JPH02310402A - Self-diagnosing circuit - Google Patents

Self-diagnosing circuit

Info

Publication number
JPH02310402A
JPH02310402A JP13346789A JP13346789A JPH02310402A JP H02310402 A JPH02310402 A JP H02310402A JP 13346789 A JP13346789 A JP 13346789A JP 13346789 A JP13346789 A JP 13346789A JP H02310402 A JPH02310402 A JP H02310402A
Authority
JP
Japan
Prior art keywords
circuit
resistor
input terminal
signal
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13346789A
Other languages
Japanese (ja)
Other versions
JPH0810159B2 (en
Inventor
Kazufumi Naito
和文 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Scales Manufacturing Co Ltd
Original Assignee
Ishida Scales Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Scales Manufacturing Co Ltd filed Critical Ishida Scales Manufacturing Co Ltd
Priority to JP13346789A priority Critical patent/JPH0810159B2/en
Publication of JPH02310402A publication Critical patent/JPH02310402A/en
Publication of JPH0810159B2 publication Critical patent/JPH0810159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve the reliability of the results of diagnosis by connecting the output terminal of a bridge circuit including strain gages to the input terminal of a high input resistance differential amplifier circuit and grounding the other inversion input terminal by a resistor having the same resistance as a resistor. CONSTITUTION:Switches SWS3, S4, S6 are turned on and SWS1, S2, S5, S7 are turned off by the signals from an SW control circuit 43 at the time of, for example, a self- diagnosis mode. The connection between the bridge circuit 1 and operational amplifier circuits 10, 14 is interrupted and the non-inversion input terminals of the amplifiers 10, 14 are shorted so that the outputs of the amplifiers 10, 14 do not depend on the output voltage of the circuit 1 any longer. The reference signal from a reference voltage generating circuit 10 is inputted in this state via SWS6 and the resistor 16 to the inversion input terminal of the amplifier 14 and is inputted via a temp. sensitive resistance element 18 to the inversion input terminal of the amplifier 10. The signal corresponding to the reference weight is inputted to the amplifier 14. The outputs from the amplifiers 10, 14 are inputted via the resistors 30, 32 to the differential amplifier circuit 32 and the output signal of the circuit 32 is inputted to a signal processing circuit of a post stage and is displayed as a weight on a display device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子秤等の重量測定装=における歪ゲージか
らの信号を処理する増幅回路、レベル変換回路、フィル
タ回路、及びアナログ−ディジタル変換回路等の動作を
チェックする自己診断回路に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an amplifier circuit, a level conversion circuit, a filter circuit, and an analog-to-digital conversion circuit for processing signals from strain gauges in weight measuring equipment such as electronic scales. This invention relates to a self-diagnosis circuit that checks the operation of circuits, etc.

(従来技#T) 電子秤等の重量測定装置は、重Iを機械的歪に変換する
起歪体の表面に複数、通常4個を貼着し、これら歪ゲー
ジを含むブリ・ンジ回路を形成し、このブリッジ回路か
らの信号を後段に接続する増幅回路、レベル変換回路、
フィルタ回路、及びアナログ−ディジタル変換回路等に
より表示や印字等の出力機器に適したディジタル信号に
変換するように構成されている。
(Prior art #T) A weight measuring device such as an electronic scale has a plurality of strain gauges (usually four) attached to the surface of a strain body that converts weight I into mechanical strain, and a bridge circuit containing these strain gauges. an amplifier circuit, a level conversion circuit, which connects the signal from this bridge circuit to the subsequent stage.
The signal is configured to be converted into a digital signal suitable for output devices such as display and printing using a filter circuit, an analog-digital conversion circuit, and the like.

このため、歪ゲージから出力機器までの経路に存在する
多数の回路が全て正常に動作することによって目的を達
成することが可能となるため、計量動作に先立っで各回
路が全で正常に動作することの確認が必要となる。この
ため、ブリッジ回路からの出力を受ける増幅手段に基準
荷重相当の電圧を入力して信号処理回路の動作状態を確
認することが行なわれるが、その確認は計量皿に計量物
を載苫しない状態でしか行えないので、計量皿に風袋等
を積みゴきしておく場合には動作状態の診断を行なうこ
とができず、信頼性の低下を招くといった問題がある。
Therefore, it is possible to achieve the objective by making sure that all of the many circuits that exist in the path from the strain gauge to the output device are operating normally, so each circuit must be operating normally before the weighing operation. It is necessary to confirm that. For this reason, the operating state of the signal processing circuit is checked by inputting a voltage equivalent to the reference load to the amplification means that receives the output from the bridge circuit, but this check is performed without placing the object on the weighing pan. Since this can only be done on a weighing pan, if a tare bag or the like is piled up on the weighing pan, the operating state cannot be diagnosed, resulting in a problem of reduced reliability.

本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは計量皿の載荷、無載荷に関わ
りなく任意の時点で信号検出回路の動作状態を診断する
ことができる自己診断回路を提供することにある。
The present invention has been made in view of these problems, and its purpose is to provide a self-diagnostic device that can diagnose the operating state of a signal detection circuit at any time regardless of whether the weighing pan is loaded or not. The purpose is to provide a diagnostic circuit.

(課題を解決するための手段) このような問題を解決するために本発明においては、歪
ゲージを含むブリッジ回路の出力端子をスイッチ手段を
介してそれぞれ高入力抵抗差動増幅回路の入力端子に接
続し、前記一方の高入力抵抗差動増幅回路の反転入力端
子に基準電圧を出力する電圧発生回路の出力端子を抵抗
を介しで接続し、ざらに前記他方の高入力抵抗差動増幅
回路の反転入力端子を前記抵抗と同一の抵抗を有する抵
抗により接地した。
(Means for Solving the Problems) In order to solve such problems, in the present invention, the output terminals of the bridge circuit including strain gauges are respectively connected to the input terminals of the high input resistance differential amplifier circuit via switch means. The output terminal of a voltage generation circuit that outputs a reference voltage is connected to the inverting input terminal of the one high input resistance differential amplifier circuit through a resistor, and The inverting input terminal was grounded by a resistor having the same resistance as the above resistor.

