JPH02311439A - Hexafluoropropene oxide oligoether derivative having isopropenyl group on terminal and its production - Google Patents

Hexafluoropropene oxide oligoether derivative having isopropenyl group on terminal and its production

Info

Publication number
JPH02311439A
JPH02311439A JP13358089A JP13358089A JPH02311439A JP H02311439 A JPH02311439 A JP H02311439A JP 13358089 A JP13358089 A JP 13358089A JP 13358089 A JP13358089 A JP 13358089A JP H02311439 A JPH02311439 A JP H02311439A
Authority
JP
Japan
Prior art keywords
formula
terminal
compound
derivative
oligoether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13358089A
Other languages
Japanese (ja)
Other versions
JPH0623121B2 (en
Inventor
Akio Takaoka
高岡 昭生
Noriyuki Koike
則之 小池
Hidenori Fujii
秀紀 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP13358089A priority Critical patent/JPH0623121B2/en
Publication of JPH02311439A publication Critical patent/JPH02311439A/en
Publication of JPH0623121B2 publication Critical patent/JPH0623121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

NEW MATERIAL:The hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and expressed by formula I (n is 1 to 4). EXAMPLE:The compound of formula II. USE:Useful as a component to be copolymerized with a polymerizable monomer such as tetrafluoroethylene or vinylidene fluoride to improve the heat-resistance, chemical stability. non-tackiness, water and oil-repellency, melt-formability, etc., of the homopolymer of the above monomer. It is also useful as a synthetic intermediate for a novel fluorine-containing organic silicon compound expressed by formula II and having excellent heat resistance, low temperature characteristics and stainproofing property such as water and oil repellency and low surface energy. PREPARATION:The compound of formula I can be produced by dehydrating a hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and expressed by formula III. The dehydration reaction is carried out at 100-200 deg.C in the presence of snlfuric acid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下記式(1) %式%(1) (但し、式中nは1〜4の整数である。)で示される末
端イルプロペニル基を有する新規なヘキサフルオロプロ
ペンオキシド(HFPO)オリゴエーテル誘導体及びそ
の製造方法に関する。該化合物は、テトラフルオロエチ
レンやビニリデンフロライドのような重合性子ツマ−と
の共重合成分として、これら七ツマ−の単独重合ポリマ
ーの耐熱性、化学的安定性、非粘着性、撥水撥油性、溶
融成形性等を改良するため有効である。また、下記式(
6) (但し、式中nは1〜4、Xは0〜3の整数である。) で示され、耐熱性、低温特性に優れ2、撥水撥油性で防
汚性の表面エネルギーの低い特性を有する新規な含フツ
素有機ケイ素化合物の合成中間体として有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a terminal group represented by the following formula (1) % formula % (1) (where n is an integer from 1 to 4). The present invention relates to a novel hexafluoropropenoxide (HFPO) oligoether derivative having a propenyl group and a method for producing the same. The compound is used as a copolymerization component with polymerizable polymers such as tetrafluoroethylene and vinylidene fluoride to improve the heat resistance, chemical stability, non-adhesiveness, water and oil repellency of homopolymer polymers of these polymers. , is effective for improving melt moldability and the like. In addition, the following formula (
6) (However, in the formula, n is an integer of 1 to 4, and It is useful as an intermediate for the synthesis of novel fluorine-containing organosilicon compounds having specific properties.

〔従来の技術及び発明が解決しようとする課題〕従来よ
り、テトラフルオロエチレンやビニリデンフロライドの
単独重合体はその優れた特性から種々の用途に広く使用
され、また更に他の特性を付与するため種々の共重合成
分と共重合させた共重合体も広い分野を見い出している
が、更にこれらポリテトラフルオロエチレン、ポリビニ
リデンフロライドの耐熱性、化学的安定性、非粘着性、
撥水撥油性、更には溶融成形といった特性を高め、或い
は付与することが望まれる。
[Prior art and problems to be solved by the invention] Conventionally, homopolymers of tetrafluoroethylene and vinylidene fluoride have been widely used for various purposes due to their excellent properties, and they have also been used to impart other properties. Copolymers copolymerized with various copolymer components have found a wide range of applications, but in addition, the heat resistance, chemical stability, non-adhesiveness,
It is desired to enhance or impart properties such as water and oil repellency and further melt moldability.

また、有機樹脂、シリコーンオイルコンパウンド、シリ
コーンゴム等に配合されるシリカ表面に存在する=si
−OH基のシリカ処理剤、種々の半導体デバイスの生産
工程におけるレジスト等の密着性向上剤、光学レンズ、
眼鏡レンズ、ガラス器具等のガラス表面に撥水tΩ油性
及び防汚性を付与するための表面処理剤として有用な含
フツ素有機ケイ素化合物、或いは低温特性も良好で、耐
熱性、18水tθ油性、防汚性といった特性を有する新
規オルガノポリシロキサンも要望されている。
In addition, silica present on the surface of organic resins, silicone oil compounds, silicone rubber, etc.
-OH group silica treatment agent, adhesion improver for resists etc. in the production process of various semiconductor devices, optical lenses,
A fluorine-containing organosilicon compound useful as a surface treatment agent for imparting water repellency, tΩ oil resistance, and stain resistance to the glass surfaces of eyeglass lenses, glassware, etc., or a fluorine-containing organosilicon compound with good low temperature properties, heat resistance, and 18 water tθ oil resistance. There is also a demand for new organopolysiloxanes having properties such as antifouling and antifouling properties.

