JPH0231122Y2 - - Google Patents

Info

Publication number
JPH0231122Y2
JPH0231122Y2 JP8439485U JP8439485U JPH0231122Y2 JP H0231122 Y2 JPH0231122 Y2 JP H0231122Y2 JP 8439485 U JP8439485 U JP 8439485U JP 8439485 U JP8439485 U JP 8439485U JP H0231122 Y2 JPH0231122 Y2 JP H0231122Y2
Authority
JP
Japan
Prior art keywords
inner cylinder
liquid
float
air
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8439485U
Other languages
Japanese (ja)
Other versions
JPS61200104U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8439485U priority Critical patent/JPH0231122Y2/ja
Publication of JPS61200104U publication Critical patent/JPS61200104U/ja
Application granted granted Critical
Publication of JPH0231122Y2 publication Critical patent/JPH0231122Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、流路管内を流れている液体中に混し
ている空気を前記液体から分離するため気液分離
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a gas-liquid separation device for separating air mixed in a liquid flowing in a flow path pipe from the liquid.

従来の技術 流量計により液体計測を行う場合、被計測液体
中にガス体が混入していたのでは、流量計がいか
に高精度であつても、正確な計量をすることがで
きない。この様な場合、空気分離器を使用するこ
とによつて、液体中のガス体を排除し、ガス体を
排除した後の液体を流量計に通して計量すること
により流体の計量を正確に行うようにしている。
BACKGROUND ART When measuring a liquid using a flowmeter, if a gas is mixed into the liquid to be measured, no matter how accurate the flowmeter is, accurate measurement cannot be performed. In such cases, by using an air separator, the gas in the liquid can be removed, and after the gas has been removed, the liquid can be measured by passing it through a flowmeter to accurately measure the fluid. That's what I do.

第5図は、従来の気液分離装置の一例を説明す
るための断面図で、図中、1は下部に液体流入口
2及び流出口3を有し、上部に空気溜め部4を有
する気液分離タンクで、流入口2からタンク1内
に流入した気泡を含んだ液体は、タンク1内で気
泡が分離された後、流出口3を通つて流出する。
タンク1内で分離された気体は、空気溜め部4に
溜り、液面位が次第に低下する。液面にはフロー
ト5が浮いており、更に、該フロート5の上部に
は弁機構6が設けられており、上述のようにして
フロートが低下し、所定位置まで低下すると、弁
機構6が開き、空気溜め部4の空気を排気口31
から外部へ放出する。空気溜め部4内の空気が外
部へ放出されると、該空気溜め部4内の圧力が低
下し、従つて、液位が上昇してフロートが上昇
し、弁機構6が閉となる。
FIG. 5 is a sectional view for explaining an example of a conventional gas-liquid separation device. In the figure, 1 has a liquid inlet 2 and an outlet 3 at the bottom, and an air reservoir 4 at the top. In the liquid separation tank, the liquid containing air bubbles that flows into the tank 1 from the inlet 2 is separated from the air bubbles in the tank 1 and then flows out through the outlet 3.
The gas separated in the tank 1 accumulates in the air reservoir 4, and the liquid level gradually decreases. A float 5 is floating on the liquid level, and a valve mechanism 6 is provided above the float 5. When the float lowers as described above and reaches a predetermined position, the valve mechanism 6 opens. , the air in the air reservoir 4 is discharged from the exhaust port 31.
released to the outside. When the air in the air reservoir 4 is released to the outside, the pressure in the air reservoir 4 decreases, the liquid level rises, the float rises, and the valve mechanism 6 closes.