(作用) 載荷状態にあってもスイッチを操作することによってブ
リッジ回路からの信号入力を遮断して、高入力抵抗差動
増幅器を含む信号処理回路のドリフト検出や、自己診断
を実行することかできる。
(Function) Even in a loaded state, signal input from the bridge circuit can be cut off by operating the switch, allowing drift detection and self-diagnosis of signal processing circuits including high input resistance differential amplifiers. .

(実施例) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は本発明の一実施例を示すものであって、図中符
号1は、起歪体の歪を電気信号に変換するブリッジ回路
で、起歪体に設けた4つの歪ゲージ2.2′、3.3゛
をそれぞれ接続するとともに、電圧供給端子の一方を接
地し、また他方の電圧供給端子に電圧Vexを供給する
ように構成されている。
FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 is a bridge circuit that converts the strain of a strain body into an electrical signal, and four strain gauges 2, 2, and 3 are connected to the strain body. 2' and 3.3' are connected to each other, one of the voltage supply terminals is grounded, and the other voltage supply terminal is supplied with the voltage Vex.

10は、ブリッジ回路1からの歪信号をスイッチS1を
介しで受ける第1の演算増幅器で、非反転入力端子はス
イッチSit介してブリッジ回路1の出力端子に、反転
入力端子は、抵抗]]を介して出力端子に接続するとと
もに、抵抗12を介しで接地されでいる。
10 is a first operational amplifier that receives the distortion signal from the bridge circuit 1 via the switch S1, the non-inverting input terminal is connected to the output terminal of the bridge circuit 1 via the switch Sit, and the inverting input terminal is connected to the resistor]]. It is connected to the output terminal via the resistor 12 and grounded via the resistor 12.

14はブリッジ回路1からの歪信号を受ける第2の演算
増幅器で、非反転入力端子はスイッチS2を介してブリ
ッジ回路1の他方の出力端子に、また反転入力端子は、
抵抗15を介して出力端子に、また抵抗16を介して後
述する基準電圧発生回路26の出力端子に接続されてい
る。これら演算増幅器10と14の非反転入力端子間は
スイッチS3、S4の直列回路を介しで接続され、また
分圧回路を構成する抵抗19.20.21に電圧をスイ
・フチ55フj介して接続され、ざらに反転入力端子間
には感温抵抗素子18が接続されている。
14 is a second operational amplifier that receives the distortion signal from the bridge circuit 1, the non-inverting input terminal is connected to the other output terminal of the bridge circuit 1 via the switch S2, and the inverting input terminal is
It is connected to an output terminal via a resistor 15 and to an output terminal of a reference voltage generation circuit 26, which will be described later, via a resistor 16. The non-inverting input terminals of these operational amplifiers 10 and 14 are connected through a series circuit of switches S3 and S4, and voltage is applied to resistors 19, 20, and 21 forming a voltage dividing circuit through a switch 55. A temperature-sensitive resistance element 18 is connected between the inverting input terminals and the inverting input terminals.

23.24は分圧回路を構成する抵抗で、スイッチS6
、及びスイッチS78介して演算増幅器25に入力し、
前述の基準電圧発生回路26を構成している。
23 and 24 are resistors forming a voltage dividing circuit, and switch S6
, and input to the operational amplifier 25 via the switch S78,
It constitutes the reference voltage generation circuit 26 mentioned above.

これらのスイッチS1、S2、S3、S4、S5、S6
、S7は、スイッチ制御回路43からの信号により、自
己診断モード時にはスイッチS3、S4、S6がON、
またスイッチS1、S2、S5、S7が0FFC第1図
に示す状態)、重量測定モード時にはスイッチS1、S
2、S7がON、またスイッチS3、S4、S5、S6
がOFF(第2図に示す状態)、オフセット電圧測定モ
ード時にはスイッチS3、S4、S7がON、またスイ
ッチS1、S2、S5、S6か0FF(第3図に示す状
態)、温度検出モード時にはスイッチS4、S5、S7
がON、またスイッチS1、S2、S3、S6が0FF
(第4図に示す状態)に切換えられる。
These switches S1, S2, S3, S4, S5, S6
, S7, switches S3, S4, and S6 are turned on in the self-diagnosis mode by a signal from the switch control circuit 43;
In addition, the switches S1, S2, S5, and S7 are in the 0FFC state shown in Figure 1), and the switches S1, S7 are in the state shown in Fig. 1 in the weight measurement mode.
2. S7 is ON, and switches S3, S4, S5, S6
is OFF (the state shown in Figure 2), switches S3, S4, and S7 are ON in the offset voltage measurement mode, and switches S1, S2, S5, and S6 are OFF (the state shown in Figure 3), and the switches are in the temperature detection mode. S4, S5, S7
is ON, and switches S1, S2, S3, and S6 are OFF
(the state shown in FIG. 4).

これら演算増幅器10.14の出力端子は、それぞれ抵
抗3o、31を介して演算増幅器32の反転入力端子、
非反転入力端子に接続されている。この演算増幅器32
の反転入力端子は抵抗33を介して出力端子に、また非
反転入力端子は抵抗34を介して接地しで差動増幅回路
として構成され、その出力信号を図示しない後段の信号
処理回路に出力しでいる。
The output terminals of these operational amplifiers 10 and 14 are connected to the inverting input terminal of the operational amplifier 32 via resistors 3o and 31, respectively.
Connected to the non-inverting input terminal. This operational amplifier 32
The inverting input terminal is connected to the output terminal via a resistor 33, and the non-inverting input terminal is grounded via a resistor 34 to form a differential amplifier circuit, and the output signal is output to a subsequent signal processing circuit (not shown). I'm here.

