JPH0231042A - Hydraulic buffer - Google Patents

Hydraulic buffer

Info

Publication number
JPH0231042A
JPH0231042A JP18135688A JP18135688A JPH0231042A JP H0231042 A JPH0231042 A JP H0231042A JP 18135688 A JP18135688 A JP 18135688A JP 18135688 A JP18135688 A JP 18135688A JP H0231042 A JPH0231042 A JP H0231042A
Authority
JP
Japan
Prior art keywords
oil
piston
chamber
valve
oil reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18135688A
Other languages
Japanese (ja)
Inventor
Kensho Suzuki
鈴木 健正
Tetsuaki Naito
内藤 哲昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP18135688A priority Critical patent/JPH0231042A/en
Publication of JPH0231042A publication Critical patent/JPH0231042A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To convert the spring load depending of the amount of the extension and the contraction at the same stroke position by leading the excessive oil to one of two oil storage chambers a compression gas is sealed when a piston is operated in the compression side, and linking the both oil storage chambers to return the oil when the piston is operated in the extension side. CONSTITUTION:A compression gas is sealed in oil storage chambers 7 and 8, and a free piston (not shown) to separate the gas and the operation oil is provided. When a piston 2 is slided to the compression side, a spring 21 is bent, the oil in an oil chamber 5 flows to an oil chamber 4 from a valve 19, and moreover, a valve 12 opens a port 14 and closes a linking passage 9, the oil opens an attenuation valve 16 and flows in the oil storage chamber 7 compressing the gas in the oil storage chamber 7, and the load of the spring 21 increasing in a straight line and the load of the gas in the oil storage chamber 7 increasing in a curved line are summed up. When the piston 2 is returned, the pressure in the oil chamber 5 is reduced, the valve 12 closes the port 14 and opens the linking passage 9, the oil in the oil storage chamber 7 enters to the oil storage chamber 8 making the gas pressures in the both chambers equal, and the spring load is reduced gradually after increasing instantly. On the other hand, when the piston is stroked from the intermediate position to the compression side, the spring load is increased gradually from that point increasing the rate of increase gradually.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、二輪車のりャクッションユニット等に使用さ
れる油圧M部器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in hydraulic M components used in motorcycle rear cushion units and the like.

(従来の技術) 二輪車のりャクッションユニットとして、伸縮に伴うシ
リンダ内の油量変動を補うために、圧縮ガスを封入した
油溜室を備えたものが広く知られている。この圧縮ガス
はりャクッションユニッ■・の収縮が進むにつれて圧縮
され、リヤクツションユニットはこのガスばねと別に備
えた懸架スプリングとにより伸張方向に弾性支持される
(Prior Art) As a motorcycle cushion unit, one equipped with an oil reservoir chamber filled with compressed gas is widely known in order to compensate for fluctuations in the amount of oil in the cylinder due to expansion and contraction. This compressed gas is compressed as the contraction of the cushion unit progresses, and the reaction unit is elastically supported in the direction of expansion by this gas spring and a suspension spring provided separately.

この場合に、懸架スプリングのばね荷重はスl〜ローク
とともに直線的に増加するが、ガスばねのばね荷重はス
トローク後半で増加率の高まる曲線的な増加特性を示し
、これらの会計がリヤクツションユニットのばね荷重と
なる。
In this case, the spring load of the suspension spring increases linearly with the stroke, but the spring load of the gas spring exhibits a curved increasing characteristic with an increasing rate of increase in the latter half of the stroke, and these accounting factors are reflected in the reaction. This becomes the spring load of the unit.

