず銅板か
らなる磁気遮蔽板5をフォトマスクを用いたフォトエツ
チングによりスリット5aを形成する。この場合のエツ
チング溶液としては、塩化第1銅溶液を用いる0次に、
磁気遮蔽板5に無電解ニッケルメッキを施し、保護層と
する。一方、受動軸4には切削加工により凹部4bを形
成し、磁気遮蔽板5のスリン1−5aの周辺部が凹部4
bに収納されるように磁気遮蔽板5を受動軸4に巻き付
け、銀ろう付により固着する。従って、磁性層6の表面
は磁気遮蔽板5の表面とほぼ同一となる0作用、効果は
上記実施例と同様である。
6 and 7 show a cross-sectional view and manufacturing process of a magnetostrictive stress detector according to a third embodiment of the present invention. First, a magnetic shielding plate 5 made of a copper plate is formed into slits 5a by photoetching using a photomask. form. In this case, as the etching solution, a cuprous chloride solution is used.
Electroless nickel plating is applied to the magnetic shielding plate 5 to form a protective layer. On the other hand, a recess 4b is formed in the passive shaft 4 by cutting, and the peripheral part of the sulin 1-5a of the magnetic shielding plate 5 is formed in the recess 4.
The magnetic shielding plate 5 is wrapped around the passive shaft 4 so as to be housed in the position b, and fixed by silver soldering. Therefore, the surface of the magnetic layer 6 is almost the same as the surface of the magnetic shielding plate 5, and the effect and effect are the same as in the above embodiment.

第8図及び第9図はこの発明の第4の実施例による磁歪
式応力検出器の断面図及び製造工程を示し、まず銅板か
らなる磁気遮蔽板5に金型打ち抜き加工によりスリット
5aを形成した後この磁気遮蔽板5に半田めっきを施し
て半田めっき層7を形成する0次に、受動軸4に形成し
た凹部4aに磁気遮蔽板5を巻き付け、半田めっき層7
を介して磁気遮蔽板5を受動軸4に半田付けし、磁性層
6を形成する。この実施例では、半田めっき層7が磁気
遮蔽板5の保護と固着の2つの機能を有し、他の作用、
効果は上記各実施例と同様である。
FIGS. 8 and 9 show a cross-sectional view and manufacturing process of a magnetostrictive stress detector according to a fourth embodiment of the present invention. First, slits 5a were formed in a magnetic shielding plate 5 made of a copper plate by die punching. After that, solder plating is applied to this magnetic shielding plate 5 to form a solder plating layer 7.Next, the magnetic shielding plate 5 is wrapped around the recess 4a formed in the passive shaft 4, and the solder plating layer 7 is formed on the magnetic shielding plate 5.
The magnetic shielding plate 5 is soldered to the passive shaft 4 via the magnetic layer 6 to form a magnetic layer 6. In this embodiment, the solder plating layer 7 has two functions of protecting and fixing the magnetic shielding plate 5, and also has other functions.
The effect is similar to each of the above embodiments.

なお、上記各実施例においては、磁気遮蔽板5を銅板に
より形成したが、アルミニウム、金、白金、銀などの非
磁性高導電率材により形成してもよい、又、磁気遮蔽板
5の受動軸4への固着は接着、半田付け、ろう付けなど
によって行ったが、溶着や超音波圧接により行ってもよ
い、又、受動軸4の凹部4a、4bは切削加工により形
成したが、エツチングにより行ってもよい、さらに、磁
気遮蔽板5の保護層として、磁気遮蔽板5の外周にプラ
スチックの収縮チューブを設けてもよい。
In each of the above embodiments, the magnetic shielding plate 5 is made of a copper plate, but it may also be made of a non-magnetic high conductivity material such as aluminum, gold, platinum, silver, etc. Fixing to the shaft 4 was performed by adhesion, soldering, brazing, etc., but it could also be done by welding or ultrasonic pressure welding.Furthermore, although the recesses 4a and 4b of the passive shaft 4 were formed by cutting, they could be formed by etching. Furthermore, a plastic shrink tube may be provided around the outer periphery of the magnetic shielding plate 5 as a protective layer of the magnetic shielding plate 5.