この実施例において、図示しない計量製百本体の電源を
投入し、スタート条件を満足すると、スイッチ制御回路
43からチェック信号が出力し、スイッチS3、S4、
S6がON、またスイッチS1、S2、S5、S7がO
FFに設定される(第1図)、これにより、ブリッジ回
路1と第1、及び第2の演算増幅回路10.14との接
続が断たれ、第1、第2の演算増幅器]0.14の非反
転入力端子が短絡された状態となって、演算増幅器10
.14の出力はブリッジ回路1の出力電圧に依存しなく
なる。この状態で基準電圧発生回路20からの基準信号
は、スイッチS6、抵抗16を介して第2演算増幅器1
4の反転入力端子に、感温抵抗素子18を介して第1の
演算増幅器10の反転入力端子に入力して、演算増幅器
14に基準重量相当分の信号を入力する。演算増幅器1
0、]4からの出力は抵抗30.31を介して差動増幅
回路32に入力する。差動増幅回路32からの出力信号
は後段の信号処理回路を構成しでいるレベル変換回路、
フィルタ回路、アナログ−ディジタル変換回路等に入力
し、重量信号と同等の扱いを受けて重量として表示器に
表示される。
In this embodiment, when the power source of the meter body (not shown) is turned on and the start conditions are satisfied, a check signal is output from the switch control circuit 43, and the switches S3, S4,
S6 is ON, and switches S1, S2, S5, and S7 are O
FF (FIG. 1), thereby cutting off the connection between the bridge circuit 1 and the first and second operational amplifier circuits 10.14. The non-inverting input terminal of the operational amplifier 10 is short-circuited, and the operational amplifier 10
.. The output of 14 no longer depends on the output voltage of bridge circuit 1. In this state, the reference signal from the reference voltage generation circuit 20 is transmitted to the second operational amplifier 1 via the switch S6 and the resistor 16.
A signal equivalent to the reference weight is input to the inverting input terminal of the first operational amplifier 10 via the temperature-sensitive resistance element 18 to the inverting input terminal of the first operational amplifier 10 . Operational amplifier 1
0, ]4 is input to the differential amplifier circuit 32 via resistors 30 and 31. The output signal from the differential amplifier circuit 32 is sent to a level conversion circuit, which constitutes a subsequent signal processing circuit.
The signal is input to a filter circuit, an analog-to-digital conversion circuit, etc., treated in the same manner as a weight signal, and displayed as weight on a display.

ところで、この信号経路のいずれかにl!jI杏が発生
しでいる場合には、基準信号発生回路20の出力は基準
重量として表示され得ないがら、オペレータは信号処理
系の途中に障害が発生しでいることを認識することかで
きる。
By the way, l! on either of these signal paths! If jI an has already occurred, the output of the reference signal generating circuit 20 cannot be displayed as the reference weight, but the operator can recognize that a fault has already occurred in the signal processing system.

このようにしで、回路機能のチェックが終了した段階で
、スイッチ制御回路43は、スイッチS]、S2、Sア
をON、またスイ・yチS3、S4、S5、S6をOF
F(第2図(こ示す状態)にして基準信号発生回路20
がらの信号をグランドレベルに保つとともに、ブリッジ
回路1の出力端子をスイッチS1、S2を介して第1、
第2の演算増幅器1o、14に接続する。
In this way, when the circuit function check is completed, the switch control circuit 43 turns on the switches S], S2, and SA, and turns off the switches S3, S4, S5, and S6.
F (as shown in FIG. 2), the reference signal generation circuit 20
While keeping the signal at the ground level, the output terminal of the bridge circuit 1 is connected to the first,
It is connected to the second operational amplifier 1o, 14.

この状態で図示しない計量器に品物8載薗すると、ブリ
ッジ回路]がらの重量信号は、演算増幅器1o、14を
経由して差動増幅回路32により差分を検出されて所定
の信号処理を受けで重量としで表示されることになる。
When an item 8 is placed on a weighing device (not shown) in this state, the weight signal from the bridge circuit is detected by the differential amplifier circuit 32 via the operational amplifiers 1o and 14, and subjected to predetermined signal processing. It will be displayed as weight.

ざらに、増幅回路10、]4のオフセット電圧を検出す
べく、増幅器オフセット電圧検出モードを選択すると、
スイッチS3、S4、S7がON、マタスイッチS1、
S2、S5、Si<OFFに設定され(第3図に示す状
態)、演算増幅器10、]4のオフセット電圧に相当す
る出力が得られることになるから、この信号に対応させ
て回路定数等を調整することができる。
Roughly speaking, when the amplifier offset voltage detection mode is selected to detect the offset voltage of the amplifier circuit 10, ]4,
Switches S3, S4, S7 are ON, master switch S1,
Since S2, S5, and Si are set to OFF (the state shown in FIG. 3), an output corresponding to the offset voltage of the operational amplifier 10, ]4 is obtained, so the circuit constants etc. are set in accordance with this signal. Can be adjusted.