(発明の課題) ところで、リヤクツションユニットが大きく伸縮した時
にピストンの底づきを防ぐためには、最圧位置付近での
ばね荷重を十分に大きく設定しておく必要があるが、こ
のような設定を行うと、例えば走行重量の増加のために
リャクッションユニツトが圧縮側に偏った位置でつり合
っている場合には、つり合い位置からの僅かな収縮によ
ってもばね荷重が急増するので、小さな衝撃や振動が吸
収されに<<、乗り心地が固い感じになるなどの影響を
及ぼすことがあった。
(Problem to be solved by the invention) By the way, in order to prevent the piston from bottoming out when the reaction unit expands and contracts greatly, it is necessary to set the spring load near the maximum pressure position to be sufficiently large. If this is done, for example, if the rear cushion unit is balanced in a position that is biased towards the compression side due to an increase in running weight, the spring load will increase rapidly even with a slight contraction from the balanced position, so it will be difficult to avoid small shocks or Vibrations were absorbed and the ride quality sometimes felt stiff.

本発明は、以上の問題点に鑑みて、同しストローク位置
でも伸縮の大小に応じて異なるばね荷重の得られる油圧
緩衝器を提供することを目的とする。
In view of the above problems, an object of the present invention is to provide a hydraulic shock absorber that can obtain different spring loads depending on the magnitude of expansion and contraction even at the same stroke position.

(課題を達成するための手段) 本発明は、作動油を充填したシリンダにピストンを収装
し、このピストンに結合したピストンロッドをシリンダ
から摺動自由に突出させるともに、ピストンの変位に伴
うシリンダ内の油量変動を補償する油溜室を備えた油圧
緩衝器において、前記油溜室として第1及び第2の油溜
室を設け、ピストンの圧側作動時に開いてシリンダの余
剰作動油を第1の油溜室に導くバルブと、ピストンの伸
側作動時に開いて第1の油溜室と第2の油溜室を連通し
つつシリンダに作動油を還流するバルブとを備えるとと
もに、第1及び第2の油溜室にそれぞれ隔壁部材を介し
て圧縮ガスを封入している。
(Means for Achieving the Object) The present invention includes a piston housed in a cylinder filled with hydraulic oil, a piston rod connected to the piston that freely slides and protrudes from the cylinder, and In a hydraulic shock absorber equipped with an oil reservoir chamber for compensating for fluctuations in the amount of oil in the cylinder, first and second oil reservoir chambers are provided as the oil reservoir chambers, and are opened when the piston is operated on the pressure side to drain excess hydraulic oil from the cylinder. A valve that leads to the first oil reservoir chamber, and a valve that opens when the piston is operated on the extension side to communicate the first oil reservoir chamber and the second oil reservoir chamber and return the hydraulic oil to the cylinder. Compressed gas is sealed in each of the second oil reservoir chamber and the second oil reservoir chamber via a partition member.

〈作用) ピストンの圧側作動においては、シリンダの余剰作動油
を受は入れる第1の油溜室のガスのみが圧縮され、この
圧縮ガスによるばね荷重がピストンに作用する。ピスト
ンの作動方向が伸側へ転じると、高圧の第1の油溜室が
低圧のままの第2の油溜室に連通ずることにより、この
ばね荷重は直ちに減少する。これらの油溜室はピストン
が再び圧側作動に転じるまで連通状態を続け、ピストン
の反転により減少したばね荷重は、ピストンの伸側作動
による作動油のシリンダへの還流に伴って更に減少する
。このため、圧縮ガスによるばね特性は圧側作動時と伸
側作動時とで異なり、さらに圧側作動においても、第1
の油溜室と第2の油溜室との連通が遮断される圧側作動
の開始位置に応じて異なったものとなる。
(Function) When the piston operates on the pressure side, only the gas in the first oil reservoir chamber that receives the excess hydraulic oil of the cylinder is compressed, and a spring load due to this compressed gas acts on the piston. When the direction of operation of the piston changes to the extension side, this spring load immediately decreases because the first oil sump chamber, which has a high pressure, communicates with the second oil sump chamber, which remains at a low pressure. These oil reservoir chambers continue to be in communication until the piston again switches to compression side operation, and the spring load reduced by the reversal of the piston is further reduced as the hydraulic fluid returns to the cylinder due to the extension side operation of the piston. For this reason, the spring characteristics due to the compressed gas differ between the compression side operation and the expansion side operation, and even in the compression side operation, the spring characteristics
This differs depending on the starting position of the pressure side operation at which communication between the first oil reservoir chamber and the second oil reservoir chamber is cut off.

