JPH02309461A - Modeling processing method for generalized cylinder - Google Patents

Modeling processing method for generalized cylinder

Info

Publication number
JPH02309461A
JPH02309461A JP13090789A JP13090789A JPH02309461A JP H02309461 A JPH02309461 A JP H02309461A JP 13090789 A JP13090789 A JP 13090789A JP 13090789 A JP13090789 A JP 13090789A JP H02309461 A JPH02309461 A JP H02309461A
Authority
JP
Japan
Prior art keywords
polygon
model
generalized cylinder
polygons
polyhedron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13090789A
Other languages
Japanese (ja)
Inventor
Masanori Kakimoto
柿本 正憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13090789A priority Critical patent/JPH02309461A/en
Publication of JPH02309461A publication Critical patent/JPH02309461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Generation (AREA)

Abstract

PURPOSE:To obtain the model of a generalized cylinder free from twists even when modeling having complexly curved skeletons unifirmly processed by successively correcting the rotational angles of rings on respective nodes so that no twist is generated. CONSTITUTION:In respective segments of an applied broken line in a prescribed space shown by model definition data, an applied polygon is formed on one end of each segment so as to form a prescribed angle from the segment and a generalized cylinder model approximate to a required generalized cylinder is formed by a polyhedron having respective sides of the polygon and segments connecting respective vertexes corresponding to the adjacent polygon on the broken line as edges. The polygons are rotated so that the prescribed corresponding vertexes of both the adjacent polygons and the segments in the broken line held between both the polygons are positioned on the same plane and the processing is successively executed in respective contacts to form the polyhedron. Consequently, even when the bends of respective skeletons are complexly changed, the model free from twists is formed by the uniform procedure.

Description

【発明の詳細な説明】 〔概 要] 計算機の図形処理における、一般化シリンダのモデリン
グ処理に関し、 一様な手順によって、スケルトンの曲がり具合が複雑に
変化する場合でも、ねじれの無いモデルを容易に作成す
ることができる一般化シリンダのモデリング処理方法を
目的とし、 所定空間内の所与の折れ線の各線分について、所与の各
多角形を該線分の一端で該線分に対して所定の角度をな
すように設定し、該多角形の辺と、該折れ線上で隣接す
る該多角形の対応する各頂点を結ぶ線分とを稜とする多
面体からなる、所要の一般化シリンダのモデルを生成す
るに際し、該隣接する多角形ごとに、所定の該対応する
両頂点と、該両多角形に挟まれる該折れ線中の線分とが
、同一平面上に位置するように該多角形を回転して、該
多面体を生成するようにtrlj成する。
[Detailed Description of the Invention] [Summary] Regarding generalized cylinder modeling processing in computer graphics processing, it is possible to easily create a model without twisting even when the degree of bending of a skeleton changes in a complicated manner using a uniform procedure. We aim at a modeling process for a generalized cylinder that can create, for each line segment of a given polygonal line in a given space, each given polygon with one end of the line segment A model of the required generalized cylinder is made of a polyhedron set to form an angle and whose edges are the sides of the polygon and the line segments connecting the corresponding vertices of the polygons adjacent on the polygon. When generating, for each adjacent polygon, rotate the polygon so that both predetermined corresponding vertices and a line segment in the polygon line sandwiched between both polygons are located on the same plane. Then, trlj is created to generate the polyhedron.

〔産業上の利用分野〕[Industrial application field]

本発明は、計算機の図形処理における、一般化シリンダ
のモデリング処理方法に関する。
The present invention relates to a generalized cylinder modeling processing method in computer graphics processing.

〔従来の技術と発明が解決しようとする課題〕公知のよ
うに一般化シリンダは、二次元平面上の閉曲線を、三次
元空間内の曲線に沿って移動させ、且つ例えば閉曲線の
大きさを移動位置の関数として変化した場合に、その閉
曲線の軌跡として得られる図形を言う1通常の円柱(シ
リンダ)は一定の円を直線に沿って移動させて得られる
、一般化シリンダの特殊の場合である。
[Prior art and problems to be solved by the invention] As is well known, the generalized cylinder moves a closed curve on a two-dimensional plane along a curve in a three-dimensional space, and also moves the size of the closed curve, for example. A figure obtained as the locus of a closed curve when it changes as a function of position.1 An ordinary cylinder is a special case of a generalized cylinder, which is obtained by moving a constant circle along a straight line. .

