JPH02311187A - Starting method for combined cycle generating plant - Google Patents

Starting method for combined cycle generating plant

Info

Publication number
JPH02311187A
JPH02311187A JP13001889A JP13001889A JPH02311187A JP H02311187 A JPH02311187 A JP H02311187A JP 13001889 A JP13001889 A JP 13001889A JP 13001889 A JP13001889 A JP 13001889A JP H02311187 A JPH02311187 A JP H02311187A
Authority
JP
Japan
Prior art keywords
generator
speed
combined cycle
variable frequency
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13001889A
Other languages
Japanese (ja)
Inventor
Toshiaki Tsuji
利秋 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13001889A priority Critical patent/JPH02311187A/en
Publication of JPH02311187A publication Critical patent/JPH02311187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor And Converter Starters (AREA)

Abstract

PURPOSE:To save man power by operating one of a plurality of generators as a variable frequency generator and operating other generators as synchronous motors. CONSTITUTION:In a combined cycle generating plant, three sets of turbine generators 2A-2C are connected through a generator interrupter 3 and a booster 4 with a generating bus 1. A starter motor 7 is connected through an interrupter 9 and a VVVF unit 10 with an independent starting bus system 8. One variable frequency generator and other synchronous motors are connected with a main circuit, then the speed of the variable frequency motor is increased gradually thus generating power. Consequently, rotary speed of other synchronous motors increases synchronously with the speed of the variable frequency generator.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はコンバインドサイクル発電プラントに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a combined cycle power plant.

(従来の技術) 従来の技術について第3図および第4図により説明する
(Prior Art) The conventional technology will be explained with reference to FIGS. 3 and 4.

従来コンバインドサイクル発電プラントでは、起動時、
ガスタービンの定格回転数の10%〜70%で回転数制
御を行なう必要があり、例えば第3図に示すように発電
機2の軸に起動用の誘導電動機7を油圧クラッチ13等
を介して取付けて、速度制御を行なっている。この油圧
クラッチ13と起動用電動機7は各発電機2軸に取付け
られている為制御装置、油配管、電動機の開閉装置等の
付帯設定も増え、コンバインドサイクル発電プラントの
据付スペース、コストの増大、メンテナンスの複雑さ等
の問題を引き起こしている。
In conventional combined cycle power plants, at startup,
It is necessary to control the rotation speed at 10% to 70% of the rated rotation speed of the gas turbine. For example, as shown in FIG. Installed to control speed. Since the hydraulic clutch 13 and starting electric motor 7 are attached to the two shafts of each generator, additional settings such as a control device, oil piping, and motor opening/closing device are also increased, which increases the installation space and cost of the combined cycle power generation plant. This causes problems such as complexity of maintenance.

最近これらの点を解消する為に、第4図に示すように発
電機2Dを起動時には同期電動機とし、主回路に設置し
たインバータ装置12により発電機2゜を可変速度制御
の同期電動機として、起動させる方法が考えられており
、これをスタティックスタ−夕方式と呼んでいる。
Recently, in order to solve these problems, as shown in Fig. 4, the generator 2D is used as a synchronous motor at startup, and the generator 2D is started as a synchronous motor with variable speed control by the inverter device 12 installed in the main circuit. A method has been devised that allows this to occur, and this method is called the static star evening method.

このスタティックスタータ方式においても、インバータ
装置より高調波成分が発生する為発電機ロータに全長ダ
ンパ付とするなどの高調波対策が必要であり、さらにイ
ンバータの出力を発電機主回路に接続する為主回路の引
出しが必要となり回路が複雑となり、またコストの増大
を生み出す原因となっている。又、1台のインバータ起
動装置で複数台の発電機軸を起動させる方法をとると1
軸が完全に起動するまで他の軸は起動出来ない為、運用
に大幅な制約が出来、短時間で起動、定格負荷運転が可
能というコンバインドサイクル発電プラントの最大メリ
ットを殺してしまう事になり。
Even in this static starter system, harmonic components are generated by the inverter, so it is necessary to take countermeasures against harmonics, such as installing a full-length damper on the generator rotor. This requires drawing out the circuit, which complicates the circuit and causes an increase in cost. Also, if you use a method of starting multiple generator shafts with one inverter starting device, 1
Since other axes cannot be started until one axis has been completely started, this places significant restrictions on operation and eliminates the greatest advantage of a combined cycle power plant, which is the ability to start up in a short time and operate at rated load.