ざらに、ブリッジ回路1を備えた起歪体の温度を検出す
る温度検出モードにあいでは、スイッチS4、S5、S
7がON、またスイッチS1、S2、S3、S6がOF
Fに設定されることによつ(第4図に示す状態)、演算
増幅器1o、14はスイッチS]、S2によりブリッジ
回路1から切り離され、また非反転端子間がスイッチS
3、S4により切り離され、ざらに第2の演算増幅器1
4の反転入力端子もグランドレベルに維持される。これ
により演算増幅器10.14は、その反転入力端子に感
温抵抗素子]8の抵抗値、つまり温度に依存する電圧が
入力することになる。したがって、これを温度に換算し
て表示することにより、現在の温度を測定、表示するこ
とが可能となる。
Roughly speaking, in the temperature detection mode for detecting the temperature of the strain body equipped with the bridge circuit 1, the switches S4, S5, S
7 is ON, and switches S1, S2, S3, and S6 are OFF.
By setting F (the state shown in FIG. 4), the operational amplifiers 1o and 14 are separated from the bridge circuit 1 by switches S] and S2, and the switch S is connected between the non-inverting terminals.
3, separated by S4, roughly the second operational amplifier 1
The inverting input terminal of No. 4 is also maintained at ground level. As a result, the operational amplifier 10.14 receives a voltage dependent on the resistance value of the temperature-sensitive resistance element 8, that is, a temperature-dependent voltage, at its inverting input terminal. Therefore, by converting this into temperature and displaying it, it becomes possible to measure and display the current temperature.

次に、回路の各点の出力電圧をそれぞれ第1図乃至第4
図に示したように採り、各モードにおける演算増幅器3
2からの出力信号v9についで解いて上記動作を詳細に
説明する。
Next, the output voltage at each point of the circuit is calculated from Figures 1 to 4, respectively.
The operational amplifier 3 in each mode is taken as shown in the figure.
The above operation will be explained in detail by solving for the output signal v9 from 2.

自己診断モード VB=■+s”vos+ Vtg=V+s + VO52 Vs*=V7s+Vosx (ただし、VO5いV。、2はそれぞれ演算増幅器10
.14の、VoB3は演N増幅器32の及びvo、4は
演算増幅器25のオフセット電圧を表わす) Fl、。
Self-diagnosis mode VB=■+s”vos+ Vtg=V+s+VO52 Vs*=V7s+Vosx (However, VO5 is V., 2 is the operational amplifier 10 respectively.
.. 14, VoB3 represents the offset voltage of the operational amplifier 32 and vo, 4 represents the offset voltage of the operational amplifier 25) Fl.

−□・V□] +vO13コ an ところで、演算増幅器10の帰還抵抗11の値Rf2、
演算増幅器14の帰還抵抗]5の値R4,、演算増幅器
10の接地抵抗12の値Rb12、演算増幅器14と基
準電圧発主回路26との結合抵抗16の値Rbll、差
If]増幅器32の反転入力端子の入力抵抗30の値R
6゜、帰還抵抗33の値R64、非反転入力端子の入力
抵抗31の値R0、接地抵抗34の値F1m3をRr+
=Rf2=Rf、日。4/R,□= Ra3/ Rd+
、日。、:Rb12.=日。1なる関係(こ設定すると
、 となり、オフセット電圧を無視すると、Vssは基準信
号を表わすことになる。
−□・V□] +vO13 core an By the way, the value Rf2 of the feedback resistor 11 of the operational amplifier 10,
Feedback resistance of operational amplifier 14 ] 5 value R4, value of grounding resistance 12 of operational amplifier 10 Rb12, value of coupling resistance 16 between operational amplifier 14 and reference voltage generator circuit 26 Rbll, difference If] inversion of amplifier 32 Value R of input resistance 30 of input terminal
6°, the value R64 of the feedback resistor 33, the value R0 of the input resistor 31 of the non-inverting input terminal, the value F1m3 of the grounding resistor 34 as Rr+
=Rf2=Rf, day. 4/R, □= Ra3/ Rd+
,Day. , :Rb12. = day. 1 (If this setting is made, then the relationship will be 1. If the offset voltage is ignored, Vss will represent the reference signal.

重量測定モード 咀 V211=     □ V*x”Vos2R1・Ro V Iy = V 1w+。、1 V@y= v711+。。Weight measurement mode Tsui V211=    □ V*x”Vos2R1・Ro V Iy = V 1w+. ,1 V@y=v711+. .

V工=。54 ところで、日1.=日r2”Rft日d4/Rd2= 
Ra3/ Ra 7、日。I=RI112=日5.なる
関係(こ抵抗値を設定すると、 となる。
V engineering=. 54 By the way, day 1. = day r2”Rft day d4/Rd2=
Ra3/ Ra 7, Sun. I=RI112=day5. The relationship becomes (when the resistance value is set,

ここで、R,=R十Δ日・、日、=R−Δ日とすると、 となり、オフセット電圧V9mを無視すると、79wは
荷重に比例した電圧を表すことになる。
Here, if R,=R1Δday·,day,=R−Δday, then, if the offset voltage V9m is ignored, 79w represents a voltage proportional to the load.

オフセット電圧検出モード V3a=V+m+Vos+ 2a ;V Is ” VOI2 Vaa=V、a+Vots V@11=V6@4 なる関係が成立する。Offset voltage detection mode V3a=V+m+Vos+ 2a ;V Is  ” VOI2 Vaa=V, a+Vots V@11=V6@4 A relationship is established.

ここで、Rfl”日f2=日、、R,4/日d2=R,
3/R,、、Rb++ =Rh+2=日。、なる関係に
抵抗値を設定してV9aについて解くと、となり、V9
aは演″X増幅器]○、]4.25.32のオフセット
電圧の合計を表わすことになる。
Here, Rfl'' day f2=day, , R, 4/day d2=R,
3/R,,,Rb++ =Rh+2=day. , and solve for V9a by setting the resistance value in the relationship that becomes, then V9
a represents the sum of the offset voltages of the amplifier 〇, ]4.25.32.

5シ貢検出モード V3.=l I ” vat I V@t=Vt++Voti at=Vota R,l −□・。t) +V6t33 Rh++ ところで、Rfl:日q2= Rf、 Ra4/ Rd
□”Ras/Rd+、Rゎll =Rh+2 =日。1
なる関係(こ抵抗値を設定すると、 となり、オフセット電圧8.ヲ無視すると、v3wは感
温抵抗値臼、に依存した電圧となり、温度を表すことに
なる。
5 contribution detection mode V3. =l I ” vat I V@t=Vt++ Voti at=Vota R,l −□・.t) +V6t33 Rh++ By the way, Rfl: day q2= Rf, Ra4/ Rd
□”Ras/Rd+,Rゎll=Rh+2=day.1
When the resistance value is set, the following relationship is obtained.If the offset voltage 8. is ignored, v3w becomes a voltage that depends on the temperature-sensitive resistance value, and represents the temperature.