又、一般化シリンダを計算機で扱う場合には、前記の閉
曲線を移動させる曲線を折れ線で近似しく以下において
、この折れ線をスケルトン、折れ線の各線分の両端を節
点と呼ぶ)、閉曲線を各節点について定義する多角形で
近似しく以下において、この多角形をリングと呼ぶ)、
それらによって決定する多面体を、−a化シリンダのモ
デルとする。
In addition, when handling the generalized cylinder with a computer, the curve that moves the closed curve described above is approximated by a polygonal line (hereinafter, this polygonal line is referred to as a skeleton, and both ends of each polyline segment are referred to as nodes), and the closed curve is approximated for each node. This polygon is approximated by the defined polygon (hereinafter, this polygon is called a ring),
The polyhedron determined by them is used as a model of the -a cylinder.

即ち例えば各リングを表す座標の原点を節点に置いて、
例えばリングの所定の主軸(例えば所定の頂点を向くベ
クトル)が折れ線の線分に対して所定の方向をとるよう
にリングの向きと配置を定め、リング間で対応する各頂
点を順次結んで、例えば第5図(a)に示すような多面
体を形成する。
That is, for example, if the origin of the coordinates representing each ring is placed at the node,
For example, the orientation and arrangement of the rings are determined so that a predetermined main axis of the ring (e.g., a vector pointing to a predetermined vertex) takes a predetermined direction with respect to the line segment of the polygonal line, and each corresponding vertex is sequentially connected between the rings. For example, a polyhedron as shown in FIG. 5(a) is formed.

このためのフレネー閉包と呼ばれる座標変換計算(Do
 Carmo+M、P、+″Differential
 Geometry ofCurves and 5u
rfaces”、Prentice−11all、19
76等参照)では、リングの主軸の向きを決定する回転
角を、スケルトンの曲率ベクトルを用いて算出するため
に、スケルトンの曲がり方が、反対方向に変化した場合
には、その節点におけるリングの回転角は180度変化
し、第5図(b)に説明的に示すようにリング間にねじ
れを生じる。
For this purpose, a coordinate transformation calculation called Frenet closure (Do
Carmo+M,P,+″Differential
Geometry of Curves and 5u
rfaces”, Prentice-11all, 19
76, etc.), in order to calculate the rotation angle that determines the direction of the main axis of the ring using the curvature vector of the skeleton, if the direction of bending of the skeleton changes in the opposite direction, the rotation angle of the ring at that node is calculated using the curvature vector of the skeleton. The rotation angle changes by 180 degrees, creating a twist between the rings as illustrated in FIG. 5(b).

このために、例えばスケルトンを適当に区分して、各区
分ごと個別にフレネー閉包によって図形を求め、それら
を適当な方法で結合する等の方法で全体の図形を形成す
る必要がある。
For this purpose, it is necessary, for example, to appropriately divide the skeleton, obtain a figure for each section individually by Frenay closure, and then combine them in an appropriate manner to form the whole figure.

本発明は、一様な手順によって、スケルトンの曲がり具
合が複雑に変化する場合でも、ねじれの無いモデルを容
易に作成することができる一般化シリンダのモデリング
処理方法を目的とする。
An object of the present invention is to provide a generalized cylinder modeling processing method that can easily create an untwisted model using a uniform procedure even when the degree of curvature of a skeleton changes in a complicated manner.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は、本発明の構成を示す処理の流れ図である。 FIG. 1 is a process flowchart showing the configuration of the present invention.

