JPH02310389A - Method for graphitizing baked-carbon electrode - Google Patents

Method for graphitizing baked-carbon electrode

Info

Publication number
JPH02310389A
JPH02310389A JP1129642A JP12964289A JPH02310389A JP H02310389 A JPH02310389 A JP H02310389A JP 1129642 A JP1129642 A JP 1129642A JP 12964289 A JP12964289 A JP 12964289A JP H02310389 A JPH02310389 A JP H02310389A
Authority
JP
Japan
Prior art keywords
electrode
graphite
guide
fired
graphitization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1129642A
Other languages
Japanese (ja)
Other versions
JP2717848B2 (en
Inventor
Yoshio Inoue
義夫 井上
Osamu Kanazawa
金沢 修
Takao Obinata
小日向 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1129642A priority Critical patent/JP2717848B2/en
Publication of JPH02310389A publication Critical patent/JPH02310389A/en
Application granted granted Critical
Publication of JP2717848B2 publication Critical patent/JP2717848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To uniformly graphitize the entire carbon electrode and to stably produce an artificial graphite electrode having excellent performance when a carbon electrode is energized and heated to produce the artificial graphite electrode by interposing a graphite sheet and particulate graphite between the carbon electrode and a conductor guide electrode. CONSTITUTION:Coke as the essential material is formed with pitch, etc., as a binder, and the formed product is baked to obtain the conventional carbon electrode 3. Plural electrodes 3 are connected in series in a graphitizing furnace and covered with powdery coke 4, and the electrode 3 itself is energized by the guide electrode 2 and heated to graphitize the coke and to produce the artificial graphite electrode. In this case, plural graphite sheets 7 having a particulate graphite layer 6 on both ends are interposed between the electrode 3 to be graphitized and the conductor guide electrode 2 and pressed on each other, and the electrode is energized and graphitized. Consequently, both ends of the electrode 3 is not cooled by the heat release through the guide electrode 2, and the entire electrode 3 is uniformly graphitized, and an artificial graphite electrode having excellent performance is produced in good yield.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、直列に配置した焼成電極に案内電極を介して
通電し、焼成電極自体の発熱により電極を黒鉛化する方
法に係り、特に案内電極に近接する焼成電極端部を均熱
化する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of graphitizing fired electrodes arranged in series through a guide electrode and by generating heat from the fired electrodes themselves. The present invention relates to a method for equalizing the temperature of the end portion of a fired electrode that is close to the electrode.

[従来の技術] 人造黒鉛電極は1通常コークス粉粒をピッチバインダー
と共に混合して所定のサイズの円柱形状に押出成形し、
これを一旦焼成した後、黒鉛化処理することにより製造
される。焼成電極の黒鉛化手段としては、焼成電極を詰
粉中に間隔を置いて並べ1通電により発生するジュール
熱で間接的に加熱するアチソン法が汎用されてきている
が、近時焼成電極を直列に配置して直接的に通電加熱す
る形式の加熱黒鉛化法が克己され、数多くの提案がなさ
れている。
[Prior art] Artificial graphite electrodes are made by mixing coke powder with a pitch binder and extruding it into a cylindrical shape of a predetermined size.
It is produced by firing this once and then graphitizing it. As a means of graphitizing fired electrodes, the Acheson method, in which fired electrodes are arranged at intervals in a packed powder and indirectly heated with Joule heat generated by one energization, has been widely used, but recently it has been used to graphitize fired electrodes in series. Thermal graphitization method, in which the graphitization method is directly heated by energizing the graphitization layer by placing it on the surface of the graphitizer, has been successfully developed, and many proposals have been made.

第3図は、その方法を1現する黒鉛化炉の切断平面図で
あって1図においてlは耐火炉壁、2は案内電極を示す
、焼成電極3は直列的に配置され、その電極の周囲は詰
粉コークス4が充填されている。5はライニング層を示
す、焼成電極3は案内電極2の中心線上に1列配置して
、直接電流を流して黒鉛化する場合の例を示しているが
、これは複数列配置であっても構わない。
FIG. 3 is a cutaway plan view of a graphitization furnace that shows the method. In FIG. 1, l indicates a refractory furnace wall, 2 indicates a guide electrode, and firing electrodes 3 are arranged in series. The surrounding area is filled with packed coke 4. 5 indicates a lining layer, and an example is shown in which the firing electrodes 3 are arranged in one row on the center line of the guide electrode 2 and graphitized by directly passing a current, but this also applies even if the firing electrodes 3 are arranged in multiple rows. I do not care.