(実施例) 第1図〜第6図に本発明の実施例を示す。(Example) Embodiments of the present invention are shown in FIGS. 1 to 6.

第1図において、1は作動油を充填したシリンダ、2は
シリンダ1に摺動自由に収装されたピストン、3はピス
トン2に結合してシリンダ1から摺動自由に突出する中
空のピストンロッドである。
In Fig. 1, 1 is a cylinder filled with hydraulic oil, 2 is a piston that is slidably housed in the cylinder 1, and 3 is a hollow piston rod that is connected to the piston 2 and projects freely from the cylinder 1. It is.

シリンダ1の内側はピストン2によりピストン口・ラド
3側の油室4と反対側の油室5に画成される。また、ピ
ストンロッド3の中空部3Aはピスト・ン2を貫通して
この油室5と常時連通する。ピストン2には油室5から
油室4へ作動油を流通させる圧側バルブ1つと、逆方向
に作動油を流通させる伸側バルブ20とが設けられる。
The inside of the cylinder 1 is defined by the piston 2 into an oil chamber 4 on the piston port/rad 3 side and an oil chamber 5 on the opposite side. Further, the hollow portion 3A of the piston rod 3 passes through the piston 2 and communicates with the oil chamber 5 at all times. The piston 2 is provided with one pressure side valve that allows hydraulic oil to flow from the oil chamber 5 to the oil chamber 4, and an expansion side valve 20 that allows the hydraulic oil to flow in the opposite direction.

ピストンロッド3の基端にはブラケット6とリザーバタ
ンク22とが取り付けられ、懸架スプリング21がこの
リザーバタンク22とシリンダ1の外周部に固設したス
プリングシート23との間に介装される。
A bracket 6 and a reservoir tank 22 are attached to the base end of the piston rod 3, and a suspension spring 21 is interposed between the reservoir tank 22 and a spring seat 23 fixed to the outer circumference of the cylinder 1.

リザーバタンク22の内側にはピストンロッド3の中空
部3Aを介して油室5に連通ずる、第2図に示すような
第1の油溜室7と第2の油溜室8とが形成される。これ
らの油溜室7と8には各々所定量の圧縮ガスが封入され
、圧縮ガスと作動油とを分離するために隔壁部材として
のフリーピストン10と11がそれぞれに収装される。
A first oil reservoir chamber 7 and a second oil reservoir chamber 8 as shown in FIG. 2 are formed inside the reservoir tank 22 and communicate with the oil chamber 5 through the hollow portion 3A of the piston rod 3. Ru. A predetermined amount of compressed gas is sealed in each of these oil reservoir chambers 7 and 8, and free pistons 10 and 11 as partition members are housed in each of them to separate the compressed gas and hydraulic oil.

また、油溜室7と8の作動油を相互に連通させる連通路
9が、中空部3Aの基端を横断方向に貫通して形成され
る。
Further, a communication passage 9 that allows the hydraulic oil in the oil reservoir chambers 7 and 8 to communicate with each other is formed to pass through the base end of the hollow portion 3A in the transverse direction.

中空部3Aには油室5を第1の油溜室7に連通し、同時
に連通路9を遮断するバルブ12が設けられる。このバ
ルブ12はピストンロッド3の基端側から油室5方向に
向けてスプリング13に付勢され、油室5に連通ずる中
空部3Aの低圧時にあっては、第1図に示すように中空
部3Aから第1の油溜室7に至るボート14を閉鎖する
一方で、中空部3Aの基端側を貫通する連通路9を開放
する。また、中空部3Aの高圧に対しては、第3図に示
すようにスプリング13に抗して後退し、ボート14を
開口すると同時に連通路9を遮断する。
A valve 12 that communicates the oil chamber 5 with the first oil reservoir chamber 7 and blocks the communication path 9 at the same time is provided in the hollow portion 3A. This valve 12 is biased by a spring 13 from the base end side of the piston rod 3 toward the oil chamber 5, and when the pressure in the hollow portion 3A communicating with the oil chamber 5 is low, the hollow portion 3A opens as shown in FIG. While the boat 14 extending from the portion 3A to the first oil storage chamber 7 is closed, the communication path 9 penetrating the base end side of the hollow portion 3A is opened. Furthermore, in response to high pressure in the hollow portion 3A, as shown in FIG. 3, it retreats against the spring 13, opening the boat 14 and simultaneously blocking the communication path 9.