図は一般化シリンダのモデリング処理方法の構成を示し
、モデル定義データ5で示される所定空間内の所与の折
れ線の各線分について、処理ステップ1及び3で、所与
の各多角形を該線分の一端で該線分に所定の角度をなす
ように設定し、該多角形の辺と、該折れ線上で隣接する
該多角形の対応する各頂点を結ぶ線分とを稜とする多面
体によって、所要の一般化シリンダを近似する一般化シ
リンダモデル6を生成する処理7において、処理ステッ
プ2で該隣接する多角形ごとに、所定の該対応する両頂
点と、該両多角形に挟まれる該折れ線中の線分とが、同
一平面上に位置するように該多角形を回転し、処理ステ
ップ4で識別して以上の処理を折れ線の各接点について
順次処理して、該多面体を生成する。
The figure shows the configuration of the generalized cylinder modeling processing method, in which for each line segment of a given polygonal line in a predetermined space indicated by model definition data 5, in processing steps 1 and 3, each given polygon is A polyhedron whose edges are the sides of the polygon and the line segments connecting the corresponding vertices of the polygons adjacent on the polygonal line. , in a process 7 for generating a generalized cylinder model 6 that approximates a required generalized cylinder, in process step 2, for each adjacent polygon, the predetermined two corresponding vertices and the vertices sandwiched between the two polygons are calculated. The polygon is rotated so that the line segments in the polygonal line are located on the same plane, identified in processing step 4, and the above process is sequentially performed for each contact point of the polygonal line to generate the polyhedron.

〔作 用〕[For production]

以上の処理方法により、各節点におけるリングの回転角
をねじれを生じないように順次修正するので、複雑な曲
がり具合のスケルトン全体にわたるモデリングを一括し
て一様に処理しても、ねしれの無い一般化シリンダのモ
デルを得ることが可能になる。
With the above processing method, the rotation angle of the ring at each node is corrected sequentially to avoid twisting, so even if modeling of the entire skeleton with complex bends is uniformly processed at once, there will be no twisting. It becomes possible to obtain a model of a generalized cylinder.

〔実施例〕〔Example〕

第2図は、本発明によって一般化シリンダのモデルを生
成して表示する図形処理システムの構成例を示すブロッ
ク図である。モデルを定義するスケルトン及びリングの
データは、磁気ディスク記憶装置等からなるデータ格納
部20に格納されている。処理装置21はそれらのモデ
ル定義データをデータ格納部20から読み出して後述の
ように処理することによって、所要の一般化シリンダの
モデルを生成し、表示部22に表示する。
FIG. 2 is a block diagram showing an example of the configuration of a graphics processing system that generates and displays a generalized cylinder model according to the present invention. Skeleton and ring data that define the model are stored in a data storage unit 20 consisting of a magnetic disk storage device or the like. The processing device 21 reads out the model definition data from the data storage section 20 and processes it as described below, thereby generating a model of a required generalized cylinder and displaying it on the display section 22.

データ格納部20に格納されるモデルの定義データは、
例えばスケルトンをm個の節点の点列で定義するデータ
、 5keleton = (So、S++Sz+ ’−−
−−’−”+5l11−1 )別= (sxH,sy4
.szl )   (i=o、L、2.−、m−1)及
び、n角形の各リングを定義する各n個の頂点の点列を
、m個の節点に対応するm個のリングについて定義する
データ、 ringS−(rjngo+rlngt+rlngzl
°−1rlng+1l−1−]ringi ”’ (r
l+o +rl−1rj+Z+”’−’ +rt+n−
1)r it j ””  (rXi+ j+ r’y
i+ it rZL j )(j−0,1,2,〜、n
4) からなる。なお各リングは例えばx−y平面上の図形と
して定義されるものとし、従ってすべてのリングでrZ
i、j”’0である。又、各リングの頂点r++Oのベ
クトルを主軸として処理する。
The model definition data stored in the data storage unit 20 is
For example, data that defines a skeleton as a sequence of m nodes, 5keleton = (So, S++Sz+ '--
−-'-"+5l11-1) different = (sxH, sy4
.. szl ) (i = o, L, 2.-, m-1) and the point sequence of each n vertex that defines each ring of the n-gon is defined for m rings corresponding to m nodes data, ringS-(rjngo+rlngt+rlngzl
°−1rlng+1l−1−]ringi ”' (r
l+o +rl-1rj+Z+"'-' +rt+n-
1) r it j ”” (rXi+ j+ r'y
i+ it rZL j )(j-0,1,2,~,n
4) Consists of. Note that each ring is defined, for example, as a figure on the x-y plane, and therefore all rings have rZ
i, j'''0. Also, the vector of the vertex r++O of each ring is processed as the main axis.