結果的に各軸にインバータ起動装置を設けなければなら
ず設置スペースの増大せざるを得なかった。
As a result, an inverter starting device had to be provided for each axis, resulting in an increase in installation space.

(発明が解決しようとする課題) 以上の様に従来技術におけるコンバインドサイクル発電
プラントでは、油圧クラッチ、起動用電動機等の付帯設
備が多く必要となりコストの増大、メンテナンスの複雑
さ等の欠点を有しており、又従来のスタティックスター
タ方式においても1軸1台のインバータ起動装置の必要
性や全ての発電機に対する高調波対策等の必要性があり
、装置が複雑化し、コストの増大や信頼性の低下を招く
結果となっている。
(Problem to be Solved by the Invention) As described above, the conventional combined cycle power generation plant requires a lot of ancillary equipment such as a hydraulic clutch and a starting electric motor, and has drawbacks such as increased cost and complicated maintenance. In addition, even in the conventional static starter system, there is a need for an inverter starting device for each shaft and harmonic countermeasures for all generators, making the device complex, increasing costs and reducing reliability. This results in a decline in

本発明は上記の欠点に鑑みなされたものであり、短時間
に起動及び定格負荷運転ができるというコンバインドサ
イクル発電プラントの本来のメリットを活かしつつ、設
備の簡略化をはかった同時起動及び同時速度制御を行な
うことができるコンバインドサイクル発電プラントの起
動方法を提供することを目的とする。
The present invention was made in view of the above-mentioned drawbacks, and takes advantage of the inherent merits of a combined cycle power generation plant that it can be started up and operated at rated load in a short time, while simultaneously starting up and controlling speed at the same time to simplify the equipment. The purpose of this invention is to provide a method for starting a combined cycle power plant that can perform the following steps.

−〔発明の構成〕 (課題を解決するための手段) 上記課題を解決するため本発明においては、複数の発電
機を備えたコンバインドサイクル発電プラントにおいて
、前記発電機のうちの1台を可変周波電源により駆動さ
れる起動用電動機を接続して可変周波発電機として運転
することにより他の発電機を同期電動機として運転し、
前記起動用電動機に接続された発電機の速度制御により
他の発電機をガスタービンの点火速度まで上昇させガス
タービンを点火し、各々同一速度に制御して回転上昇さ
せ、同期発電機として運転し同時起動を行う。
- [Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, in the present invention, in a combined cycle power generation plant equipped with a plurality of generators, one of the generators is controlled by a variable frequency generator. By connecting a starting motor driven by a power source and operating it as a variable frequency generator, the other generator is operated as a synchronous motor,
By controlling the speed of the generator connected to the starting motor, the other generators are raised to the ignition speed of the gas turbine, the gas turbine is ignited, and each generator is controlled to the same speed to increase its rotation, thereby operating as a synchronous generator. Perform simultaneous startup.

・  (作  用) 本発明は上記のように構成されており1例えば1台の可
変周波発電機と他の同期電動機を主回路で接続へ可変周
波発電機を徐々に速度を増やしながら発電する。これに
より他の同期電動機は可変周波発電機と同期しながら回
転上昇するので、1台の発電機の速度制御により他の軸
も速度制御が可能となりガスタービンの点火スピードま
で上昇出来、プラントの同時起動が可能となる。
(Function) The present invention is configured as described above, and for example, one variable frequency generator and another synchronous motor are connected through a main circuit to generate electricity while gradually increasing the speed of the variable frequency generator. As a result, the other synchronous motors increase their rotation in synchronization with the variable frequency generator, so by controlling the speed of one generator, it is possible to control the speed of the other shafts as well, and the speed can be increased to the ignition speed of the gas turbine. It is now possible to start.

