JPH0230909Y2 - - Google Patents

Info

Publication number
JPH0230909Y2
JPH0230909Y2 JP11365782U JP11365782U JPH0230909Y2 JP H0230909 Y2 JPH0230909 Y2 JP H0230909Y2 JP 11365782 U JP11365782 U JP 11365782U JP 11365782 U JP11365782 U JP 11365782U JP H0230909 Y2 JPH0230909 Y2 JP H0230909Y2
Authority
JP
Japan
Prior art keywords
frequency
circuit
filter
low
cutoff frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11365782U
Other languages
Japanese (ja)
Other versions
JPS5925822U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11365782U priority Critical patent/JPS5925822U/en
Publication of JPS5925822U publication Critical patent/JPS5925822U/en
Application granted granted Critical
Publication of JPH0230909Y2 publication Critical patent/JPH0230909Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、例えばオーデイオ装置の音質調整回
路等に用いる周波数特性調整回路に関するもので
ある。
[Detailed Description of the Invention] The present invention relates to a frequency characteristic adjustment circuit used, for example, in a sound quality adjustment circuit of an audio device.

一般に、音質調整は低域又は高域を増強したり
減衰したりして行なうが、そうすると周波数特性
の折れ曲がり点の周波数も変化して調整が難し
い。本考案は、低域又は高域の増強量や減衰量に
関係なく周波数特性の折れ曲がり点の周波数が一
定に保持される音質調整回路を提供しようとする
ものである。以下、図面により本考案を具体的に
説明する。
Generally, sound quality is adjusted by enhancing or attenuating the low or high frequencies, but this also changes the frequency at the bending point of the frequency characteristics, making adjustment difficult. The present invention aims to provide a sound quality adjustment circuit in which the frequency at the bending point of the frequency characteristic is held constant regardless of the amount of enhancement or attenuation in the low or high frequencies. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本考案の回路の基本的構成を示すブ
ロツク図である。図において、1は入力端子、2
はフイルタ、3及び8は演算回路、4は加算器、
5は出力端子である。この回路において、フイル
タ2を低域及び高域通過フイルタとし、その遮断
周波数を一定のまま演算回路3及び8の掛算係数
を変化させたり、フイルタ2の遮断周波数を掛算
係数と関連して変化させたりすることにより、上
記折れ曲がり点の周波数を変化させることなく低
域又は高域の増強や減衰を行なうことができる。
FIG. 1 is a block diagram showing the basic configuration of the circuit of the present invention. In the figure, 1 is an input terminal, 2
is a filter, 3 and 8 are arithmetic circuits, 4 is an adder,
5 is an output terminal. In this circuit, filter 2 is a low-pass and high-pass filter, and the multiplication coefficients of calculation circuits 3 and 8 are changed while keeping the cutoff frequency constant, or the cutoff frequency of filter 2 is changed in relation to the multiplication coefficient. By doing so, it is possible to enhance or attenuate the low or high range without changing the frequency at the bending point.

まず、低域を減衰する場合について説明する。
この場合は、フイルタ2として第2図に示すよう
な遮断周波数が1/2πTの高域通過フイルタを使用 する。いま、入力信号をe1、演算回路3及び8の
掛算係数を1−K及びK、演算回路3及び8の出
力信号をe3及びe8とすると、 e3=(1−K)jωT/1+jωTe1 (1) e8=Ke1 (2) となる。したがつて、合成出力信号をe0とする
と、 e0=e3+e8 =K1+jωT/K/1+jωTe1 (3) となり、Kを0<k≦1の範囲で調整すれば、折
れ曲がり周波数が一定の低域減衰特性が得られ
る。その一例を第3図の周波数特性曲線a,b,
c,d(折れ線近似曲線)で示す。曲線aはK=
1の場合であり、Kが1より小さくなるにつれて
曲線b,c,dのようになるが、折れ曲がり点P
の周波数は1/2πTで一定である。
First, the case of attenuating the low range will be explained.
In this case, a high-pass filter with a cutoff frequency of 1/2πT as shown in FIG. 2 is used as the filter 2. Now, if the input signal is e 1 , the multiplication coefficients of calculation circuits 3 and 8 are 1-K and K, and the output signals of calculation circuits 3 and 8 are e 3 and e 8 , then e 3 = (1-K)jωT/ 1+jωTe 1 (1) e 8 = Ke 1 (2). Therefore, if the composite output signal is e 0 , then e 0 = e 3 + e 8 = K1 + jω T/K /1 + jωTe 1 (3), and by adjusting K in the range of 0<k≦1, the bending frequency can be adjusted. A constant low frequency attenuation characteristic can be obtained. An example of this is the frequency characteristic curves a, b, and
It is shown as c, d (broken line approximate curve). Curve a is K=
1, and as K becomes smaller than 1, the curves become like b, c, d, but the bending point P
The frequency of is constant at 1/2πT.