第3図は処理装置21による一般化シリンダのモデリン
グ処理の詳細な処理の流れの一例を示す図であり、処理
ステップ30でi=0に初期設定して処理を開始すると
、処理ステップ31で節点SL−□からS、に向かう線
分(線分SL とする)の方向の単位ベクトルと、節点
S、からS五。1に向かう線分S、。1の方向の単位ベ
クトルとの平均値として進行方向ベクトルa1を求める
。但しi=oの場合は線分s+si=m−1の場合は線
分S+++−1に平行な単位ベクトルをai とする。
FIG. 3 is a diagram showing an example of a detailed processing flow of the generalized cylinder modeling processing performed by the processing device 21. When the processing is started by initializing i=0 in processing step 30, the node A unit vector in the direction of a line segment (let's call it a line segment SL) from SL-□ to S, and from nodes S to S5. A line segment S toward 1. The traveling direction vector a1 is obtained as the average value of the unit vector in the direction of 1. However, when i=o, and when the line segment s+si=m-1, the unit vector parallel to the line segment S+++-1 is ai.

次に処理ステップ32で、x−y平面上にあってa、に
垂直な単位ベクトルC4を求め、処理ステップ33でZ
軸方向の単位ベクトルe2とa、とのなす角だけ、C4
−を軸として図形を回転するための4×4要素の回転変
換行列M1.を求め、処理ステップ34でM、Lとri
、oの積(Ii、。を計算する。
Next, in processing step 32, a unit vector C4 on the x-y plane and perpendicular to a is obtained, and in processing step 33, Z
Only the angle formed by the unit vector e2 in the axial direction and a, C4
A rotation transformation matrix M1 of 4×4 elements for rotating a figure around − as an axis. , and in processing step 34 M, L and ri
, o is calculated.

即ちtri、。はリングiの法線がa、と並行になるよ
うにリングiを回転したときの主軸のベクトルである。
That is, tri. is the vector of the principal axis when ring i is rotated so that the normal to ring i is parallel to a.

次にこのリングiの主軸と、1つ前に求めたリングj−
1の主軸’1.−+、。と、両リングに挟まれるスケル
トンの線分のベクトルS、とが同一平面上に来るように
、リングiを回転するための回転変換行列を求める。
Next, the main axis of this ring i and the ring j-
1 main axis '1. -+,. A rotation transformation matrix for rotating ring i is determined so that the vector S of the skeleton line segment sandwiched between both rings is on the same plane.

即ち、先ず処理ステップ35で、スカシもの値を選んで
、ベクトル’ a =qi −+ +。+t、Xsiが
、a、に垂直になるようにriを求め、処理ステップ3
6でr、と先に求めたqi r oとのなす角度Wを求
め、処理ステップ37でa、を軸として角度Wだけ回転
するための4×4要素の回転変換行列M2、を決定する
That is, first, in processing step 35, a value is selected and a vector ' a =qi −+ + is obtained. Find ri so that +t, Xsi is perpendicular to a, processing step 3
In step 6, the angle W between r and the previously determined qi r o is determined, and in step 37, a rotation transformation matrix M2 of 4×4 elements for rotating by the angle W around a is determined.

以上の各ベクトルの関係は第4図に説明的に示す通りで
あり、r、はqi −+ +。とslを含む平面と、前
記回転変換行列M11で回転してaiに垂直にし、節点
S、に原点を移動した場合のリングiを含む平面との交
線である。従って、リングiを1、を軸としてWだけ回
転することにより、主軸(li、。とqi −+ +。
The relationships among the above vectors are as illustrated in FIG. 4, where r is qi −+ +. This is the intersection line between the plane containing ring i and the plane containing ring i when rotated by the rotation transformation matrix M11 to make it perpendicular to ai and moving the origin to the node S. Therefore, by rotating ring i by W around 1, the main axis (li,. and qi −+ +.