【発明の効果〕【Effect of the invention〕

以上のようにこの発明によれば、受動軸の周囲にスリッ
トを有する磁気遮蔽板を巻き付け固着することにより磁
性層が形成されるので、磁性層の形成が容易となり、安
価で量産性のある実用的な磁歪式応力検出器を得ること
ができる。又、磁気遮蔽板に半田めっきを施すことによ
り、この半田めっきは磁気遮蔽板の保護と固着を行うこ
とになり、信鎖性のある磁歪式応力検出器が容易に得ら
れる。さらに、受動軸の凹部に磁気遮蔽板の少くともス
リット周辺部を収納したので、磁気遮蔽板の保護及び位
置決めを容易にすることができる。
As described above, according to the present invention, a magnetic layer is formed by winding and fixing a magnetic shielding plate having slits around a passive shaft, making it easy to form a magnetic layer, and making it practical for low cost and mass production. A magnetic magnetostrictive stress detector can be obtained. Further, by applying solder plating to the magnetic shielding plate, the solder plating protects and fixes the magnetic shielding plate, and a reliable magnetostrictive stress detector can be easily obtained. Furthermore, since at least the periphery of the slit of the magnetic shielding plate is housed in the recess of the passive shaft, the protection and positioning of the magnetic shielding plate can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図はこの発明の第1の実施例による磁歪
式応力検出器の断面図及び製造工程図、第2図は従来の
磁歪式応力検出器の構成図、第4図はこの発明による磁
気遮蔽板の斜視図、第5図はこの発明の第2の実施例に
よる磁歪式応力検出器の断面図、第6図及び第7図はこ
の発明の第3の実施例による磁歪式応力検出器の断面図
及び製造工程図、第8図及び第9図はこの発明の第4の
実施例による磁歪式応力検出器の断面図及び製造工程図
である。 3・・・検出コイル、4・・・受動軸、4a、4b・・
・凹部、5・・・磁気遮蔽板、5a・・・スリット、6
・・・磁性層、7・・・半田めっきFJ。 なお、図中同−符6号は同−又は相当部分を示す。 代理人    大  岩  増  雑 業1図 第2図 f:受vy告P材 第3図 第5図 第6図 第7図     11 第8図 7二半旧め纏層
1 and 3 are a sectional view and a manufacturing process diagram of a magnetostrictive stress detector according to a first embodiment of the present invention, FIG. 2 is a configuration diagram of a conventional magnetostrictive stress detector, and FIG. FIG. 5 is a sectional view of a magnetostrictive stress detector according to a second embodiment of the invention, and FIGS. 6 and 7 are magnetostrictive stress detectors according to a third embodiment of the invention. 8 and 9 are sectional views and manufacturing process diagrams of a magnetostrictive stress detector according to a fourth embodiment of the present invention. 3...Detection coil, 4...Passive axis, 4a, 4b...
・Concave portion, 5...Magnetic shielding plate, 5a...Slit, 6
...Magnetic layer, 7...Solder plating FJ. Note that the reference numeral 6 in the drawings indicates the same or equivalent parts. Agent Masu Oiwa Miscellaneous work Figure 1 Figure 2 Figure f: Received notice P material Figure 3 Figure 5 Figure 6 Figure 7 11 Figure 8 Figure 7 Two-and-a-half old binding layer

Claims (3)