〔課題を解決するための手段及び作用〕本発明者は、上
記要望に応えるため鋭意検討を行なった結果、ヘキサフ
ルオロプロペンオキシド(HFPO)を金属フン化物−
アブロティツクソルベント系で吹き込むことにより)I
FPOオリゴマーを合成した後、メタノールを反応させ
、更にグリニヤール試薬C)1.MgXを反応させるこ
とにより、下記式(2)%式%(2) で示される末端ジメチルカルビノール基を有する新規な
HFPOオリゴエーテル誘導体が得られること、更にこ
れを脱水することにより、下記式(1)%式%(11 で示される末端イソプロペニル基を有する新規なHFP
Oオリゴエーテル誘導体が得られることを見い出した。
[Means and effects for solving the problem] In order to meet the above-mentioned demands, the present inventor conducted intensive studies and found that hexafluoropropene oxide (HFPO) is a metal fluoride.
By injecting with abrotix solvent system) I
After synthesizing the FPO oligomer, methanol is reacted, and Grignard reagent C)1. By reacting with MgX, a novel HFPO oligoether derivative having a terminal dimethyl carbinol group represented by the following formula (2)% can be obtained; further, by dehydrating this, the following formula ( 1) A novel HFP having a terminal isopropenyl group represented by the formula %(11)
It has been found that O oligoether derivatives can be obtained.

そして、この新規化合物(11は、テトラフルオロエチ
レン、ビニリデンフロライドの共重合成分として、これ
らモノマーの単独重合ポリマーの耐熱性、化学的安定性
、非粘着性、lΩ水(ご油性、溶融成形性等を改良する
ため有用であることを知見した。
This new compound (11) is a copolymerization component of tetrafluoroethylene and vinylidene fluoride. It was found that this method is useful for improving etc.

更に、この(1)式の化合物に (C)Iz)X H5IC13−X で示されるシランを反応させることにより、下記一般式
(6) %式%) (式中nは1〜4、Xは0〜3の整数である)で示され
る新規含フツ素有機ケイ素化合物が得られること、この
新規化合物(6)は、クロロシランの反応性とフルオロ
カーボンの特性とを兼備し、有機樹脂、シリコーンオイ
ルコンパウンド及びシリコーンゴム等に配合されるシリ
カ表面に存在するEES+  OH基のシリカ処理剤、
種々の半導体デバイスの生産工程におけるレジスト等の
密着性向上剤、光学レンズ、眼鏡レンズ、ガラス器具等
のガラス表面に18水t8油性及び防汚性を付与するた
めの表面処理剤としても有効に使用されると共に、他方
該化合物から得られるポリシロキサンは低温特性も良好
で、耐熱性、撥水ta油性及び防汚性の特性があること
を知見し、それ故上記(11式の化合物は(6)式の化
合物の合成中間体としても有効であることを知見し、本
発明をなすに至った。
Furthermore, by reacting this compound of formula (1) with a silane represented by (C)Iz) This novel compound (6) has both the reactivity of chlorosilane and the properties of fluorocarbon, and is suitable for organic resins and silicone oil compounds. and EES+ OH group silica treatment agent present on the silica surface blended into silicone rubber, etc.
Effectively used as an adhesion improver for resists, etc. in the production process of various semiconductor devices, and as a surface treatment agent to impart 18 water, T8 oiliness and antifouling properties to the glass surfaces of optical lenses, eyeglass lenses, glassware, etc. On the other hand, it was found that the polysiloxane obtained from the compound has good low-temperature properties, heat resistance, water repellency, oil repellency, and stain resistance. ) It was discovered that the compound is also effective as a synthetic intermediate for the compound of the formula, and the present invention was completed.

従って、本発明は上記一般式(1)で示される末端イソ
プロペニル基を有する新規なヘキサフルオロプロペンオ
キシドオリゴエーテル誘導体及びその製造方法を提供す
る。
Therefore, the present invention provides a novel hexafluoropropene oxide oligoether derivative having a terminal isopropenyl group represented by the above general formula (1) and a method for producing the same.

ここで、上記(1)式で示されるHFPOオリゴエーテ
ル誘導体の合成スキームは下記の通りである。
Here, the synthesis scheme of the HFPO oligoether derivative represented by the above formula (1) is as follows.

■ オリゴマー化 (5101FPO) ■ エステル化 ■ カルビノール化 F−(CFChO)−CF−C−CH3■脱水 まず、■のオリゴマー化は公知の方法を保用して行なう
ことができる。例えば、(5)弐のHFPOをフン化カ
リウム(KF)、フッ化セシウム(CsF)等の金属フ
ッ化物−アブロティツクソルベント系に低温下で吹きこ
むことにより、(4)式〇〇PPOオリゴマー酸フッ化
吻を得ることができる。この場合、アブロティツクソル
ベント(非プロトン性極性溶媒)としては、例えばジグ
ライム、テトラグライム、テトラヒドロフラン(THF
) 、ジメチルホルムアマイド(DMF) 、アセトニ
トリルなどを使用することができる。なお、例えばフッ
化セシウム(CsF)  ・テトラグライム系において
、3量体の割合が最大となる反応条件は、肝PO/Cs
Fのモル比103、CsF/1lzoのモル比2.83
 、HFPOの供給速度1.57g/min 、反応温
度−5〜O℃、反応時間216時間程度であり、この反
応条件のとき、収率は94%、生成するオリゴマー分布
は2量体34%、3量体52%、4量体12%程度であ
る。これらのオリゴマー酸フン化物は沸点差が50℃程
度あり、精留することにより容易に分離できる。
(1) Oligomerization (5101FPO) (5101FPO) (5101FPO) (5101FPO) (2) Esterification (2) Carbinolization F-(CFChO)-CF-C-CH3 (2) Dehydration First, the oligomerization (3) can be carried out using known methods. For example, by blowing the HFPO of (5) 2 into a metal fluoride-abrotic solvent system such as potassium fluoride (KF) or cesium fluoride (CsF) at low temperature, the formula 〇〇PPO oligomer of (4) Acid fluoride proboscis can be obtained. In this case, examples of the aprotic solvent (aprotic polar solvent) include diglyme, tetraglyme, and tetrahydrofuran (THF).
), dimethylformamide (DMF), acetonitrile, etc. can be used. For example, in the case of cesium fluoride (CsF)/tetraglyme system, the reaction conditions that maximize the proportion of trimers are liver PO/Cs
Molar ratio of F 103, molar ratio of CsF/1lzo 2.83
, HFPO supply rate 1.57 g/min, reaction temperature -5 to 0°C, reaction time about 216 hours. Under these reaction conditions, the yield was 94%, the oligomer distribution was 34% dimer, The proportion is about 52% trimer and 12% tetramer. These oligomeric acid fluorides have a boiling point difference of about 50° C. and can be easily separated by rectification.