次に、低域を増強する場合について説明する。
この場合は、フイルタ2として遮断周波数を上記
掛算係数におけるKの値に反比例して下げるよう
にした(すなわち、遮断周波数が1/2πKTとなる ような)高域通過フイルタを用いる。前述と同様
にして、演算回路3及び8の出力信号e3及びe8
ら合成出力信号e0を求めると、 e3=(1−K)jωKT/1+jωKTe1 e8=Ke1 e0=e3+e8 =K1+jωT/1+jωKTe1 …(4) となり、KをK≧1の範囲で調整すれば、第3図
の折れ線近似曲線a,e,f,gで示すような低
域増強特性が得られる。曲線aはK=1の場合で
あり、Kが1より大きくなるにつれて曲線e,
f,gのようになるが、折れ曲がり点Pの周波数
は1/2πTで一定である。
Next, the case of enhancing the low frequency range will be explained.
In this case, a high-pass filter whose cutoff frequency is lowered in inverse proportion to the value of K in the multiplication coefficient (that is, whose cutoff frequency is 1/2πKT) is used as the filter 2. In the same manner as described above, when the composite output signal e 0 is obtained from the output signals e 3 and e 8 of the arithmetic circuits 3 and 8, e 3 = (1-K) jωKT/1 + jωKTe 1 e 8 = Ke 1 e 0 = e 3 +e 8 =K1+jωT/1+jωKTe 1 …(4) If K is adjusted within the range of K≧1, low-frequency enhancement characteristics as shown by the approximate curves a, e, f, and g in Figure 3 can be obtained. It will be done. Curve a is for K=1, and as K becomes larger than 1, curve e,
f, g, but the frequency at the bending point P is constant at 1/2πT.

一方、高域増強及び減衰特性を得るには、フイ
ルタ2としてそれぞれ低域通過フイルタを使用す
ればよい。
On the other hand, in order to obtain high-frequency enhancement and attenuation characteristics, a low-pass filter may be used as the filter 2.

まず、高域減衰特性は、前述の低域減衰特性を
得るときと同様に、フイルタ2の遮断周波数を
1/2πTと一定にしKを0<K≦1の範囲で調整す ることによつて得られる。すなわち、合成出力信
号e0は、 e0=Ke1+1/1+jωT(1−K)e1 =1+jωKT/1+jωTe1 …(5) となる。また、高域増強特性は、前述の低域増強
特性を得るときは反対に、フイルタ2の遮断周波
数をKの値に比例して上げるようにした(すなわ
ち、遮断周波数がK/2πTとなるような)フイルタ を使用し、KをK≧1の範囲で調整することによ
つて得られる。すなわち、合成出力信号e0は e0=Ke1+1−K/1+jωT/Ke1 =1+jωT/1+jωT/Ke1 …(6) となる。第4図は、このようにして得られる高域
増強及び減衰特性の一例を示す折れ線近似曲線図
である。曲線aはK=1の場合であり、Kが1よ
り大きくなるにつれて曲線e′,f′,g′のようにな
り、Kが1より小さくなるにつれて曲線b′,c′,
d′のようになるが、折れ曲がり点Qの周波数は
1/2πTで一定である。
First, the high-frequency attenuation characteristic can be obtained by keeping the cut-off frequency of filter 2 constant at 1/2πT and adjusting K in the range of 0<K≦1, in the same way as when obtaining the low-frequency attenuation characteristic described above. It will be done. That is, the combined output signal e 0 is e 0 =Ke 1 +1/1+jωT(1-K)e 1 =1+jωKT/1+jωTe 1 (5). In addition, for the high-frequency enhancement characteristic, when obtaining the aforementioned low-frequency enhancement characteristic, the cutoff frequency of filter 2 is raised in proportion to the value of K (in other words, the cutoff frequency is set to K/2πT). (b) can be obtained by using a filter and adjusting K within the range of K≧1. That is, the combined output signal e 0 is e 0 =Ke 1 +1−K/1+jω T/K e 1 =1+jωT/1+jω T/K e 1 (6). FIG. 4 is a polygonal approximate curve diagram showing an example of the high frequency enhancement and attenuation characteristics obtained in this manner. Curve a is for K=1, and as K becomes larger than 1, curves e', f', and g'appear; as K becomes smaller than 1, curves b', c', and
d', but the frequency at the bending point Q is constant at 1/2πT.