【特許請求の範囲】[Claims] (1)外力が印加される受動軸を高透磁率軟磁性材によ
り形成するとともに、非磁性高導電率材からなる磁気遮
蔽板に磁束が通流するスリットを形成した後、磁気遮蔽
板を受動軸の周囲に巻き付け面着し、かつ受動軸の上記
スリットに対応した部分に形成された磁性層の上記外力
に基づく応力に応じた透磁率変化を検出する検出コイル
を磁性層の周囲に設けたことを特徴とする磁歪式応力検
出器の製造方法。
(1) After forming the passive shaft to which external force is applied from a high magnetic permeability soft magnetic material and forming a slit through which magnetic flux flows in a magnetic shielding plate made of a non-magnetic high conductivity material, the magnetic shielding plate is passively A detection coil is provided around the magnetic layer to detect a change in magnetic permeability in response to the stress caused by the external force of the magnetic layer, which is wrapped around the shaft and attached face-to-face, and is formed in a portion of the passive shaft corresponding to the slit. A method for manufacturing a magnetostrictive stress detector, characterized in that:
(2)外力が印加される受動軸を高透磁率軟磁性材によ
り形成するとともに、非磁性高導電率材からなる磁気遮
蔽板に磁束が通流するスリットを形成した後この磁気遮
蔽板に半田めっきを施し、磁気遮蔽板を受動軸の周囲に
巻き付け半田付けし、かつ受動輪の上記スリットに対応
した部分に形成された磁性層の上記外力に基づく応力に
応じた透磁率変化を検出する検出コイルを磁性層の周囲
に設けたことを特徴とする磁歪式応力検出器の製造方法
(2) The passive shaft to which external force is applied is made of a soft magnetic material with high magnetic permeability, and a slit through which magnetic flux flows is formed in a magnetic shielding plate made of a non-magnetic and highly conductive material, and then soldered to this magnetic shielding plate. Detection for detecting changes in magnetic permeability in response to stress based on the external force of a magnetic layer formed by plating, wrapping a magnetic shielding plate around the passive shaft and soldering it, and forming the magnetic layer in a portion corresponding to the slit of the passive wheel. A method for manufacturing a magnetostrictive stress detector, characterized in that a coil is provided around a magnetic layer.
(3)外力が印加される受動軸を高透磁率軟磁性材によ
り形成するとともにこの受動軸の周囲に凹部を形成し、
非磁性高導電率材からなる磁気遮蔽板に磁束が通流する
スリットを形成した後、磁気遮蔽板を受動軸の周囲に少
くともスリット周辺部が受動軸の凹部に収納されるよう
に巻き付け固着しかつ受動軸の上記スリットに対応した
部分に形成された磁性層の上記外力に基づく応力に応じ
た透磁率変化を検出する検出コイルを磁性層の周囲に設
けたことを特徴とする磁歪式応力検出器の製造方法。
(3) A passive shaft to which an external force is applied is formed of a soft magnetic material with high magnetic permeability, and a recess is formed around this passive shaft,
After forming a slit through which magnetic flux flows in a magnetic shielding plate made of a non-magnetic high conductivity material, the magnetic shielding plate is wrapped and fixed around the passive shaft so that at least the periphery of the slit is accommodated in the recess of the passive shaft. The magnetostrictive stress type is characterized in that a detection coil is provided around the magnetic layer to detect a change in magnetic permeability in response to stress caused by the external force of the magnetic layer formed in a portion of the passive shaft corresponding to the slit. Detector manufacturing method.
JP1135203A 1989-05-29 1989-05-29 Manufacture of magnetostriction type stress detector Pending JPH02311726A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1135203A JPH02311726A (en) 1989-05-29 1989-05-29 Manufacture of magnetostriction type stress detector
US07/527,805 US5142919A (en) 1989-05-29 1990-05-24 Magnetostriction type stress detector
KR1019900007590A KR930005163B1 (en) 1989-05-29 1990-05-25 Magnetostriction type stress detector
DE4016955A DE4016955C2 (en) 1989-05-29 1990-05-25 Magnetostriction type strain detector and method for its manufacture
US07/873,765 US5193267A (en) 1989-05-29 1992-04-27 Method of manufacturing magnetostriction stress detectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135203A JPH02311726A (en) 1989-05-29 1989-05-29 Manufacture of magnetostriction type stress detector

Publications (1)

Publication Number Publication Date
JPH02311726A true JPH02311726A (en) 1990-12-27

Family

ID=15146264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135203A Pending JPH02311726A (en) 1989-05-29 1989-05-29 Manufacture of magnetostriction type stress detector

Country Status (1)

Country Link
JP (1) JPH02311726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211352A (en) * 2018-06-05 2019-12-12 ブリヂストンサイクル株式会社 Method for producing torque sensor shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211352A (en) * 2018-06-05 2019-12-12 ブリヂストンサイクル株式会社 Method for producing torque sensor shaft

Similar Documents

Publication Publication Date Title
EP0803053B1 (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5351555A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
US4908932A (en) Method of manufacturing a torque sensor
KR920010551B1 (en) Distortion measuring method and apparatus
US4986137A (en) Strain detector with magnetostrictive elements
US6650112B2 (en) Magnetics impedance element having a thin film magnetics core
JP3946629B2 (en) Method for manufacturing magnetic field detection element integrated on printed circuit board
WO1991014151A1 (en) Cylinder device
US5193267A (en) Method of manufacturing magnetostriction stress detectors
JPH0326339B2 (en)
JPS61274235A (en) Ferromagnetic foil for torque sensor and manufacture thereof
US5142919A (en) Magnetostriction type stress detector
JPH02311726A (en) Manufacture of magnetostriction type stress detector
JPS6141936A (en) Torque sensor
JP2000098012A (en) Magnetic field sensor
JPH02311727A (en) Manufacture of magnetostriction type stress detector
JPS59102129A (en) Torque detecting device
JPH01148928A (en) Stress sensor
JPH04140624A (en) Torque measuring apparatus
JPH02154130A (en) Strain detector
JPH0431571Y2 (en)
JPH08219908A (en) Magnetstrictive strain sensor
JPH032639A (en) Magnetostriction type stress detector
JPH01314932A (en) Method and apparatus for measuring strain
JPH0210235A (en) Strain detector