ボート14と第1の油溜室7との間にはボート14から
油溜室7への作動油の流入に対して所定の抵抗を与え、
かつ逆方向の流れを阻止すべく、スプリング15に付勢
された圧側減衰弁16が介装される。
A predetermined resistance is provided between the boat 14 and the first oil reservoir chamber 7 against the inflow of hydraulic oil from the boat 14 into the oil reservoir chamber 7.
In addition, a pressure side damping valve 16 biased by a spring 15 is interposed to prevent the flow in the opposite direction.

また、第2の油溜室8と油室5とを連通ずるボート17
が中空部3Aのバルブ12から油室5側に寄った位置に
開口する。このボート17には第2の油溜室8から油室
5方向の作動油の流れのみを許容するチエツク弁18が
介装される。なお、以上の接続関係は第4図の回路図に
示される。
Also, a boat 17 that communicates the second oil storage chamber 8 and the oil chamber 5 is provided.
opens at a position closer to the oil chamber 5 side than the valve 12 in the hollow portion 3A. This boat 17 is provided with a check valve 18 that allows hydraulic oil to flow only from the second oil reservoir chamber 8 toward the oil chamber 5 . The above connection relationship is shown in the circuit diagram of FIG.

次に作用を説明する。Next, the effect will be explained.

このリヤクツションユニットにおいて、ピストン2が圧
側へ摺動すると、懸架スプリング21が撓み、縮小する
油室5の高圧によりバルブ12が後退してボート14を
開くと同時に連通路9を遮断する。油室5の作動油は拡
大する油室4に圧側バルブ19を介して流入するととも
に、ピストンロッド3の侵入体積分の作動油はボート1
4から圧側減衰弁16を押し開いて第1の油溜室7に流
入する。
In this reaction unit, when the piston 2 slides toward the pressure side, the suspension spring 21 is bent, and the high pressure in the contracting oil chamber 5 causes the valve 12 to retreat, opening the boat 14 and simultaneously blocking the communication path 9. The hydraulic oil in the oil chamber 5 flows into the expanding oil chamber 4 via the pressure side valve 19, and the hydraulic oil corresponding to the intrusion volume of the piston rod 3 flows into the boat 1.
4, the pressure side damping valve 16 is pushed open and the oil flows into the first oil reservoir chamber 7.

このように、ピストン2の圧側ストロークにおいては第
1の油溜室7のガスのみが圧縮されるので、リヤクツシ
ョンユニットのばね荷重は、ストロークとともに直線的
に増加する懸架スプリング21のばね荷重と、曲線的に
増加する第1の油溜室7のガスばねのばね荷重とを合計
したものとなる。すなわち、第5図に示すようにピスト
ン2が最伸位置X。から最圧位置Xmまで摺動するのに
伴い、ばね荷重はA点からB点までスl−ロークに応じ
て増加率を高めつつカーブを描いて増加する。
In this way, only the gas in the first oil reservoir chamber 7 is compressed during the pressure side stroke of the piston 2, so the spring load of the reaction unit is equal to the spring load of the suspension spring 21, which increases linearly with the stroke. , and the spring load of the gas spring of the first oil reservoir chamber 7, which increases in a curved manner. That is, as shown in FIG. 5, the piston 2 is at the most extended position X. As the spring slides from point A to point Xm, the spring load increases in a curve from point A to point B, increasing the rate of increase according to the stroke.