第5図は、本考案による低域音質調整回路の一
例を示す回路図である。図において、第1図と対
応する部分には同一もしくは類似の符号を付して
ある。また、6は加算器、7及び9は反転増幅
器、10は反転器を示す。X及びYは、連動可変
抵抗器及びその抵抗値を示し、例えば第6図のよ
うに構成する。図に示すように可変抵抗器Yは銅
箔などの良導体部分を有するものとし、可変抵抗
器Xのこの良導体部分に対応する部分の全抵抗値
がrとなるようにする。なお、第5図におけるr
及び,R1は抵抗器及びその抵抗値、C1はコンデ
ンサ及びその容量値を示す。本例にあつては、高
域通過フイルタ2の遮断周波数1/2πTにおいてT =C1(R1+Y)となり、演算回路3の掛算係数
(1−K)は加算器6の出力端子において1−X/r であり、又演算回路8の掛算係数KはK=X/rと なる。したがつて、低域減衰の場合は0<K≦1
の範囲で調整するが、このためには、第6図実線
矢印のように0<X≦rの範囲で調整すればよい
ことになる。第6図において、0<X≦rの範囲
で可変抵抗器Xを調整する場合は、Yは銅箔など
の良導体部分であるからY=0でT=C1R1とな
るからフイルタ2の遮断周波数は1/2πC1R1で一定 となり、したがつて折れ曲がり点の周波数は一定
となる。また、低域増強の場合はK≧1の範囲で
調整するので、第6図の一点鎖線矢印のようにX
≧rの範囲で調整すればよい。ただし、遮断周波
数を1/2πKC1R1とするためにR1+Y=KR1、すな わちY=(K−1)R1とする必要がある。いま、
第6図においてX≧rの範囲で調整する場合、図
に示す抵抗XのうちX≧rの部分との抵抗値をx
とすると、K=X/r=r+x/r=x/r+1となる
FIG. 5 is a circuit diagram showing an example of a low frequency sound quality adjustment circuit according to the present invention. In the figure, parts corresponding to those in FIG. 1 are given the same or similar symbols. Further, 6 is an adder, 7 and 9 are inverting amplifiers, and 10 is an inverter. X and Y indicate interlocking variable resistors and their resistance values, and are configured as shown in FIG. 6, for example. As shown in the figure, the variable resistor Y is assumed to have a good conductor portion such as a copper foil, and the total resistance value of the portion of the variable resistor X corresponding to this good conductor portion is set to be r. Note that r in Figure 5
And, R 1 is a resistor and its resistance value, and C 1 is a capacitor and its capacitance value. In this example, T = C 1 (R 1 +Y) at the cutoff frequency 1/2πT of the high-pass filter 2, and the multiplication coefficient (1-K) of the arithmetic circuit 3 becomes 1 at the output terminal of the adder 6. -X/r, and the multiplication coefficient K of the arithmetic circuit 8 is K=X/r. Therefore, in the case of low frequency attenuation, 0<K≦1
For this purpose, the adjustment should be made within the range of 0<X≦r, as indicated by the solid line arrow in FIG. In Fig. 6, when adjusting the variable resistor The cutoff frequency is constant at 1/2πC 1 R 1 , and therefore the frequency at the bending point is constant. In addition, in the case of low frequency enhancement, the adjustment is made within the range of K≧1, so
It may be adjusted within the range of ≧r. However, in order to set the cutoff frequency to 1/2πKC 1 R 1 , it is necessary to set R 1 +Y=KR 1 , that is, Y=(K-1)R 1 . now,
When adjusting in the range of X≧r in Fig. 6, the resistance value of the part of the resistance X shown in the figure where X≧r
Then, K=X/r=r+x/r=x/r+1.