■のエステル化反応は分離したオリゴマー酸フン化物を
冷却下過剰のメタノール中に滴下することにより、瞬時
に反応は完結する。精製・分離は大過剰の水に注ぎ分液
し、中和、水洗後蒸留して行なうことができる。
The esterification reaction (2) is completed instantly by dropping the separated oligomeric acid fluoride into excess methanol under cooling. Purification and separation can be carried out by pouring into a large excess of water to separate the liquid, neutralizing it, washing it with water, and then distilling it.

なお、)IFPOのオリゴマー化後、このオリゴマーを
過剰のアルコールに注ぎ、エステル化し、同様の処理を
した後、精留することにより(3)式のエステルの各オ
リゴマ一体に分離することもできる。
Note that, after oligomerization of IFPO, the oligomers can be poured into excess alcohol to be esterified, treated in the same manner, and then rectified to separate the oligomers of the esters of formula (3).

■のカルビノール化は、グリニヤール試薬を反応させる
ことにより行なうもので、これによって(2)式の新規
な3級アルコールを得ることができる。
The carbinolization ((2)) is carried out by reacting with a Grignard reagent, and thereby a novel tertiary alcohol of formula (2) can be obtained.

この場合、(3)式のエステルをエチルエーテル溶液等
に溶解し、この溶液を(3)式のエステルに対して2〜
3倍、好ましくは2.1〜2.5倍モル量のメチルグリ
ニヤール試薬をエチルエーテル中で調製した液に、反応
温度O〜35℃、好ましくは20〜30℃で滴下して、
原料のエステルが消失するまで反応させることができる
。反応温度が20〜30℃では、この反応は1時間未満
で完結する。
In this case, dissolve the ester of formula (3) in an ethyl ether solution, etc., and add this solution to the ester of formula (3).
3 times, preferably 2.1 to 2.5 times the molar amount of methyl Grignard reagent is added dropwise to a solution prepared in ethyl ether at a reaction temperature of 0 to 35°C, preferably 20 to 30°C,
The reaction can be continued until the raw ester disappears. At a reaction temperature of 20-30°C, the reaction is completed in less than 1 hour.

なお、(4)式の酸フッ化物にメチルグリニヤール試薬
を直接反応させても(2)式の3級アルコールを得るこ
とができる。
Note that the tertiary alcohol of formula (2) can also be obtained by directly reacting the acid fluoride of formula (4) with a methyl Grignard reagent.

■の脱水は、(2)式の3級アルコールを脱水するもの
で、これによって(1)式の本発明の目的化合物を合成
するが、この脱水反応では(2)式の3級アルコールに
対して95%硫酸3〜20倍モル、好ましくは4〜7倍
モルを用い、温度100〜200℃、好ましくは130
〜160℃で数時間反応させる条件で行なうことができ
る。
Dehydration (2) is to dehydrate the tertiary alcohol of formula (2), thereby synthesizing the target compound of the present invention of formula (1). In this dehydration reaction, the tertiary alcohol of formula (2) is using 3 to 20 times the mole, preferably 4 to 7 times the mole of 95% sulfuric acid, at a temperature of 100 to 200°C, preferably at 130°C.
The reaction can be carried out at a temperature of ~160°C for several hours.

ここで、従来、下記の反応スキームが知られている。Here, the following reaction scheme is conventionally known.

■′カルビノール化 0H ■′脱水 (a) この場合、■′のカルビノール化反応では、メチル及び
イソプロピルの混合グリニヤール試薬を必要とし、しか
も還元剤として作用するイソプロピルグリニヤール試薬
は理論量の1.5倍以上必要であり、また、目的生成物
を選択的に合成するためには反応温度を十分制御しなけ
ればならず、その上反応時間も一昼夜以上の長時間を要
する。更に、■′の脱水反応では、(b)のアルコール
からの脱水が困難で、五酸化ニリンと300〜400℃
の高温を必要とする。このように、上記(al、 (b
)のオリゴエーテルは工業生産上多くの不利があり、生
産コスト高を招いていた。
■'Carbinolization 0H ■'Dehydration (a) In this case, the carbinolization reaction of ■' requires a mixed Grignard reagent of methyl and isopropyl, and moreover, the isopropyl Grignard reagent acting as a reducing agent has a theoretical amount of 1. In addition, in order to selectively synthesize the desired product, the reaction temperature must be sufficiently controlled, and the reaction time also requires a long time, lasting more than one day and night. Furthermore, in the dehydration reaction of
Requires high temperatures. In this way, the above (al, (b
) oligoethers have many disadvantages in industrial production, leading to high production costs.