が同一の平面上に乗ることになる。なおi=0の場合に
は、例えば処理ステップ35〜37の処理をスキップし
、M t i= 1とする。
will lie on the same plane. Note that when i=0, for example, processing steps 35 to 37 are skipped, and M t i=1.

次に処理ステップ38で原点を節点S、に平行移動する
ための、4×4要素の移動変換行列Mhを求め、処理ス
テップ39で以上の変換を総合した、変換行列Mi =
M+tXMziXM3iを求める。
Next, in processing step 38, a 4×4 element movement transformation matrix Mh for parallel translation of the origin to node S is obtained, and in processing step 39, a transformation matrix Mi = which integrates the above transformations is obtained.
Find M+tXMziXM3i.

処理ステンプ40でjを0に設定したのち、処理ステッ
プ41でQi、i =MHXr□1.を計算し、処理ス
テップ42.43で制御して、j=n−1までこの座標
変換計算を繰り返すと、リングiのすべての頂点につい
て処理を終わる。処理ステップ44.45で制御して、
以上の処理ステップ31〜43の処理をm個の全リング
について実行する。
After setting j to 0 in processing step 40, Qi, i =MHXr□1. is calculated, and this coordinate transformation calculation is repeated until j=n-1 under the control of process steps 42 and 43, thereby completing the process for all vertices of ring i. Controlled by process steps 44.45,
The above processing steps 31 to 43 are executed for all m rings.

以上において、ベクトル間の角度を求め、又回転変換行
列や移動変換行列を決定する等の処理は、公知の通常の
座標変換等の技法によって行うことができる。
In the above, processing such as finding the angle between vectors and determining a rotation transformation matrix and a translation transformation matrix can be performed using known techniques such as ordinary coordinate transformation.

[発明の効果〕 以上の説明から明らかなように本発明によれば、計算機
の図形処理における、−膜化シリンダのモデリング処理
において、一様な手順によって、スケルトンの曲がり具
合が複雑に変化する場合でも、ねじれの無いモデルを容
易に作成することができるという著しい効果がある。
[Effects of the Invention] As is clear from the above description, according to the present invention, in graphic processing by a computer, - in modeling processing of a membrane cylinder, when the degree of curvature of a skeleton changes in a complicated manner by a uniform procedure; However, it has the remarkable effect of making it possible to easily create a model without twisting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す処理の流れ図、第2図は図
形処理システムの構成例ブロック図、第3図は本発明の
処理の流れ図、 第4図は本発明の詳細な説明図、 第5図はmm化シリンダのモデルの説明図である。 図において、 1〜4.30〜45は処理ステップ、 5はモデル定義データ、 6は一般化シリンダモデル、 7は処理、      20はデータ格納部、21は処
理装置、    22は表示部を示す。
FIG. 1 is a process flowchart showing the configuration of the present invention, FIG. 2 is a block diagram of a configuration example of a graphic processing system, FIG. 3 is a process flowchart of the present invention, and FIG. 4 is a detailed explanatory diagram of the present invention. FIG. 5 is an explanatory diagram of a model of a mm cylinder. In the figure, 1 to 4, 30 to 45 are processing steps, 5 is model definition data, 6 is a generalized cylinder model, 7 is processing, 20 is a data storage section, 21 is a processing device, and 22 is a display section.

Claims (1)