一方、上記のY=(K−1)R1なる条件よりK=
Y/R1+1を得る。よつて、両式よりx/r=y/R1
な わちY/x=R1/rなる関係を得る。したがつて、こ の関係を保つように可変抵抗器X及びYを構成す
れば、フイルタ2の遮断周波数を1/2πKC1R1とす ることができ、前述のように折れ曲がり点の周波
数は1/2πC1R1と一定になる。
On the other hand, from the above condition Y=(K-1)R 1 , K=
We get Y/R 1 +1. Therefore, from both equations, we obtain the relationship x/r=y/R 1 , that is, Y/x=R 1 /r. Therefore, if the variable resistors X and Y are configured to maintain this relationship, the cutoff frequency of the filter 2 can be set to 1/2πKC 1 R 1 , and as mentioned above, the frequency at the bending point is 1/2πKC 1 R 1. It becomes constant at 2πC 1 R 1 .

上述のように、低域調整の場合は高域通過フイ
ルタを、高域調整の場合は低域通過フイルタを使
用するので、適当なスイツチにより低域の場合と
高域の場合とで両者を切換えるように構成にして
もよい。かようなスイツチは、容易に構成しうる
ので図示及び説明を省略する。またフイルタの出
力インピーダンスが演算回路(増幅器を含む。)
の利得に影響するときは、フイルタの後段に緩衝
増幅器を挿入する。
As mentioned above, a high-pass filter is used for low-frequency adjustment, and a low-pass filter is used for high-frequency adjustment, so use an appropriate switch to switch between the two for low and high frequencies. It may be configured as follows. Since such a switch can be easily constructed, illustration and description thereof will be omitted. In addition, the output impedance of the filter is determined by the calculation circuit (including the amplifier).
If the gain of the filter is affected, insert a buffer amplifier after the filter.

なお、第5図における加算器4と加算器6を合
体させてもよい。即ちこの場合は加算器6を省略
して加算器4の入力端子を3入力型にすればよ
い。
Note that adder 4 and adder 6 in FIG. 5 may be combined. That is, in this case, the adder 6 may be omitted and the input terminals of the adder 4 may be of a three-input type.

以上説明したとおり、本考案によれば、低域又
は高域の増強量や減衰量に関係なく周波数特性の
折れ曲がり点の周波数が一定に保たれる低域の音
質調整回路を得ることができ、音質の調整が容易
になる利点がある。
As explained above, according to the present invention, it is possible to obtain a low-frequency sound quality adjustment circuit in which the frequency at the bending point of the frequency characteristic is kept constant regardless of the amount of enhancement or attenuation in the low or high frequency range. This has the advantage of making it easy to adjust the sound quality.