焼成電極はそれ自体が発熱体であり、黒鉛化の割合は焼
成電極の加熱された温度によって定まるため、局部的な
過熱や焼成電極間にバラツキがなく出来るだけ均一の温
度となるよう多くの提案がなされている。
The fired electrode itself is a heating element, and the rate of graphitization is determined by the temperature at which the fired electrode is heated.Therefore, many proposals have been made to ensure that the temperature is as uniform as possible without local overheating or variations between fired electrodes. is being done.

[発明が解決しようとする課題] 案内電極と焼成電極の接続法の如何にかかわらず、操業
の安全、付属部品材質の保護のため案内電極は通常炉外
の露出部を冷却する必要がある。
[Problems to be Solved by the Invention] Regardless of the method of connecting the guide electrode and the firing electrode, it is usually necessary to cool the exposed part of the guide electrode outside the furnace in order to ensure operational safety and protect the materials of attached parts.

したがって、案内電極に近接する焼成電極から発生する
熱は案内電極を介して炉外に放熱される。このため、焼
成電極の案内電極側端部は中央側の端部に比べ低温とな
り易く、黒鉛化後の比抵抗が低下し易い、また、上記の
温度差が著しい場合、通電中に案内側端部から亀裂が発
生し、製品収率の低下を招く危険があった。
Therefore, heat generated from the firing electrode close to the guide electrode is radiated to the outside of the furnace via the guide electrode. For this reason, the guide electrode side end of the fired electrode tends to be at a lower temperature than the central end, and the specific resistance after graphitization tends to decrease. There was a risk that cracks would occur in the parts, leading to a decrease in product yield.

従来案内電極と焼成電極の接続についてはい(つかの提
案がなされていた。すなわち、案内電極と焼成電極を直
接接触させる方法があるが、電気の接続については問題
はないとしても案内電極の冷却による温度差が大となり
、焼成電極から案内電極への熱移動が著しく、案内電極
に接触する側の電極の黒鉛化度が低下するので解決にな
らない。
Regarding the connection between the guide electrode and the firing electrode, some proposals have been made. In other words, there is a method of directly contacting the guide electrode and the firing electrode, but even though there is no problem with the electrical connection, it is possible to This is not a solution because the temperature difference becomes large, heat transfer from the fired electrode to the guide electrode is significant, and the degree of graphitization of the electrode in contact with the guide electrode decreases.

次に案内電極と焼成電極間に黒鉛粉粒層を介在させる方
法があるが、この方法では黒鉛化炉の中央部における焼
成電極同士の接触面における局部発熱を防ぐのには効果
的ではあるが、黒鉛化炉の両端部における案内電極と焼
成電極との接続面に介在させるときは局部発熱を生じ易
く、温度の不均一化に基づく電極端面の黒鉛化度の不均
一化を生じ、不良化率も高く、黒鉛化炉端部の問題の解
決手段としては不充分であった。
Next, there is a method of interposing a layer of graphite powder particles between the guide electrode and the firing electrode, but this method is effective in preventing local heat generation at the contact surface between the firing electrodes in the center of the graphitization furnace. When interposed between the connecting surface between the guide electrode and the firing electrode at both ends of the graphitization furnace, local heat generation is likely to occur, and the degree of graphitization on the electrode end surface becomes uneven due to uneven temperature, resulting in defects. The ratio was also high, and it was insufficient as a means to solve the problem of the graphitization furnace end.

[課題を解決するための手段] 案内電極に接する側の焼成電極の温度低下を防止するに
は、ここに発熱量の大きい媒質を介在させ、ここで発熱
させて熱の損失を補うことが考えられる。このための媒
質は取扱い回収などが容易で再使用可能なものが望まし
い。
[Means for solving the problem] In order to prevent the temperature of the firing electrode in contact with the guide electrode from decreasing, it is possible to interpose a medium that generates a large amount of heat here to generate heat and compensate for the heat loss. It will be done. The medium for this purpose is preferably one that is easy to handle and recover and is reusable.