【特許請求の範囲】 所定空間内の所与の折れ線(5)の各線分について、所
与の各多角形を該線分の一端で該線分に対して所定の角
度をなすように設定し(1)、 該多角形の辺と、該折れ線上で隣接する該多角形の対応
する各頂点を結ぶ線分とを稜とする多面体からなる、所
要の一般化シリンダのモデル(6)を生成する(3、4
)に際し、 該隣接する多角形ごとに、所定の該対応する両頂点と、
該両多角形に挟まれる該折れ線中の線分とが、同一平面
上に位置するように該多角形を回転して(2)、該多面
体を生成するように構成されていることを特徴とする一
般化シリンダのモデリング処理方法。
[Claims] For each line segment of a given polygonal line (5) in a predetermined space, each given polygon is set to form a predetermined angle with the line segment at one end of the line segment. (1) Generate the required generalized cylinder model (6) consisting of a polyhedron whose edges are the sides of the polygon and the line segments connecting the corresponding vertices of the polygons adjacent on the polygonal line. do (3, 4
), for each adjacent polygon, the predetermined corresponding vertices and
The polygon is rotated (2) so that the line segment in the polygonal line sandwiched between the two polygons is located on the same plane, thereby generating the polyhedron. A generalized cylinder modeling process.
JP13090789A 1989-05-24 1989-05-24 Modeling processing method for generalized cylinder Pending JPH02309461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13090789A JPH02309461A (en) 1989-05-24 1989-05-24 Modeling processing method for generalized cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13090789A JPH02309461A (en) 1989-05-24 1989-05-24 Modeling processing method for generalized cylinder

Publications (1)

Publication Number Publication Date
JPH02309461A true JPH02309461A (en) 1990-12-25

Family

ID=15045520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13090789A Pending JPH02309461A (en) 1989-05-24 1989-05-24 Modeling processing method for generalized cylinder

Country Status (1)

Country Link
JP (1) JPH02309461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042604A1 (en) * 1996-05-07 1997-11-13 Sega Enterprises, Ltd. Method of producing polygon data, image processor to which the method is applied, and expanded function board
KR100534494B1 (en) * 1996-11-07 2006-02-28 가부시키가이샤 세가 Image processing device, image processing method and recording medium
CN104851126A (en) * 2015-04-30 2015-08-19 中国科学院深圳先进技术研究院 Three-dimensional model decomposition method and three-dimensional model decomposition device based on generalized cylinder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042604A1 (en) * 1996-05-07 1997-11-13 Sega Enterprises, Ltd. Method of producing polygon data, image processor to which the method is applied, and expanded function board
KR100534494B1 (en) * 1996-11-07 2006-02-28 가부시키가이샤 세가 Image processing device, image processing method and recording medium
CN104851126A (en) * 2015-04-30 2015-08-19 中国科学院深圳先进技术研究院 Three-dimensional model decomposition method and three-dimensional model decomposition device based on generalized cylinder
CN104851126B (en) * 2015-04-30 2017-10-20 中国科学院深圳先进技术研究院 Threedimensional model dividing method and device based on generalized cylinder

Similar Documents

Publication Publication Date Title
US7170527B2 (en) Interactive horizon mapping
US20020196258A1 (en) Rendering collisions of three-dimensional models
JPH02309461A (en) Modeling processing method for generalized cylinder
JP5921753B2 (en) Map drawing device
CN111667558B (en) Rope connection optimization method based on illusion engine and related equipment
CN114075810B (en) Space path fitting method and system for concrete 3D printing
JPH07282292A (en) Texture mapping method and image processor
JP4592917B2 (en) Image generating apparatus and game apparatus
CN104092467A (en) Method for compressing matrixes through dual quaternions
KR20010050259A (en) Image display method using subdivided polygon and device thereof
JPH02150975A (en) Drawing display system
JPS63118982A (en) Arithmetic processing method for deciding whether points are inside or outside on polygon
JP3071495B2 (en) Object model editing device
CN116993905B (en) Three-dimensional pipeline reconstruction method and system based on B/S architecture
US10818059B1 (en) Sculpt transfer
JP2528875B2 (en) Shading display device for three-dimensional figures
JP3823596B2 (en) Data compression method for motion simulation
JP2007164729A (en) Image generation system, program and information storage medium
JPH03185578A (en) Method for display processing of cross section of solid model
JPH0944688A (en) Method for converting curved surface of point group data and method for measuring shape using the curved surface converting method
JP3233640B2 (en) Clipping processing device, three-dimensional simulator device, and clipping processing method
CN115311440A (en) Model deformation processing method and device, electronic equipment and storage medium
JPH04258988A (en) Horizontal globe arithmetic method
Yankov et al. ARCHIMED-a Geometric Modeling System for Industrial Robots and Environment
MULLER Algebraic models for the aggregation of area features based upon morphological operators