これに対し、本発明では(3)式のエステルから(2)
式の3級アルコールを得ることができるが、これを従来
の上述した(blの2級アルコールを製造する場合と比
較すると、本発明に係る3級アルコールはイソプロピル
グリニヤール試薬が不要であり、また、反応温度の制御
はシビアではなく、室温で行なうことができ、(blの
2級アルコール製造では反応時間も一昼夜以上必要とす
るのに対し、本発明では1時間程度で反応が完結し、更
に、選択率良く3級アルコールが得られるため分離精製
が容易であり、従って、工業生産上非常に有利に製造で
き、コスト低減を図ることができるものである。
In contrast, in the present invention, from the ester of formula (3) to (2)
A tertiary alcohol of the formula can be obtained, but compared to the conventional case of producing a secondary alcohol of the above-mentioned (bl), the tertiary alcohol according to the present invention does not require an isopropyl Grignard reagent, and The reaction temperature is not strictly controlled and can be carried out at room temperature (while the production of BL secondary alcohol requires a reaction time of more than one day and night, in the present invention the reaction is completed in about one hour; Since a tertiary alcohol can be obtained with good selectivity, separation and purification is easy, and therefore, it can be produced very advantageously in industrial production, and costs can be reduced.

しかも、(2)式の3級アルコールは下記脱水反応が、
従来の(′b)式の2級アルコールを脱水する場合に3
00〜400℃の高温でしかも五酸化ニリンを必要とす
るのに対し、1,50℃程度で安価な濃硫酸を使用して
容易にかつ高収率で進行するものであるため、本発明の
(11式の末端イソプロペニル基を有する新規なHFP
Oのオリゴエーテルは工業的有利に製造でき、低コスト
である。
Moreover, the tertiary alcohol of formula (2) undergoes the following dehydration reaction:
When dehydrating the conventional secondary alcohol of formula ('b), 3
The process of the present invention can be carried out easily and in high yield using inexpensive concentrated sulfuric acid at about 1,50°C, whereas it requires niline pentoxide at a high temperature of 00 to 400°C. (A novel HFP with a terminal isopropenyl group of formula 11
Oligoethers of O can be produced industrially advantageously and at low cost.

本発明の末端イソプロペニル基を有する新規なHFPO
のオリゴエーテルは、テトラフルオロエチレンやビニリ
デンフロライド等の単独重合性モノマーと共重合して、
これらモノマーの単独重合体の耐熱性、化学的安定性、
非粘着性、1Ω水撥油性などを維持し、溶融成形を容易
にすることができる。
Novel HFPO with terminal isopropenyl group of the present invention
The oligoether is copolymerized with homopolymerizable monomers such as tetrafluoroethylene and vinylidene fluoride, and
The heat resistance and chemical stability of homopolymers of these monomers,
It maintains non-stick properties, 1Ω water and oil repellency, and can be easily melt-molded.

また、この(1)式の化合物と (CH,)。Moreover, this compound of formula (1) and (CH,).

)I  5iC1:+−x で示されるシランとをヒドロシリル化反応させることに
より、下記一般式(6) %式%) (式中nは1〜4、XはO〜3の整数である)で示され
る新規な含フツ素有機ケイ素化合物が得られる。
)I5iC1:+-x By performing a hydrosilylation reaction with the silane represented by The novel fluorine-containing organosilicon compound shown below is obtained.

このヒドロシリル化反応は、オートクレーブ中式(1)
の化合物に対してクロロシランを1.1〜1.5倍モル
使用すると共に、白金触媒lXl0−’〜5×10−3
モル使用し、80〜150℃で1〜5日間反応させるこ
とが好適である。
This hydrosilylation reaction is carried out using the formula (1) in an autoclave.
1.1 to 1.5 times the mole of chlorosilane is used with respect to the compound of
It is preferable to use molar amount and react at 80 to 150°C for 1 to 5 days.

この含フツ素化合物は、クロロシランの反応性とフルオ
ロカーボンの特性とを兼備し、有機樹脂、シリコーンオ
イルコンパウンド及びシリコーンゴム等に配合されるシ
リカ表面に存在するesiOH基のシリカ処理剤、種々
の半導体デバイスの生産工程におけるレジスト等の密着
性向上剤、光学レンズ、眼鏡レンズ、ガラス器具等のガ
ラス表面に撥水f8油性及び防汚性を付与するための表
面処理剤としても有効に使用されると共に、他方酸化合
物から得られるポリシロキサンは低温特性も良好で、耐
熱性、撥水撥油性及び防汚性の特性がある。
This fluorine-containing compound has both the reactivity of chlorosilane and the properties of fluorocarbon, and is used as a silica treatment agent with esiOH groups present on the silica surface that is blended into organic resins, silicone oil compounds, silicone rubber, etc., and various semiconductor devices. It is also effectively used as an adhesion improver for resists, etc. in the production process of products, and as a surface treatment agent for imparting water repellency, F8 oiliness, and stain resistance to the glass surfaces of optical lenses, eyeglass lenses, glassware, etc. On the other hand, polysiloxanes obtained from acid compounds have good low-temperature properties, as well as heat resistance, water and oil repellency, and stain resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の(1)式で示される末端
イソプロペニル基を有する新規なヘキサフルオロプロペ
ンオキシドオリゴエーテル誘導体は、工業的有利に製造
し得る低コストの新規なオリゴエーテル誘導体であり、
またそれ自体で広い用途を有するだけでなく、上記(6
)式で示される新規な含フツ素有機ケイ素化合物の合成
中間体としても有用である。
As explained above, the novel hexafluoropropene oxide oligoether derivative having a terminal isopropenyl group represented by formula (1) of the present invention is a novel low-cost oligoether derivative that can be industrially advantageously produced. ,
In addition, it not only has a wide range of uses in itself, but also the above (6)
) It is also useful as a synthetic intermediate for the novel fluorine-containing organosilicon compound represented by the formula.

以下に実施例を挙げて本発明を具体的に説明するが、本
発明は下記実施例に制限されるものではない。
The present invention will be specifically described below with reference to Examples, but the present invention is not limited to the Examples below.