本発明者らは上記課題を直列に複数本配置した焼成電極
を両端から案内電極を介して軸方向に通電加熱する黒鉛
化方法において、案内電極と焼成電極の間に黒鉛板およ
び黒鉛板の両側に黒鉛粉粒を介在させ、圧接した状態で
通電加熱することを特徴とする焼成炭素電極の黒鉛化方
法によって解決した。
The present inventors have solved the above problem in a graphitization method in which a plurality of fired electrodes arranged in series are heated with electricity in the axial direction from both ends via a guide electrode, and a graphite plate is placed between the guide electrode and the fired electrode, and both sides of the graphite plate are placed between the guide electrode and the fired electrode. The problem was solved by a method of graphitizing a fired carbon electrode, which is characterized by interposing graphite powder particles in the electrode and heating it with electricity in a press-contact state.

案内電極は必ずしも断面日射である必要はないが、焼成
電極と同径か、またはそれ以上の面積を有し、黒鉛化炉
の両端部に設けられ、その一部は炉内に、一部は炉外に
露出している。この露出部は空冷又は水冷され、冷却部
において電力供給ケーブルと接続されている。
The guide electrode does not necessarily have to be solar irradiated in cross section, but it has the same diameter or larger area than the firing electrode, and is provided at both ends of the graphitization furnace, with part of it inside the furnace and part of it inside the furnace. Exposed outside the furnace. This exposed portion is air-cooled or water-cooled, and connected to a power supply cable at the cooling portion.

この炉内の案内電極接続面と、対面する焼成電極の接続
面の間に5両端に黒鉛粉粒層を有する黒鉛板とのサンド
イッチ層を介在させ、電気的な接続をすることである。
A sandwich layer consisting of a graphite plate having a layer of graphite powder particles on both ends is interposed between the connecting surface of the guide electrode in the furnace and the connecting surface of the facing firing electrode to establish an electrical connection.

黒鉛板は少なくとも1枚、あまりに多くすると配置する
焼成電極の処理量に影響を与えること、および効果はす
ぐに飽和するので3枚程度で十分である。もちろん距離
の調整のためにするのであればこの数にこだわらない。
At least one graphite plate is sufficient; if too many graphite plates are used, the throughput of the fired electrodes will be affected, and the effect will quickly become saturated, so about three graphite plates are sufficient. Of course, if you are doing it to adjust the distance, you don't have to worry about this number.

黒鉛板の厚みは焼成電極の詰長さ調整、複数列配置の列
の長さ調整等の理由で15mm〜600mm程度で十分
である。これより薄いと割れたり、加工時のぶれによる
黒鉛板の厚み精度の低下を招くなどの問題がある。一方
、600mmより厚くすることは焼成電極の諸量(処理
量)の低下、黒鉛板製造コストおよび黒鉛板在庫重量の
増加を招(ので好ましくない。
It is sufficient for the thickness of the graphite plate to be about 15 mm to 600 mm for reasons such as adjusting the length of the firing electrode and adjusting the length of the rows in a plurality of rows. If it is thinner than this, there are problems such as cracking and a decrease in the thickness accuracy of the graphite plate due to blurring during processing. On the other hand, making it thicker than 600 mm is not preferable because it results in a decrease in the amount of fired electrodes (processing amount), an increase in graphite plate manufacturing cost, and an increase in graphite plate inventory weight.

また、黒鉛板の両側に黒鉛粉粒層を設けることは必要で
あり、その厚さは5mm〜25mm程度である。
Further, it is necessary to provide a graphite powder layer on both sides of the graphite plate, and the thickness thereof is about 5 mm to 25 mm.

これより薄いと粉粒層を均一に充填することが難しく、
作業性の低下を招く、また、25 m mより厚いと充
填作業は容易であるが、黒鉛化過程での電極の膨張、収
縮により、粉粒層は軸方向に移動するため、加圧下で層
厚みを均一に保つことは難しい、このため局部発熱を招
き易く、設備保全上および品質上問題となる。
If it is thinner than this, it will be difficult to fill the powder layer evenly.
In addition, if the thickness is thicker than 25 mm, the filling work is easy, but the powder layer moves in the axial direction due to the expansion and contraction of the electrode during the graphitization process, so the layer does not thicken under pressure. It is difficult to maintain a uniform thickness, which tends to cause local heat generation, which poses problems in terms of equipment maintenance and quality.