以上のように演算増幅器10.14の帰還抵抗11と1
5を等しく、接地抵抗12と基準電圧を供給する抵抗1
6を等しく、ざらに演算増幅器32の非反転入力端子に
接続する抵抗31.34との比と帰還抵抗33と抵抗3
0との比とを等しくすることにより、インピーダンスマ
ツチングが取れて、ドリフト検出、自己診断、温度検出
、及び計量動作を相互干渉なく実行させることができる
As described above, the feedback resistors 11 and 1 of the operational amplifier 10.14
5 are equal, the grounding resistor 12 and the resistor 1 supplying the reference voltage
6 are equal, roughly the ratio of the resistor 31.34 connected to the non-inverting input terminal of the operational amplifier 32, the feedback resistor 33 and the resistor 3.
By making the ratio equal to 0, impedance matching can be achieved and drift detection, self-diagnosis, temperature detection, and metering operations can be performed without mutual interference.

なお、この実施例においてはブリッジ回路1と接続状態
を維持する方の演算増幅器14に基準電圧を入力するよ
うにしているが、反転増幅器を介して他方の演算増幅器
10の反転入力端子に入力しても同様の作用を奏するこ
とは明らかである。
In this embodiment, the reference voltage is input to the operational amplifier 14 that maintains the connection state with the bridge circuit 1, but the reference voltage is input to the inverting input terminal of the other operational amplifier 10 via the inverting amplifier. It is clear that the same effect can be achieved.

第5.6.7図は本発明の第2実施例を示すものであっ
て、図中符号40は、起歪体の歪を電気信号に変換する
ブリッジ回路で、起歪体に設けた4つの歪ゲージ2.2
′、3.3°をそれぞれ接続するとともに、電圧供給端
子の一方を感温抵抗4を介して接地し、また他方の電圧
供給端子を感温抵抗5を介して電圧Vxを供給するよう
に構成されている。
Fig. 5.6.7 shows a second embodiment of the present invention, and the reference numeral 40 in the figure is a bridge circuit that converts the strain of the flexure element into an electric signal. Two strain gauges 2.2
', 3.3°, respectively, one of the voltage supply terminals is grounded via a temperature-sensitive resistor 4, and the other voltage supply terminal is configured to supply voltage Vx via a temperature-sensitive resistor 5. has been done.

41は、ブリッジ回路40からの歪信号をスイッチ81
1を介して受ける第1の演算増幅器で、非反転入力端子
はスイッチS11!介してブリッジ回路40の出力端子
に、反転入力端子は、抵抗42を介して出力端子に接続
するとともに、抵抗43を介して電源Vexに接続され
、また抵抗44を介して接地されでいる。
41 is a switch 81 for transmitting the distortion signal from the bridge circuit 40.
1, the non-inverting input terminal of which is received via the switch S11! The inverting input terminal is connected to the output terminal of the bridge circuit 40 via a resistor 42, to the power supply Vex via a resistor 43, and to ground via a resistor 44.

45はブリッジ回路40からの歪信号を非反転入力端子
に直接受ける第2の演算増幅器で、反転入力端子は、抵
抗46を介しで出力端子に、また抵抗4?を介して後述
する基準電圧発生回路55の出力端子に、ざらに抵抗4
8を介して電源Vexに、また非反転入力端子はブリッ
ジ回路1の出力端子に接続されている。これら演算増幅
器10と14の非反転端子間はスイッチS12を介して
接続され、また反転入力端子間には精と抵抗素子50が
接続されでいる。
45 is a second operational amplifier that directly receives the distortion signal from the bridge circuit 40 at its non-inverting input terminal; A resistor 4 is connected to the output terminal of a reference voltage generating circuit 55, which will be described later, through
8 to the power supply Vex, and the non-inverting input terminal is connected to the output terminal of the bridge circuit 1. The non-inverting terminals of these operational amplifiers 10 and 14 are connected via a switch S12, and a resistor element 50 is connected between the inverting input terminals.

55は、前述の基準電圧発生回路で、安定化電源からの
電圧Vex!抵抗51.52により所定値、例えば基準
重量に相当する電圧vOに分圧し、これをスイッチ51
38介してバッファ用増幅器57に入力する一方、スイ
ッチS13に逆運動するスイッチS14により接地して
構成されている。
55 is the reference voltage generation circuit mentioned above, which generates the voltage Vex! from the stabilized power supply. The resistors 51 and 52 divide the voltage to a predetermined value, for example, a voltage vO corresponding to the reference weight, and the switch 51
38 to the buffer amplifier 57, and is grounded by a switch S14 which operates inversely to the switch S13.

これらのスイッチS]]、S12.513、S14は、
スイッチ制御回路58からの信号により、自己診断モー
ド時にはスイッチ811、S14をOFFとし、スイッ
チS12、S13をON(第5図)、計量モード時には
スイッチS12、S13をOFF、スイッチSll、8
14をON(第6図)、増幅器オフセット電圧検出モー
ド時にはスイッチSll、513をOFF、スイッチS
12、S14をON(第7図)に切換えられる。
These switches S]], S12, 513, and S14 are
A signal from the switch control circuit 58 turns off switches 811 and S14 and turns on switches S12 and S13 in the self-diagnosis mode (Fig. 5), and turns off switches S12 and S13 and switches Sll and S13 in the weighing mode.
14 is turned on (Fig. 6), switch Sll is turned off in the amplifier offset voltage detection mode, 513 is turned off, and switch S is turned on.
12, S14 is switched ON (FIG. 7).