(実 施 例) 本発明に係るコンバインドサイクル発電プラントの起動
方法の一実施例を図面を参照して説明する。
(Example) An example of the method for starting up a combined cycle power plant according to the present invention will be described with reference to the drawings.

第1図において、発電母線1に3基のタービン発電機2
A、 2B、 2Gが、それぞれ発電機しゃ断器3、昇
圧変圧器4を介して接続されている。タービン発電機2
Aには、ガスタービン5Aと起動用電動機7が軸と直結
され、タービン発電機28.2Gにはガスタービン5と
蒸気タービン6が直結されている。
In Fig. 1, three turbine generators 2 are installed on a power generation bus 1.
A, 2B, and 2G are connected via a generator breaker 3 and a step-up transformer 4, respectively. Turbine generator 2
The gas turbine 5A and the starting electric motor 7 are directly connected to the shaft, and the gas turbine 5 and the steam turbine 6 are directly connected to the turbine generator 28.2G.

起動用電動機7は、発電母線1とは別系統の起動母線8
に、しゃ断器9.VVVF装置lOを介して接続されて
いる。
The starting motor 7 is connected to a starting bus 8 that is separate from the power generation bus 1.
9. It is connected via the VVVF device IO.

次の実施例の作用について説明する。The operation of the next embodiment will be explained.

起動前に各発電機しゃ断器3を投入して、おく。Turn on each generator breaker 3 before starting.

次に起動モータ7をVVVF装置lOによりQ rpm
から徐々に速度を上げていく。
Next, the starting motor 7 is set to Q rpm by the VVVF device IO.
Gradually increase the speed.

タービン発電機2Aは回転数に応じた周波数で発電し、
タービン発電機28.2Cは界磁電流を流すとタービン
発電機2Aの電源周波数に同期した同期電動機として回
転する。
The turbine generator 2A generates electricity at a frequency according to the rotation speed,
When a field current is applied to the turbine generator 28.2C, the turbine generator 28.2C rotates as a synchronous motor synchronized with the power frequency of the turbine generator 2A.

可変周波電源装置(VVVF) 10により起動モータ
7を更に加速し、ガスタービン5Aの点火スピードまで
上昇させる。この時タービン発電機2B、 2Cと直結
されたガスタービン5も同時に点火スピードとり なりガスタービン5.iは一度に点火可能となる。
The starting motor 7 is further accelerated by the variable frequency power supply (VVVF) 10 to reach the ignition speed of the gas turbine 5A. At this time, the gas turbine 5 directly connected to the turbine generators 2B and 2C also changes the ignition speed at the same time. i can be ignited at once.

ガスタービン5,5Aを点火後、各々同一速度に制御し
て回転上昇させ、ガスタービンの出力が軸回転に関する
動力を上回るとタービン発電機2B、 2Cは同期電動
機からタービン発電機2Aと同期した同期発電機となる
After the gas turbines 5 and 5A are ignited, they are controlled to the same speed and their rotations are increased, and when the output of the gas turbine exceeds the power related to shaft rotation, the turbine generators 2B and 2C are switched from synchronous motors to synchronous motors that are synchronized with the turbine generator 2A. It becomes a generator.

発電母線1を系統に同期併入する事でコンバインド発電
プラントの起動は完了する。
The startup of the combined power generation plant is completed by synchronously joining the power generation bus 1 to the grid.