〔実施例1〕 内容積31の乾燥した4つロフラスコに削り状マグネシ
ウム36g(1,5モル)及び乾燥したエチルエーテル
200−を仕込んだ後、滴下ロートからヨウ化メチル(
C)1,1)230 g <1.5モル)のエチルエー
テル(3001n1)溶液をゆっくり還流する速度で約
4時間かけて滴下した。
[Example 1] After charging 36 g (1.5 mol) of magnesium shavings and 200 g of dried ethyl ether into a dry four-loaf flask with an internal volume of 31, methyl iodide (
C) A solution of 230 g (<1.5 mol) of 1,1) in ethyl ether (3001n1) was added dropwise at a rate of slow reflux over about 4 hours.

次いで、このフラスコをアイスバス中に入れ、冷却した
後、下記式 %式% で示されるエステル302g(純度97%、0.59モ
ル)のエチルエーテル(500m ) 溶?fl 全反
応溶液の温度を10〜20℃に保ちながら滴下ロートよ
り1時間かけて滴下し、更に約10℃で1時間撹拌した
Next, this flask was placed in an ice bath and after cooling, 302 g (purity 97%, 0.59 mol) of ester represented by the following formula % was dissolved in ethyl ether (500 m2). fl While maintaining the temperature of the entire reaction solution at 10 to 20°C, it was added dropwise from the dropping funnel over 1 hour, and further stirred at about 10°C for 1 hour.

次に反応溶液を冷飽和塩化アンモニウム500m1に注
ぎ、更に5N−塩酸で溶液を酸性側とした。
Next, the reaction solution was poured into 500 ml of cold saturated ammonium chloride, and the solution was made acidic with 5N hydrochloric acid.

層に分かれた反応溶液のうち下層の有機層を分前し、上
層の水層をエチルエーテルで2度抽出し、これを有機層
と合わせた後、この有機層を飽和炭酸水素ナトリウム、
飽和食塩水の順序で洗條し、次に硫酸マグネシウムで乾
燥した。
Of the reaction solution separated into layers, the lower organic layer was separated, the upper aqueous layer was extracted twice with ethyl ether, this was combined with the organic layer, and the organic layer was extracted with saturated sodium bicarbonate,
The mixture was washed with saturated brine and then dried over magnesium sulfate.

次いで、溶媒を留去し、得られた反応生成物を減圧蒸留
し、沸点84〜85℃/ 32 m11gにおける留分
として下記式 で示される3級アルコール245g1度97%。
Next, the solvent was distilled off, and the resulting reaction product was distilled under reduced pressure to obtain 245 g of tertiary alcohol with a boiling point of 84 to 85° C./32 mL of 11 g of the following formula: 245 g of tertiary alcohol with a concentration of 97%.

収率79%)を得た。A yield of 79% was obtained.

この3級アルコールについて元素分析及びGC−MS分
析を行ない、また、赤外線吸収スペクトル及び’I(−
NMRスペクトルを測定した。結果を次に示す。
Elemental analysis and GC-MS analysis were performed on this tertiary alcohol, and infrared absorption spectrum and 'I(-
NMR spectra were measured. The results are shown below.

元素分析: CHF 計算値−%)   25.90   1.38  63
.31実測値(%)   25.58   1.41 
 63.02本CzF+JJiとしての計算値 GC−MS : m/e(M’)  分子量510赤外
線スペクトル: 波数3640.3470cm=に−0)1基に由来する
ピークが観察された。
Elemental analysis: CHF calculated value -%) 25.90 1.38 63
.. 31 Actual value (%) 25.58 1.41
Calculated value as 63.02 CzF+JJi GC-MS: m/e (M') Molecular weight 510 Infrared spectrum: A peak derived from -0) 1 group was observed at a wave number of 3640.3470 cm.

’ H−NMRスペクトル: 溶媒: DMSO−db/ CCl 4  内部標準:
 TMSδ(ppm)  :  4.27(s、IH,
−01l)2.70(s、611,2xcH:+)次い
で、内容積0.51のフラスコに単蒸留セントを組み立
て、フラスコに、上記3級アルコール158g(0,3
0モル)、95%濃度の硫酸200g(1,94モル)
及び重合禁止剤としても一ブチルハイドロキノン(TB
tlQ) 0.25 gを仕込み、150℃で4時間撹
拌した後、同一温度で有機物を減圧下で留出させた。
'H-NMR spectrum: Solvent: DMSO-db/CCl4 Internal standard:
TMSδ (ppm): 4.27 (s, IH,
-01 l) 2.70 (s, 611,2
0 mol), 200 g (1,94 mol) of 95% strength sulfuric acid
and monobutylhydroquinone (TB) as a polymerization inhibitor.
tlQ) 0.25 g was charged and stirred at 150°C for 4 hours, and then the organic matter was distilled off under reduced pressure at the same temperature.

留出した有機層を飽和炭酸水素ナトリウム、次いで飽和
食塩水で洗浄した後、硫酸マグネシウムを加えて乾燥し
た。
The distilled organic layer was washed with saturated sodium hydrogen carbonate and then with saturated brine, and then dried by adding magnesium sulfate.

この有機層を蒸留し、沸点147〜148℃における留
分として下記式 %式% で示されるアルケン128g (収率85%)を得た。
This organic layer was distilled to obtain 128 g (yield: 85%) of an alkene represented by the following formula % as a fraction with a boiling point of 147 to 148°C.

このアルケンについて元素分析及びGO−MS分析を行
ない、また、赤外線吸収スペクトル及びl)I−NMR
スペクトルを測定した。その結果を下記に示す。
Elemental analysis and GO-MS analysis were performed on this alkene, and infrared absorption spectrum and l) I-NMR
The spectrum was measured. The results are shown below.