これら演算増幅器41.45の出力端子は、それぞれ抵
抗60.6]を介して演算増幅器63の反転入力端子、
非反転入力端子に接続されでいる。この演算増幅器63
の反転入力端子は抵抗64を介しで出力端子に、また非
反転入力端子は抵抗65を介しで接地しで差動増幅回路
としで構成され、ざらに演算増幅器41.45と一体と
なって高入力インピーダンス型差動増幅回路を形成し、
その出力信号を図示しない後段の信号処理回路に出力し
でいる。
The output terminals of these operational amplifiers 41.45 are connected to the inverting input terminal of the operational amplifier 63 via resistors 60.6, respectively.
Connected to the non-inverting input terminal. This operational amplifier 63
The inverting input terminal is connected to the output terminal via a resistor 64, and the non-inverting input terminal is grounded via a resistor 65 to form a differential amplifier circuit. Forms an input impedance type differential amplifier circuit,
The output signal is output to a subsequent signal processing circuit (not shown).

この実施例においで、図示しない計量製百本体の電源を
投入し、スタート条件を満足すると、−スイッチ制御回
路5日がらチェック信号が出力し、スイッチS11、S
14がOFF、またスイッチS12、S13がONとな
って(第5図に示す状@)、菓]、第2の演算増幅器4
1.45の非反転入力端子を短絡した状態で基準電圧発
生回路55からの基準信号か出力する。この基準信号は
抵抗47を介して第2演算増幅器45の反転入力端子に
、また精密抵抗50を介して第1の演算増幅器41の反
転入力端子に入力しで、演算増幅器41.45に基準重
量相当分の信号を入力する。
In this embodiment, when the power source of the meter body (not shown) is turned on and the start conditions are satisfied, a check signal is output from the switch control circuit 5, and the switches S11 and S
14 is turned off, and the switches S12 and S13 are turned on (as shown in FIG. 5), and the second operational amplifier 4 is turned off.
The reference signal from the reference voltage generation circuit 55 is output with the non-inverting input terminal of 1.45 short-circuited. This reference signal is inputted via a resistor 47 to the inverting input terminal of the second operational amplifier 45, via a precision resistor 50 to the inverting input terminal of the first operational amplifier 41, and to the reference weight input terminal of the operational amplifier 41.45. Input a corresponding amount of signal.

演算増幅器41.45がらの出力は抵抗6o、61を介
しで差動増幅回路63に入力する。差動増幅回路63か
らの出力信号は後段に続くレベル変換回路、フィルタ回
路、アナログ−ディジタル変換回路等に入力し、重量信
号と同等の扱いを受けて重量として表示器に表示される
Outputs from the operational amplifiers 41 and 45 are input to a differential amplifier circuit 63 via resistors 6o and 61. The output signal from the differential amplifier circuit 63 is input to a subsequent level conversion circuit, a filter circuit, an analog-to-digital conversion circuit, etc., and is treated in the same way as a weight signal and displayed as a weight on a display.

ところで、この信号経路のいずれかに障害が発生してい
る場合には、基準信号発生回路55の出力は基準重量と
して表示され得ないから、オペレータは信号処理系の途
中に障害が発生していることを認識することができる。
By the way, if a failure occurs in any of these signal paths, the output of the reference signal generation circuit 55 cannot be displayed as the reference weight, so the operator can determine that a failure has occurred in the middle of the signal processing system. be able to recognize that.

このようにしで、回路機能のチェックが終了した段階で
、スイッチ制御回路58は、スイッチS11、S14を
ON、またスイッチ512、S13をOFFにして基準
信号発生回路55からの信号をグランドレベルに保つと
ともに、ブリッジ回路40の出力端子を第1、第2の演
算増幅器41.45に接続する(第6図に示す状態)。
When the circuit function check is completed in this way, the switch control circuit 58 turns on the switches S11 and S14 and turns off the switches 512 and S13 to keep the signal from the reference signal generation circuit 55 at the ground level. At the same time, the output terminal of the bridge circuit 40 is connected to the first and second operational amplifiers 41 and 45 (the state shown in FIG. 6).

この状態で図示しない計量器(こ品物を載)すると、ブ
リッジ回路40からの重量信号は、演算増幅器4]、4
5を経由して差動増幅回路63により差分を検出され、
所定の信号処理を受けて重量と1ノで表示されることに
なる。
When a weighing device (not shown) is placed in this state, the weight signal from the bridge circuit 40 is transmitted to the operational amplifiers 4 and 4.
5, the difference is detected by the differential amplifier circuit 63,
After undergoing predetermined signal processing, it will be displayed as weight and 1 no.

ざらに、増幅回路41.45.63等のオフセット電圧
を検出すべく、iWm器オフセット電圧検出モードを選
択すると(第7図)、演算増幅器41.45のオフセッ
ト電圧に相当する出力か得られることになるから、この
信号に対応させて回路定数等を調整することができる。
Roughly speaking, if the iWm offset voltage detection mode is selected to detect the offset voltage of the amplifier circuit 41, 45, 63, etc. (Fig. 7), an output corresponding to the offset voltage of the operational amplifier 41, 45 can be obtained. Therefore, circuit constants etc. can be adjusted in response to this signal.

次に、回路の各点の出力電圧をそれぞれ第5図乃至第7
図に示したように採り、各モードにおける演算増幅器3
2からの出力信号v9について解き、上記動作を詳細に
説明する。
Next, calculate the output voltage at each point of the circuit as shown in Figures 5 to 7, respectively.
The operational amplifier 3 in each mode is taken as shown in the figure.
The above operation will be explained in detail by solving for the output signal v9 from 2.