第6図は、第5図のA−A線断面図で、前記弁
機構6は、外気に連通する内部を有する内筒10
と、該内筒10の外側において該内筒10に摺接
して上下動する外筒20を有し、内筒10の側壁
には開口11が設けられている。外筒20はピン
30を介してフロート5に連結されており、空気
溜め部4内の空気が少ない間は、フロート5は図
示状態にあり、従つて、内筒10の開口11は外
筒20によつて閉塞され、空気溜め部4内の空気
は微小隙間32を通して外部へ小量づつ排出され
る。空気が完全に排出された後は、液体が排出さ
れようとするが、粘度が気体に比し、非常に大き
い為、リークは極微少である。しかし、上述のよ
うにして液体中に混入されている空気が該液体か
ら分離されて空気溜め部4内の空気の量が多くな
ると、該空気溜め部の空気容積が増加して液位が
低下し、フロート5が低下し、ついには、外筒2
0が内筒10の開口部11より下方に下がり、該
空気溜め部4と外部とが前記開口11を通して連
通し、空気溜め部4内の空気を外部へ放出する。
空気溜め部4内の空気を外部へ放出すると、タン
ク1内の液位が再度上昇して外筒20が内筒10
の開口11を閉塞し、以下、同様の動作を繰り返
す。
FIG. 6 is a cross-sectional view taken along the line A-A in FIG.
An outer cylinder 20 is provided on the outside of the inner cylinder 10 and moves up and down in sliding contact with the inner cylinder 10, and an opening 11 is provided in the side wall of the inner cylinder 10. The outer cylinder 20 is connected to the float 5 via a pin 30, and while the air in the air reservoir 4 is low, the float 5 is in the state shown in the figure, and therefore the opening 11 of the inner cylinder 10 is connected to the outer cylinder 20. The air inside the air reservoir 4 is discharged to the outside in small amounts through the minute gap 32. After the air is completely exhausted, the liquid tries to be expelled, but since its viscosity is much higher than that of gas, the leakage is extremely small. However, when the air mixed in the liquid is separated from the liquid as described above and the amount of air in the air reservoir 4 increases, the air volume in the air reservoir increases and the liquid level decreases. Then, the float 5 lowers and finally the outer cylinder 2
0 falls below the opening 11 of the inner cylinder 10, the air reservoir 4 and the outside communicate through the opening 11, and the air in the air reservoir 4 is discharged to the outside.
When the air in the air reservoir 4 is released to the outside, the liquid level in the tank 1 rises again, causing the outer cylinder 20 to rise to the inner cylinder 10.
The opening 11 is closed, and the same operation is repeated.

而して、上記従来の気液分離装置においては、
タンク1内の圧力と該タンク1外の圧力つまり内
筒10の圧力との圧力差によつて、連通口11が
対称位置にあつても外筒20が内筒10の側面に
吸い付けられ、例えば、第6図に示すように、外
筒が偏心して内筒に接触してしまい摩擦力によ
り、外筒の上昇に大きな力を必要とし、そのた
め、浮力の大きなフロートを使用しなければなら
ず、また、下降時にも大きな力を必要とし、その
ため、重量の大きなフロートを使用しなければな
らず、フロートに相反する性能が要求されること
になる。この事は、大型化することによる製造コ
ストの増大をまねき、又、LPGなどのような低
比重液などの場合、浮力が得られず、大きな問題
となる。
Therefore, in the above-mentioned conventional gas-liquid separator,
Due to the pressure difference between the pressure inside the tank 1 and the pressure outside the tank 1, that is, the pressure in the inner cylinder 10, the outer cylinder 20 is attracted to the side surface of the inner cylinder 10 even when the communication port 11 is in a symmetrical position. For example, as shown in Fig. 6, the outer cylinder is eccentric and comes into contact with the inner cylinder, and due to frictional force, a large force is required to raise the outer cylinder. Therefore, a float with large buoyancy must be used. In addition, a large force is required when descending, which necessitates the use of a heavy float, which requires contradictory performance from the float. This leads to an increase in manufacturing costs due to the increase in size, and in the case of low specific gravity liquids such as LPG, buoyancy cannot be obtained, which poses a big problem.

解決しようとする問題点 本考案は、上述のごとき従来技術の欠点を解決
するためになされたもので、特に、フロートの上
下動をスムーズに低に荷重で行い得るようにする
ことを目的としてなされたものである。
Problems to be Solved The present invention was made in order to solve the above-mentioned drawbacks of the prior art, and in particular, it was made with the aim of making it possible to move the float up and down smoothly and with a low load. It is something that