なお、図中の破線(c)は懸架スプリング21のばね特
性を示す。
Note that the broken line (c) in the figure indicates the spring characteristics of the suspension spring 21.

XnAにおいてピストン2が伸側へ反転すると、油室5
の圧力が低下し、スプリング13に付勢されたバルブ1
2がボート14を閉じると同時に連通路9を開く0、二
の結果、高圧の第1の油溜室7の作動油が、低圧の第2
の油溜室8に流入し、油溜室7と8のガス圧力は等しく
なり、ばね荷重は図のB点から0点へと瞬時に降下する
When the piston 2 reverses to the extension side at XnA, the oil chamber 5
The pressure of the valve 1 is reduced, and the valve 1 is biased by the spring 13.
2 closes the boat 14 and at the same time opens the communication passage 9. As a result of 0 and 2, the hydraulic oil in the high-pressure first oil reservoir chamber 7 is transferred to the low-pressure second oil reservoir chamber 7.
The gas pressures in oil reservoir chambers 7 and 8 become equal, and the spring load instantly drops from point B to point 0 in the figure.

以後の伸側ストロークにおいては連通路9が開いている
ので、リヤクツションユニットのばね荷重は、圧側作動
時と同じ懸架スプリング21のばね荷重に、連通した油
溜室7と8の圧縮ガスのばね荷重を加えたものとなる。
Since the communication passage 9 is open during the subsequent rebound stroke, the spring load of the reaction unit is equal to the spring load of the suspension spring 21 during the compression side operation, and the compressed gas in the oil reservoir chambers 7 and 8 that communicate with each other. This is the result of adding a spring load.

つまり、図の(b)に示すように伸側ストロークととも
に圧側作動時よりも桜やかなカーブて減少し、最伸位置
のXoでは圧…11ストロークの開始時と同じA点に戻
る。
That is, as shown in (b) of the figure, along with the extension stroke, the stroke decreases with a gentler curve than during the compression side operation, and at the most extended position Xo, it returns to point A, which is the same as at the start of the compression...11 stroke.

また、ピストン2がX。とXII+の中間位置、例えば
図のXlから圧側ヘストロークする場合には、それ以前
における連通路9の連通により、リャク・ンションユニ
ッI−のばね荷重は図の曲線(b)上のXに対応するD
点から増加を開始し、ストロークとともに図の(cl)
のJ:うな増加特性を示す。同様に圧側ストロークが図
のX2で開始される場合には、ばね荷重はE点から増加
し始め、(e)の増加特性を示す、このように、どの位
置で圧側ストロークが開始されても、ばね荷重は開始位
置から緩やかに増加し始め、段//と増加率を高めるの
で、例えば走行重量の増減によりつり合い位置が変動し
ても、乗り心地が大きく変動することはなく、振動や衝
撃に対して安定した好ましい吸収感が得られる。一方、
ピストン2が最伸位置付近からフルストロークするよう
な激しい衝撃に対しては、圧側ストローク後半でばね荷
重が急増するのでピストン2の底づきの恐れもない。さ
らに、圧側作動から伸側作動への反転に伴ってばね荷重
が減少するので、路面からの突き上げ等による圧側作動
後のリアクションら効率良く減衰される。
Also, piston 2 is X. When stroking from an intermediate position between XII+ and D to do
Start increasing from the point and with the stroke (cl) of the figure
J: Shows increasing property. Similarly, when the compression stroke starts at X2 in the figure, the spring load starts to increase from point E, showing the increasing characteristic shown in (e).In this way, no matter where the compression stroke starts, The spring load starts to increase gradually from the starting position and increases the rate of increase in stages, so even if the balance position changes due to an increase or decrease in running weight, the ride comfort will not change greatly and will be less susceptible to vibrations and shocks. A stable and preferable absorption feeling can be obtained. on the other hand,
In response to a severe impact such as when the piston 2 makes a full stroke from near its most extended position, the spring load rapidly increases in the latter half of the compression stroke, so there is no fear that the piston 2 will bottom out. Furthermore, since the spring load decreases with the reversal from the compression side operation to the expansion side operation, the reaction after the compression side operation due to pushing up from the road surface, etc. is efficiently damped.