黒鉛粉粒の粒度は5mm以下が適当である。The particle size of the graphite powder particles is suitably 5 mm or less.

黒鉛板は通常黒鉛電極を切断した扱状態で十分であり、
したがって厚みは任意に選択できる。
It is usually sufficient to handle the graphite plate with the graphite electrode cut.
Therefore, the thickness can be selected arbitrarily.

黒鉛粉粒は、黒鉛電極を粉砕した黒鉛粉あるいは炭素繊
維などが使用できる。
As the graphite powder, graphite powder obtained by crushing a graphite electrode, carbon fiber, or the like can be used.

本発明方法に使用する黒鉛化炉は、炉長が数10m−1
00m以上の長いものであって、焼成電極を数本〜20
本程度も直列に配置するものではあるが、両末端部に配
置した電極が本発明方法により安定に黒鉛化できること
は操業の安定の面からは大きな効果がある。
The graphitization furnace used in the method of the present invention has a furnace length of several tens of meters.
00m or more long, with several to 20 fired electrodes
Although the present invention is also arranged in series, the fact that the electrodes arranged at both ends can be stably graphitized by the method of the present invention has a great effect in terms of operational stability.

[作 用] 従来の導電性粉粒層(実際は黒鉛粉粒層)のみを案内電
極と焼成電極間に充填し−C′:4気的接続する方法で
は、先ず詰粉コークス上に焼成電極を配。
[Function] In the conventional method of filling only the conductive powder layer (actually graphite powder layer) between the guide electrode and the fired electrode and making the -C':4 gas connection, first the fired electrode is placed on the packed coke powder. Arrangement.

置し、その端部と案内電極間に黒鉛粉粒を充填し、その
後詰粉コークスで覆うことになるが、黒鉛粉粒層が厚く
なると両側から圧縮する際黒鉛粉粒の充填に粗密や広狭
が生じ、電流の通路が不均一となって焼成電極において
局部発熱が生じ易く、黒鉛化後の電極に破損や亀裂が生
じ易い点問題であった。
Graphite powder is filled between the end and the guide electrode, and then covered with packed coke. However, as the graphite powder layer becomes thicker, the filling of graphite powder may become too dense or wide when compressed from both sides. This is a problem in that the current path becomes non-uniform and local heat generation tends to occur in the fired electrode, and the electrode after graphitization tends to be damaged or cracked.

本発明において、黒鉛板の厚みと比抵抗および黒鉛粉粒
層の厚みを選択することにより、接合部の発熱量が制御
でき、また黒鉛板を介在させることによりそれぞれの黒
鉛粉粒層の厚みを小さくすることができるので、この層
内での局部発熱が防止され、四に黒鉛板は熱伝導度が良
いので、黒鉛粉粒層にわずかに局部発熱があっても黒鉛
板の径方向への熱拡散が容易なのでこの方向への均熱化
作用もある。
In the present invention, by selecting the thickness and resistivity of the graphite plate and the thickness of the graphite powder particle layer, the amount of heat generated at the joint can be controlled, and by interposing the graphite plate, the thickness of each graphite powder particle layer can be controlled. This prevents local heat generation within this layer, and fourth, the graphite plate has good thermal conductivity, so even if there is slight local heat generation in the graphite powder particle layer, it will not spread in the radial direction of the graphite plate. Since heat diffusion is easy, there is also a heat equalization effect in this direction.

これらによって電極の軸方向および案内電極との接合部
におけるN極端面の径方向における温度勾配が緩和され
る。
These reduce the temperature gradient in the axial direction of the electrode and in the radial direction of the N end face at the junction with the guide electrode.