問題点を解決するための手段 第1図は、本考案の一実施例を説明するための
要部断面図で、図中、5はフロート、10は内
筒、20は外筒、30は連結ピンで、これらは、
第5図及び第6図に関して説明したように作動す
る。而して、本考案においては、外筒20の内周
面に溝21が前記開口11を覆うように設けられ
ており、これにより、内筒10と外筒20との間
の圧力バランスが全周にわたつて略均一に保た
れ、外筒20が内筒10に対して偏心するに差圧
を受けず内筒10と外筒20の接触面に於ける摩
擦力を減少させることができ、フロート5はスム
ーズに上下動することができる。
Means for Solving the Problems Figure 1 is a cross-sectional view of essential parts for explaining one embodiment of the present invention, in which 5 is a float, 10 is an inner cylinder, 20 is an outer cylinder, and 30 is a connection. With pins, these are
It operates as described with respect to FIGS. 5 and 6. Therefore, in the present invention, a groove 21 is provided on the inner circumferential surface of the outer cylinder 20 so as to cover the opening 11, so that the pressure balance between the inner cylinder 10 and the outer cylinder 20 is completely maintained. It is maintained substantially uniform over the circumference, and the frictional force at the contact surface between the inner cylinder 10 and the outer cylinder 20 can be reduced without receiving differential pressure when the outer cylinder 20 is eccentric with respect to the inner cylinder 10. The float 5 can move up and down smoothly.

実施例 第2図は、前記内筒の断面図、第3図は、前記
外筒の断面図、第4図は、外筒を第3図のB−B
線方向からみた側面図で、内筒10の側部には前
記開口11が、また、下端部にはピン穴12が設
けられている。また、外筒20の上方には前記圧
力バランス溝21が、また、下端部には、前記ピ
ン30を挿通するためのピン穴22が設けられ、
側部には、前記内筒10のピン穴12を貫通する
ピン12aが挿通される縦長のピン貫通穴23が
設けられている。従つて、フロート5はピン貫通
穴23の長さLに相当するストロークで上下動
し、その間に、前述のようにして、空気溜め部4
に溜つた空気を外部へ放出する。
Embodiment FIG. 2 is a sectional view of the inner cylinder, FIG. 3 is a sectional view of the outer cylinder, and FIG. 4 is a cross-sectional view of the outer cylinder taken along line B-B in FIG.
In a side view seen from the line direction, the opening 11 is provided in the side of the inner cylinder 10, and the pin hole 12 is provided in the lower end. Further, the pressure balance groove 21 is provided above the outer cylinder 20, and the pin hole 22 for inserting the pin 30 is provided at the lower end.
A vertically long pin through hole 23 is provided in the side portion, into which the pin 12a passing through the pin hole 12 of the inner cylinder 10 is inserted. Therefore, the float 5 moves up and down with a stroke corresponding to the length L of the pin through hole 23, and during that time, the air reservoir 4 is moved as described above.
Release the air trapped inside to the outside.