ところで、第5図に示された荷重特性では第1の油溜室
7と第2の油溜室8の初期封入ガス圧が等しく設定され
ているが、これを異なる圧力に設定することも可能であ
る。具体的には第1の油溜室7に、フリーピストン10
の一定以上の摺動を規制する第2図に示すようなストッ
パ2/1を設けることで、最伸位置における第1の油溜
室7のガス圧力を連通路9による作動油の連通にかかわ
らず、第2の油溜室8より高く維持することができる。
By the way, in the load characteristics shown in FIG. 5, the initial sealed gas pressures of the first oil reservoir chamber 7 and the second oil reservoir chamber 8 are set to be equal, but it is also possible to set these to different pressures. It is. Specifically, a free piston 10 is placed in the first oil reservoir chamber 7.
By providing a stopper 2/1 as shown in FIG. 2 that restricts sliding beyond a certain level, the gas pressure in the first oil reservoir chamber 7 at the most extended position can be controlled regardless of the communication of hydraulic oil through the communication passage 9. First, it can be maintained higher than the second oil reservoir chamber 8.

この場合のりャクッションユニットの荷重特性は第6図
に示される。この設定のもとでは、伸側作動の途中のX
cでフリーピストン10がストッパ24に当接すること
により、第1の油溜室7の圧縮ガスの膨張が規制され、
以後のピストン2の伸側変位においては、更に圧力を低
下させる第2の油溜室8のガス圧力と、懸架スプリング
21のに反発力とに基づくばね荷重がリヤクツションユ
ニットに作用する。このため、最伸位置X0まで伸張し
た時のばね荷重は図のF点に示されるように、圧側スト
ローク開始時のA点を下回るものとなる。同様に、圧側
ストロークがXcよりもX0寄りのXlで開始される場
合には、第1の油溜室7のガス圧力と第2の油溜室8の
ガス圧力とに差があるため、図のD点とG点に示される
ように圧側ストローク開始の前後でばね荷重が変化する
。このように、第1の油溜室7と第2の油溜室8との初
期圧力の設定を変更することにより、圧側作動と伸側作
動におけるばね荷重の差を更に大きくすることができる
The load characteristics of the cushion unit in this case are shown in FIG. Under this setting, the X
When the free piston 10 comes into contact with the stopper 24 at c, the expansion of the compressed gas in the first oil reservoir chamber 7 is regulated.
In the subsequent displacement of the piston 2 toward the extension side, a spring load based on the gas pressure in the second oil reservoir chamber 8 that further reduces the pressure and the repulsive force of the suspension spring 21 acts on the reaction unit. Therefore, the spring load when extended to the most extended position X0 is lower than point A at the start of the compression stroke, as shown at point F in the figure. Similarly, when the pressure side stroke is started at Xl, which is closer to X0 than Xc, there is a difference between the gas pressure in the first oil reservoir chamber 7 and the gas pressure in the second oil reservoir chamber 8. As shown at points D and G, the spring load changes before and after the start of the compression stroke. In this way, by changing the initial pressure settings of the first oil reservoir chamber 7 and the second oil reservoir chamber 8, it is possible to further increase the difference in spring load between the compression side operation and the expansion side operation.

なお、第1及び第2の油溜室7と8を収容するリザーバ
タンク22は必ずしもピストンロッド3の基端に設ける
必要はなく、リヤクツションユニット本体と別に設けて
、配管を介して油室5に接続しても良い。
Note that the reservoir tank 22 that accommodates the first and second oil reservoir chambers 7 and 8 does not necessarily need to be provided at the base end of the piston rod 3, but may be provided separately from the reaction unit body and connected to the oil chamber via piping. It may be connected to 5.