[実施例J (実施例1) 第1図に示すように案内電極2と焼成電極3の間に黒鉛
粉粒6/黒鉛板7/黒鉛扮粒6/黒鉛板7/黒鉛粉粒6
のサンドイッチ層を設けて電気的に接続した。
[Example J (Example 1) As shown in FIG. 1, graphite powder particles 6 / graphite plate 7 / graphite dressing particles 6 / graphite plate 7 / graphite powder particles 6 are placed between the guide electrode 2 and the firing electrode 3.
A sandwich layer was provided to make electrical connections.

540mmφX l 900mmの焼成電極4本をLσ
列に案内電極間に配置し、上記サンドイッチ層により電
気的に接続し、最大電流68KA、最大電圧30v、最
大電力2040KW、最大圧接力6 t、onの条件で
黒鉛化を行なった。
540mmφX l 4 fired electrodes of 900mm Lσ
They were arranged in rows between guide electrodes, electrically connected by the sandwich layer, and graphitized under conditions of a maximum current of 68 KA, a maximum voltage of 30 V, a maximum power of 2040 KW, and a maximum contact force of 6 t.

結果を第1表に示す。The results are shown in Table 1.

(実施例2) 実施例1において、サンドイッチ層の黒鉛板7を1層(
したがって黒鉛粉粒層は2層)とし、同様に黒鉛化を行
なった。結果を第1表に示す。
(Example 2) In Example 1, one layer (
Therefore, the graphite powder particle layer was made into two layers, and graphitization was performed in the same manner. The results are shown in Table 1.

(比較例1〜3) 実施例1および2と同様に行なったが、電気的接続のた
めのサンドイッチ層は用いずに黒鉛粉粒のみの層を用い
た。結果は第1表に示す。
(Comparative Examples 1 to 3) Comparative Examples 1 to 3 were carried out in the same manner as in Examples 1 and 2, except that a layer of only graphite powder particles was used without using a sandwich layer for electrical connection. The results are shown in Table 1.

上記実験により得られた黒鉛化済電極の端面(案内電極
に対向した面の5ケ所、第1図(b)参照)からのサン
プル7a、同一の焼成電極の他端の端面からのサンプル
7b、j5よびこれに隣接した中央側の焼成電極の対向
面からのサンプル7Cを切り出しサンプルの黒鉛化度か
ら推算した黒鉛化工程の最高到達平均温度および各サン
プリング端面内の場所による温度のバラツキを測定した
Sample 7a from the end surface of the graphitized electrode obtained in the above experiment (5 locations on the surface facing the guide electrode, see FIG. 1(b)), Sample 7b from the end surface of the other end of the same fired electrode, Sample 7C from the opposing surface of j5 and the central firing electrode adjacent thereto was cut out, and the highest average temperature reached in the graphitization process estimated from the graphitization degree of the sample and the temperature variation depending on the location within each sampling end surface were measured.

サンプルサイズ、径20m副長さlooms+なお、黒
鉛化度は磁場強度A:82水準の磁場内での比抵抗ρ^
:ρ、の比から求められ、熱処理温度との相関性が高い
指標である。
Sample size, diameter 20m sub-length rooms + degree of graphitization is the specific resistance ρ^ in a magnetic field with magnetic field strength A: 82 level
:ρ, and is an index that has a high correlation with the heat treatment temperature.

(以下余白〕 [効 果J +1)黒鉛製円板の枚数と導電性粉体の層数を増すこと
により、案内電極に隣接する焼成電極端部7aの最高到
達温度のマは他の位置7b、7cの温度に近い値となり
、均熱化が計れた。
(The following is a blank space) [Effect J +1] By increasing the number of graphite discs and the number of conductive powder layers, the maximum temperature of the fired electrode end 7a adjacent to the guide electrode is lowered to the other position 7b. The temperature was close to that of , 7c, indicating that the temperature was equalized.

(2)黒鉛製円板を用いず、導電性粉体の層厚みのみを
増した場合、7aの平均温度は7b。
(2) When the graphite disc is not used and only the layer thickness of the conductive powder is increased, the average temperature of 7a is 7b.

7c並みになるか、温度のバラツキが増大するため、黒
鉛化された電極の品質が不均一となった。
7c, or the quality of the graphitized electrode became non-uniform because the temperature variation increased.

また、ひび不良率が増すと判断された。It was also determined that the crack defect rate would increase.