効 果 以上の説明から明らかなように、本考案による
と、内筒と外筒と摩擦力が大幅に軽減されるの
で、外筒すなわちフロートがスムーズに上下動す
ることができ、小型で精度の良い気液分離装置を
提供することができる。
Effects As is clear from the above explanation, according to the present invention, the frictional force between the inner cylinder and the outer cylinder is significantly reduced, so the outer cylinder, that is, the float, can move up and down smoothly, making it compact and highly accurate. A good gas-liquid separation device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案による気液分離装置に使用す
る弁機構の一実施例を説明するための要部構成
図、第2図は、内筒の一実施例を示す断面図、第
3図は、外筒の断面図、第4図は、第3図のB−
B線方向からみた図、第5図は、従来の気液分離
装置の一例を説明するための断面図、第6図は、
第5図のA−A線断面図である。 1……気液分離タンク、2……液体流入口、3
……液体流出口、4……穴気溜め部、5……フロ
ート、6……弁機構、10……内筒、11……連
通口、20……外筒、21……圧力バランス溝。
Fig. 1 is a configuration diagram of main parts for explaining an embodiment of a valve mechanism used in a gas-liquid separation device according to the present invention, Fig. 2 is a sectional view showing an embodiment of an inner cylinder, and Fig. 3 is a cross-sectional view of the outer cylinder, and FIG. 4 is a cross-sectional view of the outer cylinder, and FIG.
FIG. 5 is a cross-sectional view for explaining an example of a conventional gas-liquid separation device, and FIG. 6 is a view as seen from the direction of line B.
6 is a cross-sectional view taken along the line A-A in FIG. 5. FIG. 1... Gas-liquid separation tank, 2... Liquid inlet, 3
...Liquid outlet, 4...Hole air reservoir, 5...Float, 6...Valve mechanism, 10...Inner cylinder, 11...Communication port, 20...Outer cylinder, 21...Pressure balance groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下部に液体の流入口及び流出口を有し、上部に
前記液体から分離された空気を溜めるための空気
溜め部を有する気液分離タンクと、該タンク内に
配設されかつ該タンク内の液面に追従して移動す
るフロートと、該フロートが所定量下降した時に
開放される弁機構とを有し、該弁機構は、側部に
開口を有しかつ内部が外気圧に連通している内筒
と、該内筒の外側において該内筒に沿つて上下動
する外筒とを有し、該外筒が前記フロートに追従
して上下動し、該外筒が所定量下降した時に前記
内筒の内部が前記開口を通して前記タンク内の空
気溜め部に連通し、該空気溜め部の空気を前記開
口を通して外部へ放出するようにした気液分離装
置において、前記外筒の内周部に前記内筒の開口
部を覆う圧力バランス溝を有することを特徴とす
る気液分離装置。
A gas-liquid separation tank having a liquid inlet and an outlet at a lower part and an air reservoir section at an upper part for storing air separated from the liquid; It has a float that moves to follow the surface, and a valve mechanism that opens when the float descends by a predetermined amount, and the valve mechanism has an opening on the side and the inside communicates with outside pressure. It has an inner cylinder and an outer cylinder that moves up and down along the inner cylinder on the outside of the inner cylinder, and when the outer cylinder moves up and down following the float and the outer cylinder descends by a predetermined amount, the In the gas-liquid separator, the inside of the inner cylinder communicates with an air reservoir in the tank through the opening, and the air in the air reservoir is discharged to the outside through the opening. A gas-liquid separation device comprising a pressure balance groove covering an opening of the inner cylinder.
JP8439485U 1985-06-04 1985-06-04 Expired JPH0231122Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8439485U JPH0231122Y2 (en) 1985-06-04 1985-06-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8439485U JPH0231122Y2 (en) 1985-06-04 1985-06-04

Publications (2)

Publication Number Publication Date
JPS61200104U JPS61200104U (en) 1986-12-15
JPH0231122Y2 true JPH0231122Y2 (en) 1990-08-22

Family

ID=30633870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8439485U Expired JPH0231122Y2 (en) 1985-06-04 1985-06-04

Country Status (1)

Country Link
JP (1) JPH0231122Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502290Y2 (en) * 1990-06-19 1996-06-19 カヤバ工業株式会社 Level measuring device

Also Published As

Publication number Publication date
JPS61200104U (en) 1986-12-15

Similar Documents

Publication Publication Date Title
KR840006762A (en) Erythrocyte sedimentation rate measuring device
JPH0231122Y2 (en)
CN112083149A (en) High-precision spiral-flow type crude oil water content measuring instrument
CN111237438B (en) Gear box oiling device capable of adjusting oil level
JPS6111661A (en) Blood precipitation device
CN212586370U (en) High-precision spiral-flow type crude oil water content measuring instrument
JPS644690Y2 (en)
CN209645910U (en) A kind of gas-liquid separation device
CN114225476A (en) Bubble eliminating device for oil liquid oil path
CN217449026U (en) Novel extraction device
JPH0415667Y2 (en)
CN206027164U (en) Gas -liquid separating device
JPH0335750Y2 (en)
JPH0344678Y2 (en)
US2320417A (en) Hydrometer
KR100445393B1 (en) Flow measuring device
CN108049975A (en) Booster gas leakage measuring device
JPS6020596Y2 (en) Variable metered discharge plug for liquids
US2642891A (en) Mercury sealed valve
CN218230024U (en) A holding vessel for chemicals
CN211477327U (en) Magnetic liquid level meter integrated emptying pipe cap
JPS6242921Y2 (en)
CN212291093U (en) Bottle capable of quantitatively pouring liquid and regulating and controlling liquid pouring amount
JPS604097Y2 (en) Liquid level detection device
JPS6122669Y2 (en)