元素分析: CHF 計算値″(%)26゜85   1.02  65.6
3実測値(%)   26.59   1.08  6
5.51率CIIF17850□としての計算値GC−
IIs: m/e(M’)  分子1492. M−19473赤
外線吸収スペクトル: チャートを第1図に示す。第1図のチャートから014
基に由来する3640.3470cm−’のピークが消
失し、新たに1660cm−’にC=Cに基づくピーク
が生じたことが観察された。
Elemental analysis: CHF Calculated value ″(%) 26°85 1.02 65.6
3 Actual value (%) 26.59 1.08 6
Calculated value GC- as 5.51 rate CIIF17850□
IIs: m/e (M') molecule 1492. M-19473 infrared absorption spectrum: A chart is shown in FIG. From the chart in Figure 1, 014
It was observed that the peak at 3640.3470 cm-' derived from the group disappeared, and a new peak based on C=C appeared at 1660 cm-'.

’ H−NMRスペクトル: 溶媒:CCI!4  内部標準: TMSδ (21m
)   二  5.30〜5.70(m、2H,”’C
Hz)1.93(s、3H,CI、) C参考例I〕 オートクレーブ中、上記アルケン87.4 g(0,1
78モル)、トリクロロシラン35.0 g(O425
モル)及び塩化白金酸のn−ブタノール変性触媒(白金
濃度2.0重■%) 1.50 g (1,50XIO
−’モル)を混合し、110℃で64時間反応させた(
GLCで転化率40%、選択率85%)。
'H-NMR spectrum: Solvent: CCI! 4 Internal standard: TMSδ (21m
) 2 5.30-5.70 (m, 2H,"'C
Hz) 1.93 (s, 3H, CI,) C Reference Example I] In an autoclave, 87.4 g (0,1
78 mol), trichlorosilane 35.0 g (O425
1.50 g (1,50XIO
-'mol) were mixed and reacted at 110°C for 64 hours (
(conversion rate 40%, selectivity 85% by GLC).

反応終了後、はじめに常圧蒸留して沸点145〜148
°Cの留分44.6g(原料のアルケン)を得、次いで
減圧蒸留したところ、沸点86〜88°C/8mHgの
留分として下記式で示される化合物40.4g(収率3
6%)が得られた。
After the reaction is complete, first distill at atmospheric pressure to obtain a boiling point of 145-148.
44.6g of a fraction (alkene as a raw material) was obtained and then distilled under reduced pressure. As a result, 40.4g of a compound represented by the following formula was obtained as a fraction with a boiling point of 86-88°C/8 mHg (yield: 3
6%) was obtained.

CF:+CFzChOCFChOCF  CHC1(z
  SiC7!3得られた化合物を元素分析及びGC−
MS分析に供し、また、この化合物の赤外線スペクトル
及び’H−NMRスペクトルを測定したところ、下記の
結果が得られた。
CF: +CFzChOCFChOCF CHC1(z
The obtained compound of SiC7!3 was subjected to elemental analysis and GC-
When this compound was subjected to MS analysis and the infrared spectrum and 'H-NMR spectrum were measured, the following results were obtained.

元素分析: C110I    F 計算値゛(%)  21.05 0.96 16.95
 51.46実測値(%)  2’2.21 0.89
 16.52 51.30本CzCl 3F17H60
□Siとしての計算値GC−MS :  m/e  6
27(M”)IRスペクトル; C=Cに由来する1660em−’のピークは消失した
Elemental analysis: C110IF Calculated value゛(%) 21.05 0.96 16.95
51.46 Actual value (%) 2'2.21 0.89
16.52 51.30 CzCl 3F17H60
□Calculated value as Si GC-MS: m/e 6
27(M'') IR spectrum; The peak at 1660<em>-' derived from C=C disappeared.

’ H−NMRスペクトル: 溶媒i CCl a  内部標* : TMSδ(pp
m)  ;  5.33(m、IH,CH)、 3.5
0(m、2H,C)12)2.70(m、38.CH3
) 〔実施例2〕 下記式 %式% で示されるエステル104g(0,30モル)をエチル
エーテル150mfにン容解した)容液を、マグネシウ
ム18g(0,75モル)、ヨウ化メチル115g(0
,75モル)、エチルエーテル150mj’を用いて実
施例1と同様に調製したClC11J溶液中に滴下し、
室温で2時間反応させた後、実施例1と同様に処理、精
製した。
'H-NMR spectrum: Solvent i CCl a Internal standard*: TMSδ (pp
m) ; 5.33 (m, IH, CH), 3.5
0(m, 2H, C) 12) 2.70(m, 38.CH3
) [Example 2] A solution obtained by dissolving 104 g (0.30 mol) of the ester represented by the following formula % in 150 mf of ethyl ether was mixed with 18 g (0.75 mol) of magnesium and 115 g of methyl iodide ( 0
, 75 mol) into a ClC11J solution prepared in the same manner as in Example 1 using 150mj' of ethyl ether,
After reacting at room temperature for 2 hours, it was treated and purified in the same manner as in Example 1.

次に、得られた反応生成物を蒸留し、沸点133〜13
5℃における留分として下記式 %式%(3 で示される3級アルコール84g(収率81%)を得た
Next, the obtained reaction product was distilled and the boiling point was 133-13
84 g (yield: 81%) of a tertiary alcohol represented by the following formula % (3) was obtained as a fraction at 5°C.

この3級アルコールについて元素分析及びGC−MS分
析を行ない、また、赤外線吸収スペクトル及び’ H−
NMRスペクトルを測定した。結果を次に示す。
Elemental analysis and GC-MS analysis were performed on this tertiary alcohol, and infrared absorption spectrum and 'H-
NMR spectra were measured. The results are shown below.