このように本発明に係るコンバインドサイクル発電プラ
ントの起動方法では、従来各発電機軸に設置されていた
油圧クラッチを削除する事が出来、起動モータも任意の
発電機軸1台に設置する事で良い、又、発電機をスタテ
ィックスタータで起動する方法に比べ発電機の高調波対
策が不要となり起動装置も任意の発電機軸1台で済み同
時に複数軸を起動しガスタービンの点火も可能となる。
In this way, in the method for starting a combined cycle power plant according to the present invention, the hydraulic clutch that was conventionally installed on each generator shaft can be removed, and the starting motor can also be installed on one arbitrary generator shaft. Furthermore, compared to the method of starting the generator with a static starter, no countermeasures against harmonics of the generator are required, and the starting device only requires one arbitrary generator shaft, making it possible to start multiple shafts at the same time and ignite the gas turbine.

又、各発電機は同期しながら起動する為、系統との併入
も一回で済み更に起動時間を短縮する事が出来る。
In addition, since each generator starts up in synchronization, it only needs to be connected to the grid once, further shortening the start-up time.

次に本発明の他の実施例について図を参照して述べる。Next, other embodiments of the present invention will be described with reference to the drawings.

上記実施例では起動用電動機に誘導電動機を使用し、そ
の速度制御に可変周波電源装置を用いたが、第2図に示
す様に起動用電動機を設置せず発電機を同期電動発電機
としてインバータ装置により速度制御を行なうようにし
てもよく、この場合ガスタービン点火後は、同期発電機
としても使用出来る。又、起動待蒸気タービンに補助蒸
気を供給し、蒸気タービンによる回転数制御により複数
台同時起動とする場合も本発明の主旨に合致する。
In the above embodiment, an induction motor was used as the starting motor, and a variable frequency power supply was used to control its speed. The speed may be controlled by the device, and in this case, after the gas turbine is ignited, it can also be used as a synchronous generator. Furthermore, a case in which auxiliary steam is supplied to a steam turbine waiting to be started and a plurality of steam turbines are simultaneously started by controlling the rotation speed of the steam turbine also corresponds to the gist of the present invention.

以上の実施例では、蒸気タービン、ガスタービン、およ
び発電機がひとつの軸となっている1軸型コンバインド
サイクル発電プラントにて説明したが、ガスタービンと
蒸気タービンが別々の軸でである。
In the above embodiments, a single-shaft combined cycle power plant has been described in which the steam turbine, gas turbine, and generator are on one shaft, but the gas turbine and the steam turbine are on separate shafts.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればコンバインドサイ
クル発電プラントの短時間起動、定格負荷運転というメ
リットを殺すことなく起動装置のコストを大幅に削減出
来、低コストのコンバインド発電プラントを提供出来、
又保守の面においても機械部品の削減、機器の削減によ
り簡略化出来るので省力化が可能となり、また信頼性も
向上する。
As explained above, according to the present invention, the cost of the starting device can be significantly reduced without sacrificing the advantages of short startup time and rated load operation of the combined cycle power generation plant, and a low cost combined power generation plant can be provided.
In addition, maintenance can be simplified by reducing the number of mechanical parts and equipment, making it possible to save labor and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のコンバインドサイクル発電プラントの
起動方法の一実施例を説明するための単線結線図、第2
図は本発明の他の実施例を示す単線結線図、第3図は従
来技術における油圧クラッチを使用したコンバインドサ
イクル発電プラントの単線結線図、第4図は従来技術に
おけるスタティックスタータを使用したコンバインドサ
イクル発電プラントの単線結線図を示す。 1・・・発電母線 2 、2A、 2B、 2G・・・タービン発電機3・
・・発電機しゃ断器  4・・・昇圧変圧器5.5A・
・・ガスタービン 6・・・蒸気タービン7・・・起動
用電動機   8・・・起動母線9・・・しゃ断器  
   10・・・VVVF装置第1図
FIG. 1 is a single line diagram for explaining an embodiment of the method for starting up a combined cycle power plant of the present invention, and FIG.
The figure is a single line diagram showing another embodiment of the present invention, Figure 3 is a single line diagram of a conventional combined cycle power generation plant using a hydraulic clutch, and Figure 4 is a conventional combined cycle diagram using a static starter. A single line diagram of a power plant is shown. 1... Power generation bus 2, 2A, 2B, 2G... Turbine generator 3.
... Generator breaker 4 ... Step-up transformer 5.5A.
... Gas turbine 6 ... Steam turbine 7 ... Starting electric motor 8 ... Starting bus bar 9 ... Breaker
10...VVVF device Figure 1