〈発明の効果) 以上のように、本発明の油圧f−Jjll’f器は圧側
作動時にシリンダ内の余剰作動油を第1の油溜室に導く
バルブと、伸側作動時にこの第1の油溜室と第2の油溜
室とを連通しつつ作動油をシリンダに還流するバルブと
を備えるとともに、各油溜室にそれぞれ隔壁部材を介し
て圧縮ガスを封入したため、ピストンの圧側作動時と伸
側作動時とでばね荷重が変化し、さらに圧側作動におい
てはどの位置から作動を開始しても、ストロークの開始
当初はばね荷重が徐々に増加するので、走行重量の変化
によらず振動や衝撃に対する好ましい吸収感が得られる
。また、大きな伸縮に対しても圧側ストローク後半のば
ね荷重の急増によりピストンの底づきを阻止できる。さ
らに、圧側作動から伸側作動への反転と同時にばね荷重
が減少するので、収縮後のリアクションも効率よく減衰
することができる。
<Effects of the Invention> As described above, the hydraulic f-Jjll'f device of the present invention includes a valve that guides excess hydraulic oil in the cylinder to the first oil reservoir chamber during compression side operation, and a valve that guides surplus hydraulic oil in the cylinder to the first oil reservoir chamber during compression side operation. It is equipped with a valve that communicates the oil reservoir chamber with the second oil reservoir chamber and returns hydraulic oil to the cylinder, and each oil reservoir chamber is filled with compressed gas through a partition member, so that when the piston is operated on the pressure side The spring load changes depending on whether the movement is on the compression side or during compression side operation, and the spring load gradually increases at the beginning of the stroke regardless of the starting position in compression side operation. It provides a favorable feeling of absorption against shock and impact. Furthermore, even with large expansion and contraction, the piston can be prevented from bottoming out due to the rapid increase in spring load in the latter half of the compression stroke. Furthermore, since the spring load is reduced at the same time as the compression side operation is reversed to the extension side operation, the reaction after contraction can also be efficiently damped.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すリヤクツションユニット
の縦断面図、第2図は同じく第1及び第2の油溜室の構
成を示すリザーバタンクの水平断面図、第3図はバルブ
の作動状態を説明するピストンロッドの要部縦断面図、
第4図は作動油の流れを説明する油圧凹I¥8図、第5
図及び第6図はそれぞれピストンの変位とりャクッショ
ンユニットのばね荷重との関係を示すグラフである。 1・・・シリンダ、2・・ピストン、3・・・ピストン
ロッド、3A・・・中空部、4,5・・・油室、7・・
・第1の油溜室、8・・・第2の油溜室、9・・・連通
路、1o、11・・・フリーピストン、12・・・バル
ブ、16・・・圧側減衰弁、18・・・チエツク弁、2
1・・懸架スプリング、22・・・リザーバタンク。
Fig. 1 is a longitudinal sectional view of a reaction unit showing an embodiment of the present invention, Fig. 2 is a horizontal sectional view of a reservoir tank showing the configuration of the first and second oil reservoir chambers, and Fig. 3 is a valve valve. A vertical cross-sectional view of the main part of the piston rod to explain the operating state of the
Figure 4 is the hydraulic concave I¥8 diagram, which explains the flow of hydraulic oil, and Figure 5.
6 are graphs showing the relationship between the displacement of the piston and the spring load of the cushion unit, respectively. 1... Cylinder, 2... Piston, 3... Piston rod, 3A... Hollow part, 4, 5... Oil chamber, 7...
・First oil reservoir chamber, 8... Second oil reservoir chamber, 9... Communication passage, 1o, 11... Free piston, 12... Valve, 16... Pressure side damping valve, 18 ...Check valve, 2
1... Suspension spring, 22... Reservoir tank.