元素分析: CHF 計算値貿%)   27.92   2.05  60
.72実測値(%)   27.51   2.01 
 60.58* CaFzl(70□としての計算値G
C−MS:  m/e(M”)  344赤外線吸収ス
ペクトル: 3650.3450cm−’に−OHに由来するピーク
が測定された。
Elemental analysis: CHF calculated trade%) 27.92 2.05 60
.. 72 Actual value (%) 27.51 2.01
60.58* CaFzl (calculated value G as 70□
C-MS: m/e (M'') 344 Infrared absorption spectrum: A peak derived from -OH was measured at 3650.3450 cm-'.

’ H−NMRスペクトル: 溶媒:CC1,内部標:l : TMSδ(ppm) 
 :  2.47(s、LH,0H)1.40(s、6
H,2xCII:+)次いで、実施例1と同一の装置を
用い、95%濃度の硫酸2.50g(2,42モル)に
、上で得られた3級アルコール82g(0,24モル)
を加えて110〜120℃で5時間強く撹拌した0次い
で、同様な方法で留出、洗浄、乾燥を行なった後、得ら
れた反応生成物を蒸留し、沸点96℃における留分とし
て下記式 %式% で示される2−メチル−3−トリフルオロメチル−4−
オキサ−3,5,5,6,6,7,7,7−オクタフル
オロペンテン−173g(収率93%)を得た。
'H-NMR spectrum: Solvent: CC1, Internal standard: l: TMSδ (ppm)
: 2.47 (s, LH, 0H) 1.40 (s, 6
H,2xCII:+) Then, using the same apparatus as in Example 1, 82 g (0.24 mol) of the tertiary alcohol obtained above was added to 2.50 g (2.42 mol) of 95% strength sulfuric acid.
was added and strongly stirred at 110 to 120°C for 5 hours.Then, after distillation, washing, and drying in the same manner, the obtained reaction product was distilled, and the following formula was obtained as a fraction at a boiling point of 96°C. 2-Methyl-3-trifluoromethyl-4- with the formula %
173 g (yield: 93%) of oxa-3,5,5,6,6,7,7,7-octafluoropentene was obtained.

この化合物について実施例1と同様に元素分析及びGC
−MS分析を行ない、また、赤外線吸収スペクトル及び
’ H−NMRスペクトルを測定した。その結果を下記
に示す。
This compound was subjected to elemental analysis and GC in the same manner as in Example 1.
-MS analysis was conducted, and an infrared absorption spectrum and a 'H-NMR spectrum were also measured. The results are shown below.

元素分析: CHF 計算値9(%)   29.47   1.55  6
4.08実測値(%)   29.3i    1.5
8  64.00本C,F1.++、0としての計算(
直GC−MS :  m/e(M”)  326赤外線
吸収スペクトル: チャートを第2図に示す。このチャートからOH基に由
来する3650.3450cm−’のピークが消失し、
新たに1660cm−’にC=Cに基づくピークが生じ
たことが観察された。
Elemental analysis: CHF Calculated value 9 (%) 29.47 1.55 6
4.08 Actual value (%) 29.3i 1.5
8 64.00 C, F1. ++, calculation as 0 (
Direct GC-MS: m/e (M") 326 infrared absorption spectrum: The chart is shown in Figure 2. From this chart, the peak at 3650.3450 cm-' derived from the OH group disappeared,
It was observed that a new peak based on C=C was generated at 1660 cm-'.

’II−NMRスペクトル: 溶媒:CC1,内部標準: TMS δ(ppm)  :  5.30〜5.60(m、2t
l、 −CL)1.90(S、3H,CH3) 〔参考例2〕 オートクレーブ中、上で得られた化合物65g(0,2
0モル)、トリクロロシラン35 g、(0,25モル
)及び塩化白金酸のn−ブタノール変性触媒(白金濃度
2.0重量%) 0.90 g (9,2x 10−’
モル)を混合し、110℃で64時間反応させた(GL
Cで転化率92%、選択率98%)。反応終了後、はじ
め常圧蒸留して沸点93〜98℃の留分22、Og(原
料のアルケン)を得、次いで減圧蒸留したところ、沸点
66〜67℃/ 10 snHgにおける留分として下
記式の化合物47.8g(収率50%)が得られた。
'II-NMR spectrum: Solvent: CC1, Internal standard: TMS δ (ppm): 5.30-5.60 (m, 2t
l, -CL) 1.90 (S, 3H, CH3) [Reference Example 2] In an autoclave, 65 g of the compound obtained above (0,2
0 mol), 35 g (0,25 mol) of trichlorosilane and 0.90 g (9,2x 10-'
mol) and reacted at 110°C for 64 hours (GL
C, conversion rate 92%, selectivity 98%). After the reaction was completed, fraction 22, Og (raw material alkene) with a boiling point of 93 to 98 °C was first distilled at normal pressure, and then distilled under reduced pressure, resulting in the following formula as a fraction with a boiling point of 66 to 67 °C/10 snHg. 47.8 g (yield 50%) of the compound was obtained.

CFi c)+3 CFiCP、CF20CF−CH−CH2−3iC!!
 3得られた化合物を元素分析及びGC−MS分析に供
し、また、この化合物の赤外線スペクトル及び’ )l
 −N?lRスペクトルを測定したところ、下記の結果
が得られた。
CFi c)+3 CFiCP, CF20CF-CH-CH2-3iC! !
3 The obtained compound was subjected to elemental analysis and GC-MS analysis, and the infrared spectrum and ')l of this compound were
-N? When the IR spectrum was measured, the following results were obtained.