(3)本発明の方法は、案内電極付近の異常発熱による
案内?5itJjの消耗劣化に対しても有効であった。
(3) Is the method of the present invention guided by abnormal heat generation near the guide electrode? It was also effective against wear-and-tear deterioration of 5itJj.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、第2図は本発明の一つの実施態様を示す
断面図、第1図(b)はサンプリング場所を示す図であ
る。 第3図は従来の黒鉛化炉の平面図である。 1、炉壁     2.案内電極 3、焼成電極   4.詰粉コークス 5、ライニング層 6.黒鉛粉粒 7、黒鉛板
FIG. 1(a) and FIG. 2 are cross-sectional views showing one embodiment of the present invention, and FIG. 1(b) is a view showing a sampling location. FIG. 3 is a plan view of a conventional graphitization furnace. 1. Furnace wall 2. Guide electrode 3, firing electrode 4. Packed coke 5, lining layer 6. Graphite powder 7, graphite plate

Claims (1)

【特許請求の範囲】[Claims] 直列に複数本配置した焼成電極を両端から案内電極を介
して軸方向に通電加熱する黒鉛化方法において、案内電
極と焼成電極の間に黒鉛板および黒鉛板の両側に黒鉛粉
粒を介在させ、圧接した状態で通電加熱することを特徴
とする焼成炭素電極の黒鉛化方法。
In a graphitization method in which a plurality of firing electrodes arranged in series are heated in the axial direction through a guide electrode from both ends, a graphite plate is interposed between the guide electrode and the firing electrode, and graphite powder particles are interposed on both sides of the graphite plate, A method for graphitizing a fired carbon electrode, which is characterized by heating with electricity in a pressurized state.
JP1129642A 1989-05-23 1989-05-23 Graphitization of fired carbon electrode Expired - Lifetime JP2717848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1129642A JP2717848B2 (en) 1989-05-23 1989-05-23 Graphitization of fired carbon electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1129642A JP2717848B2 (en) 1989-05-23 1989-05-23 Graphitization of fired carbon electrode

Publications (2)

Publication Number Publication Date
JPH02310389A true JPH02310389A (en) 1990-12-26
JP2717848B2 JP2717848B2 (en) 1998-02-25

Family

ID=15014563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1129642A Expired - Lifetime JP2717848B2 (en) 1989-05-23 1989-05-23 Graphitization of fired carbon electrode

Country Status (1)

Country Link
JP (1) JP2717848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148642A (en) * 2010-01-19 2011-08-04 Sumitomo Densetsu Corp Graphitizing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148642A (en) * 2010-01-19 2011-08-04 Sumitomo Densetsu Corp Graphitizing furnace

Also Published As

Publication number Publication date
JP2717848B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
CN102439388B (en) Electrode holder assembly and furnace comprising same
JPH02310389A (en) Method for graphitizing baked-carbon electrode
US1677712A (en) Electrode holder
WO2015174320A1 (en) Graphitization furnace
US702758A (en) Method of graphitizing electrodes.
US1357290A (en) Method of manufacturing graphite articles
AU2016282636A1 (en) Method for sintering carbon bodies in a furnace device
US2213073A (en) Furnace electrode
RU2722855C1 (en) Infrared heating unit
JPH09227232A (en) Graphitization method for carbonaceous molding
EP0062356A1 (en) Inductive heating device and method utilizing a heat insulator and workpieces heated thereby
JPS6359986B2 (en)
JPH11278819A (en) Powdery carbon continuously firing method and device therefor
US2644020A (en) Graphitization of carbon articles
RU2809470C1 (en) High temperature modular infrared heating block
CN211204880U (en) Electric heating pushed slab kiln
WO2023119802A1 (en) Cathode assembly
RU2717438C1 (en) Method for firing aluminum electrolyser bottom
JP2000281444A (en) Cylindrical graphite material and its production
SU1046976A2 (en) Resistive electric heater for furnaces
US941339A (en) Process of producing silicon carbid.
RU2116961C1 (en) Method of graphitization of carbon objects
JP2569078B2 (en) Fusion reactor wall
JPS6291411A (en) Method for graphitizing carbon baked body
US1156668A (en) Electric furnace.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12