なお、本考案は、上述の実施例に限らず、実用
新案登録請求の範囲に記載した考案の要旨を逸脱
をしない範囲内において種々の変形・変更をしう
るものである。
It should be noted that the present invention is not limited to the above-described embodiments, and can be modified and changed in various ways without departing from the gist of the invention as set forth in the claims for utility model registration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の回路の基本的構成を説明する
ためのブロツク図、第2図は本考案に用いるフイ
ルタ特性の一例を示す線図、第3図は本考案によ
る低域減衰及び増強特性の一例を示す線図、第4
図は高域減衰及び増強特性の一例を線図、第5図
本考案による低域音質調整回路の例を示す回路
図、第6図は連動可変抵抗器を示す接続図であ
る。 1…入力端子、2…高域通過フイルタ、3,8
…演算回路、4…加算器、5…出力端子、X,Y
…遮断周波数可変手段。
Figure 1 is a block diagram for explaining the basic configuration of the circuit of the present invention, Figure 2 is a diagram showing an example of filter characteristics used in the present invention, and Figure 3 is the low-frequency attenuation and enhancement characteristics of the present invention. Diagram showing an example of
5 is a diagram showing an example of high frequency attenuation and enhancement characteristics, FIG. 5 is a circuit diagram showing an example of the low frequency sound quality adjustment circuit according to the present invention, and FIG. 6 is a connection diagram showing an interlocking variable resistor. 1...Input terminal, 2...High pass filter, 3, 8
...Arithmetic circuit, 4...Adder, 5...Output terminal, X, Y
... Cutoff frequency variable means.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入力信号を高域通過フイルタ及び第1の演算手
段の直列接続回路を通して得られる信号と、上記
入力信号を第2の演算手段を通して得られる信号
とを加算して出力信号とすることにより、周波数
特性調整する回路において、上記第2の演算回路
の掛算係数をKとするとき第1の演算回路の掛算
係数を1−Kとし、上記フイルタの遮断周波数を
上記演算回路の掛算回路の掛算係数におけるKの
値が0<K≦1の時は一定とし、上記演算回路の
掛算係数におけるKの値がK≦1の時は上記フイ
ルタの遮断周波数を上記Kの値に反比例して変化
させる遮断周波数可変手段を設けることを特徴と
する周波数特性調整回路。
By adding the input signal to a signal obtained through a series connection circuit of a high-pass filter and the first calculation means and the signal obtained from the input signal to the second calculation means to obtain an output signal, the frequency characteristics can be changed. In the circuit to be adjusted, when the multiplication coefficient of the second arithmetic circuit is K, the multiplication coefficient of the first arithmetic circuit is 1-K, and the cutoff frequency of the filter is set to K in the multiplication coefficient of the multiplication circuit of the above arithmetic circuit. When the value of K is 0<K≦1, the cutoff frequency is constant, and when the value of K in the multiplication coefficient of the arithmetic circuit is K≦1, the cutoff frequency of the filter is variable in inverse proportion to the value of K. A frequency characteristic adjustment circuit comprising means.
JP11365782U 1982-07-26 1982-07-26 Frequency characteristic adjustment circuit Granted JPS5925822U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11365782U JPS5925822U (en) 1982-07-26 1982-07-26 Frequency characteristic adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11365782U JPS5925822U (en) 1982-07-26 1982-07-26 Frequency characteristic adjustment circuit

Publications (2)

Publication Number Publication Date
JPS5925822U JPS5925822U (en) 1984-02-17
JPH0230909Y2 true JPH0230909Y2 (en) 1990-08-21

Family

ID=30263017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11365782U Granted JPS5925822U (en) 1982-07-26 1982-07-26 Frequency characteristic adjustment circuit

Country Status (1)

Country Link
JP (1) JPS5925822U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025619B (en) * 2012-06-04 2017-10-27 三菱电机株式会社 Signal processing apparatus
WO2013183103A1 (en) * 2012-06-04 2013-12-12 三菱電機株式会社 Frequency characteristic transformation device

Also Published As

Publication number Publication date
JPS5925822U (en) 1984-02-17

Similar Documents

Publication Publication Date Title
US3755749A (en) Sound reenforcement equalization system
WO1994010819B1 (en) Hearing aid with permanently adjusted frequency response
JPH0230909Y2 (en)
JPH0230908Y2 (en)
JPS6334342Y2 (en)
JPH0328588Y2 (en)
JPH0328587Y2 (en)
JP3120394B2 (en) Tone control circuit
JP2509165B2 (en) Allpass Filter
US4888789A (en) Adjustable equalizer for compensating for high frequency rolloff and typical AM receivers
JPS6127216Y2 (en)
JPH0633760Y2 (en) Audio expansion device for audio equipment
JPS6210080B2 (en)
US6816005B2 (en) All pass filter
JP2605280B2 (en) Tone control circuit
JPH0533064Y2 (en)
JP2629705B2 (en) Sound quality adjustment device
JPS5929968B2 (en) Frequency characteristic adjustment circuit
JPS6133484B2 (en)
JPS5929003B2 (en) Frequency characteristic adjustment circuit
JPS6145637Y2 (en)
JPH0321055Y2 (en)
JPH0145194Y2 (en)
JPH0227618Y2 (en)
JPH08307183A (en) Intensifying circuit for low range of voice