元素分析: ClIC77F 計算値“(%)  20.82 1.31 23.04
 45.28実測値(%)  20.65 1.33 
22.95 45.02本 CeCl−3Fl +H6
0Siとしての計算値GC−MS :  m/e  4
61(M’)IRスペクトル: C=Cに由来する1660cm−’のピークは消失した
Elemental analysis: ClIC77F Calculated value (%) 20.82 1.31 23.04
45.28 Actual value (%) 20.65 1.33
22.95 45.02 pieces CeCl-3Fl +H6
Calculated value GC-MS as 0Si: m/e 4
61(M') IR spectrum: The peak at 1660 cm-' derived from C=C disappeared.

’ H−NMRスペクトル: ?容媒;CCl4 内部標準;T門S δ(ppm)  ;  5.66(m、IH,CH−)
、  3.80(m、2H,CHz−)。
'H-NMR spectrum: ? Vehicle: CCl4 Internal standard: T gate S δ (ppm); 5.66 (m, IH, CH-)
, 3.80 (m, 2H, CHz-).

2.83(m、3t1.CH:+)2.83 (m, 3t1.CH:+)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第2図はそれぞれ実施例1〜2の目的化合物
の赤外線吸収スペクトルである。
1 and 2 are infrared absorption spectra of the target compounds of Examples 1 and 2, respectively.

Claims (1)

【特許請求の範囲】 1、下記式(1) ▲数式、化学式、表等があります▼・・・(1) (但し、式中nは1〜4の整数である。) で示される末端イソプロペニル基を有するヘキサフルオ
ロプロペンオキシドオリゴエーテル誘導体。 2、下記式(2) ▲数式、化学式、表等があります▼・・・(2) (但し、式中nは1〜4の整数を示す。) で示される末端ジメチルカルビノール基を有するヘキサ
フルオロプロペンオキシドオリゴエーテル誘導体を脱水
して請求項1記載の(1)式で示される誘導体を得るこ
とを特徴とする末端イソプロペニル基を有するヘキサフ
ルオロプロペンオキシドオリゴエーテル誘導体の製造方
法。
[Claims] 1. The terminal isoform represented by the following formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) (However, in the formula, n is an integer from 1 to 4.) Hexafluoropropene oxide oligoether derivative having a propenyl group. 2. Hexa having a terminal dimethyl carbinol group represented by the following formula (2) ▲ Numerical formulas, chemical formulas, tables, etc. ▼... (2) (In the formula, n represents an integer from 1 to 4.) A method for producing a hexafluoropropene oxide oligoether derivative having a terminal isopropenyl group, which comprises dehydrating a fluoropropene oxide oligoether derivative to obtain a derivative represented by the formula (1) according to claim 1.
JP13358089A 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same Expired - Lifetime JPH0623121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13358089A JPH0623121B2 (en) 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13358089A JPH0623121B2 (en) 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02311439A true JPH02311439A (en) 1990-12-27
JPH0623121B2 JPH0623121B2 (en) 1994-03-30

Family

ID=15108134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13358089A Expired - Lifetime JPH0623121B2 (en) 1989-05-26 1989-05-26 Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0623121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936111A (en) * 1996-12-19 1999-08-10 Shin-Etsu Chemical Co., Ltd. Fluorinated amide compounds with a phenyl-Si-unsaturated group

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936111A (en) * 1996-12-19 1999-08-10 Shin-Etsu Chemical Co., Ltd. Fluorinated amide compounds with a phenyl-Si-unsaturated group

Also Published As

Publication number Publication date
JPH0623121B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US4337211A (en) Fluorocarbon ethers having substituted halogen site(s) and process to prepare
Lewis Methylphenylpolysiloxanes
KR100912325B1 (en) Perfluoroadamantyl acrylate compound and intermediate therefor
CN108003186B (en) Multi-hydrolytic-group fluorine-containing silane and synthetic method thereof
CN110612319A (en) Method for producing fluorine-containing ether compound, and fluorine-containing ether compound
JPH02311485A (en) Fluorine-containing organosilicon compound and its production
JP2563959B2 (en) Fluorine-containing ether compound and method for producing the same
JPH02311439A (en) Hexafluoropropene oxide oligoether derivative having isopropenyl group on terminal and its production
CN111825569A (en) Synthetic method of heptafluoroisobutyronitrile
CN109516897A (en) A kind of synthetic method of octafluoro amyl propylene ether
US4578508A (en) Fluoroacrylate ester, polymer thereof, and process of making the same
JPH0692957A (en) Production of fluorine-containing dioxolane compound
US4532366A (en) Perfluorinated vinyl ethers containing a secondary hydrogen atom, polymers formed therefrom and a process for the preparation of the monomers
JPH02311437A (en) Dimethylcarbinol group-terminated hexafluoropropene oxide oligoether derivative and its production
JPH0377892A (en) Fluorine-containing organic silicon compound and its preparation
CN103540324A (en) Vinyl cyclohexyl methyl ether liquid crystal compounds and preparation method thereof
US4633023A (en) Fluoroacrylate ester, polymer thereof, and process of making the same
US4739123A (en) Fluorine-containing compounds, and their preparation and use
JPS63255288A (en) Fluorine-containing organosilicon compound
CN102659720A (en) 3, 3-di[(methyl) methylpropenoateyl ] oxetane compound and preparation method thereof
CN111499836B (en) Method for converting and utilizing perfluoroiodide, obtained product and application
US4594458A (en) Vinyl ether monomers derived from alkyl perfluoro-ω-(2-iodoethoxy) compounds
JPH0730096B2 (en) α-Trifluoromethylacrylic acid triorganosilyl methyl ester
JPH072663B2 (en) Fluorine-containing compound and method for producing the same
US5214177A (en) Fluorinated organic silicon compounds and method for making