Claims (1)

【特許請求の範囲】[Claims] 作動油を充填したシリンダにピストンを収装し、このピ
ストンに結合したピストンロッドをシリンダから摺動自
由に突出させるともに、ピストンの変位に伴うシリンダ
内の油量変動を補償する油溜室を備えた油圧緩衝器にお
いて、前記油溜室として第1及び第2の油溜室を設け、
ピストンの圧側作動時に開いてシリンダの余剰作動油を
第1の油溜室に導くバルブと、ピストンの伸側作動時に
開いて第1の油溜室と第2の油溜室を連通しつつシリン
ダに作動油を還流するバルブとを備えるとともに、第1
及び第2の油溜室にそれぞれ隔壁部材を介して圧縮ガス
を封入したことを特徴とする油圧緩衝器。
A piston is housed in a cylinder filled with hydraulic oil, and a piston rod connected to the piston is allowed to slide freely and protrude from the cylinder, and is equipped with an oil sump chamber that compensates for fluctuations in the amount of oil in the cylinder due to displacement of the piston. In the hydraulic shock absorber, first and second oil reservoir chambers are provided as the oil reservoir chamber,
A valve that opens when the piston operates on the pressure side and guides excess hydraulic oil in the cylinder to the first oil reservoir chamber, and a valve that opens when the piston operates on the rebound side and connects the first oil reservoir chamber and the second oil reservoir chamber while the cylinder and a valve that recirculates the hydraulic oil.
and a second oil reservoir chamber, each of which is filled with compressed gas via a partition member.
JP18135688A 1988-07-20 1988-07-20 Hydraulic buffer Pending JPH0231042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18135688A JPH0231042A (en) 1988-07-20 1988-07-20 Hydraulic buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18135688A JPH0231042A (en) 1988-07-20 1988-07-20 Hydraulic buffer

Publications (1)

Publication Number Publication Date
JPH0231042A true JPH0231042A (en) 1990-02-01

Family

ID=16099286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18135688A Pending JPH0231042A (en) 1988-07-20 1988-07-20 Hydraulic buffer

Country Status (1)

Country Link
JP (1) JPH0231042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867449B2 (en) 2000-08-30 2005-03-15 Micron Technology, Inc. Capacitor having RuSixOy-containing adhesion layers
US6903005B1 (en) 2000-08-30 2005-06-07 Micron Technology, Inc. Method for the formation of RuSixOy-containing barrier layers for high-k dielectrics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867449B2 (en) 2000-08-30 2005-03-15 Micron Technology, Inc. Capacitor having RuSixOy-containing adhesion layers
US6867093B2 (en) 2000-08-30 2005-03-15 Micron Technology, Inc. Process for fabricating RuSixOy-containing adhesion layers
US6903005B1 (en) 2000-08-30 2005-06-07 Micron Technology, Inc. Method for the formation of RuSixOy-containing barrier layers for high-k dielectrics

Similar Documents

Publication Publication Date Title
KR100914596B1 (en) Single cylinder type hydraulic shock absorber for vehicle
CN112513494B (en) Damper for railway vehicle
JPH0231042A (en) Hydraulic buffer
JP2001153170A (en) Constant pressure valve and hydraulic vibration damping device
US4177977A (en) Hydropneumatic suspension unit with a level selector mechanism
JP3088552B2 (en) Height adjustment device
JPH10339345A (en) Hydraulic shock absorber
JP2003322193A (en) Hydraulic buffer
GB816786A (en) Improvements in or relating to pneumatic-hydraulic spring means
JP6143517B2 (en) damper
JP2017166572A (en) Buffer
JPS58142048A (en) Damper
JPH0642572A (en) Damping force adjusting type hydraulic buffer
EP0338584B1 (en) Active vibration damper, in particular for connecting an engine to a vehicle body
JP2002286078A (en) Attenuation force adjustment type hydraulic buffer
JPH0231009A (en) Buffer for expansion cylinder
JP3520455B2 (en) Front fork for motorcycle
JP2601394Y2 (en) Pressure side damping force generating valve structure of hydraulic shock absorber
JPS6110023Y2 (en)
JP2003254374A (en) Hydraulic shock absorber
JPS6159410B2 (en)
JPH02109713A (en) Suspension device
JP2594410Y2 (en) Pressure side damping force generating valve structure of hydraulic shock absorber
JPH0234823B2 (en)
JP2514195B2 (en) Shock absorber with vehicle height adjuster