Claims (1)

【特許請求の範囲】[Claims] 複数の発電機を備えたコンバインドサイクル発電プラン
トにおいて、前記発電機のうちの1台を可変周波電源に
より駆動される起動用電動機を接続して可変周波発電機
として運転し該発電機の発生電力により他の発電機を同
期電動機として運転し、前記起動用電動機に接続された
発電機の速度制御により他の発電機をガスタービンの点
火速度まで上昇させガスタービンを点火し、各々同一速
度に制御して回転上昇させ、同期発電機として運転し同
時起動を行うことを特徴とするコンバインドサイクル発
電プラントの起動方法。
In a combined cycle power generation plant equipped with a plurality of generators, one of the generators is operated as a variable frequency generator by connecting a starting motor driven by a variable frequency power source, and using the generated power of the generator. The other generator is operated as a synchronous motor, and by controlling the speed of the generator connected to the starting motor, the other generator is increased to the ignition speed of the gas turbine to ignite the gas turbine, and each generator is controlled to the same speed. 1. A method for starting a combined cycle power generation plant characterized by increasing the rotation speed and operating as a synchronous generator for simultaneous startup.
JP13001889A 1989-05-25 1989-05-25 Starting method for combined cycle generating plant Pending JPH02311187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13001889A JPH02311187A (en) 1989-05-25 1989-05-25 Starting method for combined cycle generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13001889A JPH02311187A (en) 1989-05-25 1989-05-25 Starting method for combined cycle generating plant

Publications (1)

Publication Number Publication Date
JPH02311187A true JPH02311187A (en) 1990-12-26

Family

ID=15024128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13001889A Pending JPH02311187A (en) 1989-05-25 1989-05-25 Starting method for combined cycle generating plant

Country Status (1)

Country Link
JP (1) JPH02311187A (en)

Similar Documents

Publication Publication Date Title
RU2472002C2 (en) Device for generation of electric energy in two-shaft gas turbine engine
CN100423440C (en) Method and apparatus for starting a gas turbine using a polyphase electric power generator
EP2778352B1 (en) Systems and methods for variable speed operation of combustion engines for power generation
CA2809818C (en) Gas turbine start with frequency convertor
KR102069734B1 (en) Gas turbine train with starting motor
JP6248203B2 (en) Method for starting an aircraft engine
JP6043322B2 (en) Constant frequency starter / generator for aircraft engine
JP2010503791A5 (en)
EP0947044A2 (en) Electrical system for turbine/alternator on common shaft
JP2022505734A (en) Hybrid synchronous capacitor and power generator
JP7034691B2 (en) Double power induction generator system for gas turbines
JPH02311187A (en) Starting method for combined cycle generating plant
JPH07332012A (en) Gas turbine static type starting system
RU2419957C1 (en) Electric power plant
JPH1182064A (en) Gas turbine starting system
JPH04241704A (en) Rotary fluid machine
GB2300884A (en) Starting a gas turbine
JP3470837B2 (en) Power plant start / stop device
US11092080B2 (en) Systems and methods for starting gas turbines
US11171589B2 (en) Systems and methods for starting steam turbines
JPS6056380B2 (en) Power generation equipment
JPS58190289A (en) Starter for generator plant
JPH0454227A (en) Method of starting gas turbine
JPH0767369A (en) Synchronized starting of synchronous motor
JPH0378477A (en) Operating method of synchronous generator