自己診断モード V31=1s+ Voz+ V2s=V+s+Vosz VH=1 g + V O* 3 (ただし、Vos+5Vos2はそれぞれ演算増幅器4
]、45の、vo、3は演算増幅器63の及びVO54
は演算増幅器57のオフセット電圧を表わす) なる関係が成立する。
Self-diagnosis mode V31 = 1s + Voz + V2s = V + s + Vosz VH = 1 g + V O * 3 (However, Vos + 5 Vos2 are each operational amplifier 4
], 45, vo, 3 is the operational amplifier 63 and VO54
represents the offset voltage of the operational amplifier 57).

ところで、演算増幅器41の帰還抵抗42の値Rf2、
演算増幅器45の帰還抵抗46の値Rf+、演算増幅器
41の接地抵抗44の値R11□、演算増幅器45と基
準電圧発生回路55との結合抵抗47の値Bb l I
 、差動増幅器63の反転入力端子の入力抵抗60の値
Rd2、帰還抵抗33の@R24、非反転入力端子の入
力抵抗61の値Rdl、接地抵抗65の@R63を日、
1=日t2= Rfz Rda/ Ra2= Rd3/
 Ra7.Ry= Rbtz =日l、沼る関係に設定
すると、 となり、オフセット電圧を無視すると、VB2は基準信
号を表わすことになる。
By the way, the value Rf2 of the feedback resistor 42 of the operational amplifier 41,
The value Rf+ of the feedback resistor 46 of the operational amplifier 45, the value R11□ of the grounding resistor 44 of the operational amplifier 41, the value Bb l I of the coupling resistor 47 between the operational amplifier 45 and the reference voltage generation circuit 55.
, the value Rd2 of the input resistance 60 of the inverting input terminal of the differential amplifier 63, @R24 of the feedback resistor 33, the value Rdl of the input resistance 61 of the non-inverting input terminal, and @R63 of the grounding resistor 65.
1=Day t2=Rfz Rda/ Ra2= Rd3/
Ra7. When Ry=Rbtz=dayl is set in a muddy relationship, it becomes as follows.If the offset voltage is ignored, VB2 represents the reference signal.

計lモード Viw=V+w”Vou 工;V?ll+Va。Total mode Viw=V+w”Vou Engineering; V? ll+Va.

V6w=Vosa なる関係が成立する。V6w=Vosa A relationship is established.

ここで、各抵抗を前述したのと同一の関係に設定し、ま
たR、=日子△R1日り=R−ΔRとしでv9.につい
て解くと、 となり、オフセット電圧v9□を無視すると、荷重に比
例した電圧となる。− 増幅器オフセット電圧検出モード V3a=V+a+Vos+ V2a=V1a+Voi2 V6a = Via 十V。!3 vaa=vo14 なる関係が成立する。
Here, each resistor is set to the same relationship as described above, and R,=day ΔR1 day=R−ΔR, and v9. Solving for , it becomes , and if the offset voltage v9□ is ignored, the voltage becomes proportional to the load. - Amplifier offset voltage detection mode V3a = V + a + Vos + V2a = V1a + Voi2 V6a = Via 10V. ! 3 vaa=vo14 The following relationship holds true.

ここで、Rf、=日f2=Rf、日d4/日d2=日d
 3/ Rd I、Rb、+ =R1112=日ゎ。な
る関係(こ抵抗値を設定してV9mについて解くと、と
なり、g1は演算増幅器4]、45.63.57のオフ
セット電圧の合計を表わすことになる。
Here, Rf, = day f2 = Rf, day d4/day d2 = day d
3/ Rd I, Rb, + = R1112 = day. The following relationship (when this resistance value is set and solved for V9m, g1 is the operational amplifier 4), represents the sum of the offset voltages of 45.63.57.

以上のように演算増幅器41.45の帰還抵抗42と4
6を等しく、接地抵抗44と基準電圧を供給する抵抗4
7を等し、く、さらに演算増幅器63の非反転入力端子
に接続する抵抗61と65との比と帰還抵抗64と入力
抵抗60との比とを等しくすることにより、インピーダ
ンスマツチングが取れて、ドリフト検出、自己診断、及
び計量動作を相互干渉なく寅行させることができる。
As described above, the feedback resistors 42 and 4 of the operational amplifiers 41 and 45
6 are equal, the grounding resistor 44 and the resistor 4 supplying the reference voltage
Impedance matching can be achieved by making the ratio of the resistors 61 and 65 connected to the non-inverting input terminal of the operational amplifier 63 equal to the ratio of the feedback resistor 64 and the input resistor 60. , drift detection, self-diagnosis, and metering operations can be performed without mutual interference.

なお、この実施例においてはブリッジ回路4゜と接続状
態を維持する方の演算増幅器45に基準電圧を入力する
ようにしているが、反転増幅器を介して他方の演算増幅
器4]の反転入力端子に入力しても同様の作用を奏する
ことは明らかである。
In this embodiment, the reference voltage is input to the operational amplifier 45 that maintains the connection state with the bridge circuit 4, but the reference voltage is input to the inverting input terminal of the other operational amplifier 4 through the inverting amplifier. It is clear that the same effect can be achieved even if input is performed.

(発明の効果) 以上、説明したように本発明においては、歪ゲージを含
むブリッジ回路の出力端子をスイッチ手段を介してそれ
ぞれ高入力抵抗差動増幅回路の入力端子に接続し、前記
一方の高入力抵抗差動増幅回路の反転入力端子に基準電
圧を出力する電圧発生回路の出力端子を抵抗を介しで接
続し、ざらに前記他方の高入力抵抗差動増幅回路の反転
入力端子を前記抵抗と同一の抵抗を有する抵抗により接
地したので、載荷状態にあってもスイッチを操作するこ
とによってブリッジ回路からの信号入力を遮断して、高
入力演算増幅器に基準電圧、接地電位を選択的に入力す
ることができるので、高入力差動増幅回路を含めた回路
系全体のドリフト検出と自己診断を行なうことができで
、診断結果の信頼性を高めることができる。
(Effects of the Invention) As described above, in the present invention, the output terminals of the bridge circuit including the strain gauge are connected to the input terminals of the high input resistance differential amplifier circuit through the switch means, and The output terminal of a voltage generation circuit that outputs a reference voltage is connected to the inverting input terminal of the input resistance differential amplifier circuit via a resistor, and the inverting input terminal of the other high input resistance differential amplifier circuit is connected to the resistor. Since it is grounded through a resistor with the same resistance, the signal input from the bridge circuit can be cut off by operating the switch even in a loaded state, and the reference voltage and ground potential can be selectively input to the high input operational amplifier. Therefore, it is possible to perform drift detection and self-diagnosis of the entire circuit system including the high-input differential amplifier circuit, and the reliability of the diagnosis results can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2.3.4図は、それぞれ本発明の一実施例を自
己診断モード、計量モード、オフセット電圧検出モード
、温度検出モードでもっで示す回路図、及び第5.6.
7図はそれぞれ本発明の他の実施例を自己診断モード、
計量モード、オフセット電圧検出モードでもって示す回
路図である。 1−・・ブリッジ回路 2.2′、3.3′・・・歪ゲージ 10.14・・・演算増幅器 18・・・感温抵抗体 26・・・基準電圧発生回路 S1〜S7・・・スイッチ 出願人 株式会社石田衡器製作所 代理人 弁理士 木 村 勝 彦 同 西川慶治 第5図 第6図 第70
1.2.3.4 are circuit diagrams illustrating an embodiment of the present invention in self-diagnosis mode, metering mode, offset voltage detection mode, and temperature detection mode, respectively, and 5.6.
7 shows other embodiments of the present invention in self-diagnosis mode,
FIG. 3 is a circuit diagram shown in a measurement mode and an offset voltage detection mode. 1-... Bridge circuit 2.2', 3.3'... Strain gauge 10.14... Operational amplifier 18... Temperature sensitive resistor 26... Reference voltage generation circuit S1 to S7... Switch applicant: Ishida Kouki Seisakusho Co., Ltd. Agent: Patent attorney: Katsuhiko Kimura, Keiji Nishikawa Figure 5 Figure 6 Figure 70

Claims (1)

【特許請求の範囲】[Claims] 歪ゲージを含むブリッジ回路の出力端子をスイッチ手段
を介してそれぞれ高入力抵抗差動増幅回路の入力端子に
接続し、前記一方の高入力抵抗差動増幅回路の反転入力
端子に基準電圧を出力する電圧発生回路の出力端子を抵
抗を介して接続し、さらに前記他方の高入力抵抗差動増
幅回路の反転入力端子を前記抵抗と同一の抵抗を有する
抵抗により接地してなる自己診断回路。
The output terminals of the bridge circuits including the strain gauges are respectively connected to the input terminals of the high input resistance differential amplifier circuit via switch means, and a reference voltage is output to the inverting input terminal of the one high input resistance differential amplifier circuit. A self-diagnosis circuit comprising an output terminal of a voltage generating circuit connected through a resistor, and an inverting input terminal of the other high input resistance differential amplifier circuit being grounded by a resistor having the same resistance as the resistor.
JP13346789A 1989-05-26 1989-05-26 Self-diagnosis circuit Expired - Fee Related JPH0810159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13346789A JPH0810159B2 (en) 1989-05-26 1989-05-26 Self-diagnosis circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13346789A JPH0810159B2 (en) 1989-05-26 1989-05-26 Self-diagnosis circuit

Publications (2)

Publication Number Publication Date
JPH02310402A true JPH02310402A (en) 1990-12-26
JPH0810159B2 JPH0810159B2 (en) 1996-01-31

Family

ID=15105462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13346789A Expired - Fee Related JPH0810159B2 (en) 1989-05-26 1989-05-26 Self-diagnosis circuit

Country Status (1)

Country Link
JP (1) JPH0810159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235672A (en) * 1993-02-10 1994-08-23 Hitachi Ltd Process state detector and semiconductor sensor state detecting circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235672A (en) * 1993-02-10 1994-08-23 Hitachi Ltd Process state detector and semiconductor sensor state detecting circuit

Also Published As

Publication number Publication date
JPH0810159B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5371469A (en) Constant current loop impedance measuring system that is immune to the effects of parasitic impedances
US9322871B2 (en) Current measurement circuit and method of diagnosing faults in same
US3847017A (en) Strain measuring system
US7088108B2 (en) Method for detecting an offset drift in a wheatstone measuring bridge
CN104297569B (en) Resistance measurement
US20150022182A1 (en) Monitoring device and method for monitoring a line section using a monitoring device
US3667041A (en) Automatic zero circuitry for indicating devices
US3692129A (en) Load cell weighing systems
US4061198A (en) Electronic weighing systems
US5412998A (en) Torque measuring system
EP3401646B1 (en) Bridge sensor error check
US4031533A (en) Differential floating dual slope converter
US8872530B2 (en) Method for correcting the voltage measured across the terminals of a sensor
US3617878A (en) Ac to de high-accuracy low-level voltage measuring system
JPH02310402A (en) Self-diagnosing circuit
JP3961995B2 (en) Multi-channel strain measurement circuit
US6053050A (en) Signal conditioning system
EP0690977B1 (en) Apparatus for combining transducer output signals
JPH0769232B2 (en) Method and apparatus for temperature compensation of load cell
JPH0626968A (en) Failure detecting device for sensor
JPH02159579A (en) Precise current vs voltage amplifier
JPS584773B2 (en) vehicle weight scale
JPH02206730A (en) Self-diagnostic circuit
US11268998B1 (en) Dynamic bridge diagnostic
JP2002084151A (en) Physical quantity detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees