JPH02308811A - Electrolytic polymerization of electroconductive polymer - Google Patents

Electrolytic polymerization of electroconductive polymer

Info

Publication number
JPH02308811A
JPH02308811A JP13186089A JP13186089A JPH02308811A JP H02308811 A JPH02308811 A JP H02308811A JP 13186089 A JP13186089 A JP 13186089A JP 13186089 A JP13186089 A JP 13186089A JP H02308811 A JPH02308811 A JP H02308811A
Authority
JP
Japan
Prior art keywords
cylinder
electrolytic polymerization
electroconductive polymer
electrolytic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13186089A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
山田 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13186089A priority Critical patent/JPH02308811A/en
Publication of JPH02308811A publication Critical patent/JPH02308811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To attain high electrical conductivity by increase of degree of molecular orientation and to obtain the title polymer effectively useful for electrolytic material of battery, etc., by continuously impressing shear force and pulse electric current to an electrolytic polymerization solution containing an electroconductive polymer to carry out electrolytic polymerization. CONSTITUTION:An electrolytic polymerization solution 4 containing an electrolytically polymerizable substance (e.g. 3-methylthiophene) and a supporting electrolyte is fed between a cylinder 2 for an action electrode and a cylinder 3 for an opposing electrode arranged in a polymerizer 1. The cylinder 2 is rotated, a pulse electric current is continuously impressed between the cylinders 2 and 3 while shear force acting in the direction of tangential line is applied to the solution on the surface of the cylinder 2 to become an acting face to carry out electrolytic polymerization and a film of electroconductive polymer [e.g. orientated poly(4-methylthiophene), etc.] is formed on the surface of the cylinder 2 to give the aimed electroconductive polymer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高導電性高分子材料を得るための高分子電解重
合法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a polymer electrolytic polymerization method for obtaining a highly conductive polymer material.

〔従来の技術〕[Conventional technology]

導電性高分子材料は電解重合法で製造され、2次電池電
極材やセンサー等に使用されている。従来の電解重合法
では電解モードとして定電位電解。
Conductive polymer materials are manufactured by electrolytic polymerization and are used in secondary battery electrode materials, sensors, and the like. In conventional electrolytic polymerization methods, constant potential electrolysis is used as the electrolysis mode.

定電流電解、11位走引電解、矩形波電解2交流電解が
知られているが、電解重合中の電解液は電解液の均質化
を因る程度に攪拌されているにすぎない。
Constant current electrolysis, 11-position running electrolysis, square wave electrolysis, and two-ac electrolysis are known, but the electrolytic solution during electrolytic polymerization is stirred only to the extent necessary to homogenize the electrolytic solution.

周知の如く、従来の電解重合法(文献:A、F。As is well known, conventional electrolytic polymerization methods (References: A, F.

Diaz、J、CaLaCr1ox、高分子、Vol。Diaz, J., CaLaCr1ox, Polymers, Vol.

36,278(1987)など)では、導電性高分子の
合成中に分子配向をもたらす剪断応力を加えずに電極表
面上に析出させている。この場合、導電性高分子鎖はラ
ンダム配向となっており、導電率を高めるには分子配向
させる必要がある。
36, 278 (1987), etc.), conductive polymers are deposited on electrode surfaces without applying shear stress that causes molecular orientation during synthesis. In this case, the conductive polymer chains are randomly oriented, and it is necessary to orient the molecules to increase the conductivity.

ところで、電解重合後、導電性高分子を通常の延伸法で
配向させて、配向方向の導電率を数倍高めた例がある。
By the way, there is an example in which conductive polymers are oriented by a normal stretching method after electrolytic polymerization, and the conductivity in the orientation direction is increased several times.

この場合の導電性高分子として、ポリピロール(文献:
 M、Ogasawara 、 K6Funahash
i。
In this case, the conductive polymer is polypyrrole (Reference:
M, Ogasawara, K6Funahash
i.

and KJwata、 Mo1. Cryst、L3
q、 Crystap 118 # 159(1985
))の例があるのみで他にない。
and KJwata, Mo1. Cryst, L3
q, Crystap 118 #159 (1985
)) There is no other example.

また、導電率を高めるために電解重合試料を電解重合後
に通常の延伸法にょシ配向させた例は、ポリピロールの
みであ蝋他の重合橿では延伸できたという報告は今のと
ころない。この理由は、他の重合種では脆く延伸が困難
であることによる。
In addition, to date, there has been no report of an example in which an electrolytically polymerized sample was oriented using a normal stretching method after electrolytically polymerizing to increase electrical conductivity, but only polypyrrole could be stretched using wax or other polymeric materials. The reason for this is that other polymeric species are brittle and difficult to stretch.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記事情に鑑みて、本発明者にょυ特riA昭62−2
96.739号明細書に記載された方法が開発された。
In view of the above circumstances, the inventor of the present invention
The method described in No. 96.739 was developed.

すなわち、電解重合中に剪断応力を与えることによυ、
導電性高分子の電解重合と分子配向を同時に行い、高導
電率で汎用かつ有効な高導電性高分子の調整法に関する
ものである。
That is, by applying shear stress during electropolymerization, υ,
The present invention relates to a method for preparing highly conductive polymers with high conductivity, which is versatile and effective, by simultaneously carrying out electrolytic polymerization and molecular orientation of conductive polymers.

本発明はこの調整法を改良して、さらに分子配向度の増
加をもたらす改善された高導電性高分子の電解重合法を
提供することを目的とする。
An object of the present invention is to improve this adjustment method and further provide an improved electrolytic polymerization method for highly conductive polymers that increases the degree of molecular orientation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は高速攪拌下でパルス電流若しくはパルス電位を
連続的に印加できるように、前記特願昭62−296,
793号で採用した装置とパルス発生装置を組み合わせ
たことを特徴とする。
The present invention is based on the patent application patent application No. 62-296,
It is characterized by a combination of the device adopted in No. 793 and a pulse generator.

〔実施例〕〔Example〕

本発明においては、重合容器内の円筒(作用電極)を高
速で回転することによυこの円筒表面付近に剪断応力が
働くようにした後、この円筒(作用電極)とその外側に
配した円筒(対極)との間にノ4ルス電流印加、若しく
は作用電極にパルス電位を印加する。・ぐルス電流・電
位値、ノクルス幅。
In the present invention, the cylinder (working electrode) inside the polymerization container is rotated at high speed to apply shear stress near the surface of this cylinder, and then the cylinder (working electrode) and the cylinders arranged outside it are A pulse current is applied between the electrode and the working electrode (counter electrode), or a pulse potential is applied to the working electrode.・Gurus current/potential value, Noculus width.

パルス休止時間に、r:#)電解重合速度をコントロー
ルす、ることによシ、高い分子配向度を達成することが
できる。このようにして高い分子配向度の導電性高分子
が作用電極表面上に析出する。
By controlling the r:#) electrolytic polymerization rate during the pulse pause time, a high degree of molecular orientation can be achieved. In this way, a conductive polymer with a high degree of molecular orientation is deposited on the surface of the working electrode.

このような導電性高分子の分子配向度の増加により高導
電率化をもたらす。図は本発明に使用する装置の1実施
例を示し、図において1は容器で電解重合溶液4を収納
しておシ、固定台5に支持された二重の円筒2,3がそ
の中に保持されている。内側の円筒2は作用電極、外側
の円筒3が対極を兼ねており、ブラシ6を介して図示し
ないパルス電源から供給される・ぐルス電流が電解重合
溶液4に供給される。なお、7は参照電極、8は塩橋8
である。
This increase in the degree of molecular orientation of the conductive polymer results in higher conductivity. The figure shows one embodiment of the apparatus used in the present invention. In the figure, 1 is a container containing an electrolytic polymerization solution 4, and a double cylinder 2, 3 supported on a fixed stand 5 is inside. Retained. The inner cylinder 2 serves as a working electrode, and the outer cylinder 3 serves as a counter electrode, and the electrolytic polymerization solution 4 is supplied with a current supplied from a pulse power source (not shown) through a brush 6. In addition, 7 is a reference electrode, 8 is a salt bridge 8
It is.

このような装置を使用し、容器1中に電解重合溶液4を
入れ、溶液4中で円筒2を回転させて作、用向となる円
筒面で溶液に接線方向に働く剪断力を与えながら円筒2
.3間に/ぐルス電流を流すと、導電性高分子の膜が円
筒2の表面に形成される。
Using such a device, an electrolytic polymerization solution 4 is placed in a container 1, and the cylinder 2 is rotated in the solution 4, and the cylinder is heated while applying a shearing force acting tangentially to the solution on the cylindrical surface that is intended for use. 2
.. When a current is passed between the cylinders 3 and 3, a conductive polymer film is formed on the surface of the cylinder 2.

また、円筒を回転させる代υに容器を管状に構成して溶
液を流しなからノ々ルス電流を与えるようにすることも
できる。
Furthermore, while the cylinder is rotated, the container can be constructed in a tubular shape so that the Norls current is applied without flowing the solution.

〔実施例1〕 配向ポリ(3−メチルチオフェン)の調製の場合につい
て説明する。
[Example 1] The case of preparing oriented poly(3-methylthiophene) will be described.

■ まず、3−メチルチオフェン濃度0.1〜0.3M
、支持電解質濃度0.02〜0.1M電解重合溶液(溶
媒二ニトロベンゼン又はプロピレンカーブネート)を調
整する。但し、支持電解質としてテトラエチルアンモニ
ウムバークロレート、テトラ−n−プチルアンモニウム
ノや一クロレート、テトラメチルアンモニウムへキサフ
ロロホスヘイトを用いた。つづいて、電解重合溶液を重
合容器内に充填する。溶液温度は7〜30℃とする。次
いで、内側の円筒(作用電極)を高速(500〜10、
00 Orpm )で回転させることにより、内側円筒
(作用電極)表面上に高せん断速度を発生させた。ここ
で、平均剪断速は、内側の円筒外側の円筒の直径(夫々
16 m + 20〜50 mm ) 、高速回転(5
00〜10.OOOrpm)の条件下で3.000〜2
83,000 sec  となる。
■ First, 3-methylthiophene concentration 0.1-0.3M
, prepare an electrolytic polymerization solution (solvent dinitrobenzene or propylene carbinate) with a supporting electrolyte concentration of 0.02 to 0.1M. However, as supporting electrolytes, tetraethylammonium verchlorate, tetra-n-butylammonium monochlorate, and tetramethylammonium hexafluorophosphate were used. Subsequently, the electrolytic polymerization solution is filled into the polymerization container. The solution temperature is 7 to 30°C. The inner cylinder (working electrode) was then heated at high speed (500-10,
A high shear rate was generated on the inner cylinder (working electrode) surface by rotating at 00 Orpm). Here, the average shear rate is the diameter of the inner cylinder and outer cylinder (16 m + 20-50 mm, respectively), the high speed rotation (5
00-10. 3.000 to 2 under the condition of
It becomes 83,000 sec.

■ 次に、このように内側の円筒を高速で回転した後、
パルス電位(電位:2〜8vv8゜Ag、/にg。
■ Next, after rotating the inner cylinder at high speed like this,
Pulse potential (potential: 2 to 8vv8°Ag, / to g.

パルス幅: 10−2〜1 sec m周期:0.5〜
58eC)を印加した。なお、重合に要した総電荷量は
1〜3 C7cm2とした。ここで、調整した重合膜の
X線解析によυポリ(3−メチルチオフェン)鎖が配向
することを確認した。
Pulse width: 10-2~1 sec m period: 0.5~
58 eC) was applied. Note that the total amount of charge required for polymerization was 1 to 3 C7 cm2. Here, it was confirmed by X-ray analysis of the prepared polymer film that the υ poly(3-methylthiophene) chains were oriented.

しかして、パルス電位のかわシに定電位を印加した配向
重合膜の導電率は100〜650 S/crn程度であ
るが、ノ4ルス電位を印加して調製した配向電解重合膜
の導電率は定電位印加の場合と比較して約10〜30%
増加した。
Therefore, the conductivity of an oriented polymer film prepared by applying a constant potential to a pulse potential is about 100 to 650 S/crn, but the conductivity of an oriented electrolytic polymer film prepared by applying a Norse potential is Approximately 10-30% compared to constant potential application
increased.

〔実施例2〕 次に配向ポリチオフェンの調製の場合について説明する
[Example 2] Next, the preparation of oriented polythiophene will be described.

まず、チオフェン濃度0.1〜0.3M、支持電解質濃
度0.02〜0.1M電解重合溶液(溶媒:fロビレン
カーボネート又はアセトニトリル)を調整する。但し、
支持電解質としてテトラエチルアン6一 モニウムノセークロレート、テトラ−n−プチルアンモ
ニウムノ4−クロレートt−用いた。つツイテ、電解重
合溶液を重合容器内に充填する。溶液温度は0〜30℃
とする。次いで、実施例1と同様に、内側の円筒(作用
電極)を高速(500〜10,000rpm )で回転
させた後、A?ルス亀流(電解電流密度:1〜10℃ヤ
缶2、パルス幅: 10−2〜1 sec 。
First, an electropolymerization solution (solvent: f-robilene carbonate or acetonitrile) with a thiophene concentration of 0.1 to 0.3M and a supporting electrolyte concentration of 0.02 to 0.1M is prepared. however,
Tetraethylammonium 6-monium nocechlorate and tetra-n-butylammonium 4-chlorate t- were used as supporting electrolytes. First, fill the electrolytic polymerization solution into the polymerization container. Solution temperature is 0~30℃
shall be. Next, as in Example 1, after rotating the inner cylinder (working electrode) at high speed (500 to 10,000 rpm), A? Luss current (electrolytic current density: 1 to 10°C, pulse width: 10-2 to 1 sec.

周期二〇、5〜5 sec )を印加した。なお、重合
に要した総電荷量は1〜3C/crn2とした。ここで
、調整した重合膜のX線解析によりポリチオフェン鎖が
配向することを確認し友。
A period of 20, 5 to 5 sec) was applied. Note that the total amount of charge required for polymerization was 1 to 3 C/crn2. Here, we confirmed that the polythiophene chains were oriented by X-ray analysis of the prepared polymer film.

/?ルス電流のかわりに定電流を印加した配向重合膜の
導電率は20〜180 S/m程度であるが、本発明の
工うにパルス電流を印加して調製した配向重合膜の導電
率は定電流印加の場合と比較して約10〜20%増加し
た。
/? The conductivity of an oriented polymer film prepared by applying a constant current instead of a pulse current is about 20 to 180 S/m, but the conductivity of an oriented polymer film prepared by applying a pulse current according to the method of the present invention is about 20 to 180 S/m. It increased by about 10-20% compared to the case of application.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、電解重合中に剪断応
力を与えるが、電解重合をパルス電流またはパルス電位
の印加により行ない、分子配向度の増加による高導電率
を達成することによる汎用かつ有効な高導電性高分子の
調製法を提供できる。
As detailed above, according to the present invention, shear stress is applied during electropolymerization, but electropolymerization is performed by applying a pulse current or pulse potential, and high conductivity is achieved by increasing the degree of molecular orientation. An effective method for preparing highly conductive polymers can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の方法に使用される装置の概略医である。 The figure is a schematic diagram of the apparatus used in the method of the invention.

Claims (1)

【特許請求の範囲】[Claims] 導電性高分子を含む電解重合溶液に、剪断力とパルス電
流を連続的に印加して電解重合を行わせ、導電性高分子
を得ることを特徴とする導電性高分子電解重合法。
A conductive polymer electrolytic polymerization method characterized in that a conductive polymer is obtained by electrolytically polymerizing an electrolytic polymer solution containing a conductive polymer by continuously applying a shearing force and a pulsed current.
JP13186089A 1989-05-25 1989-05-25 Electrolytic polymerization of electroconductive polymer Pending JPH02308811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13186089A JPH02308811A (en) 1989-05-25 1989-05-25 Electrolytic polymerization of electroconductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13186089A JPH02308811A (en) 1989-05-25 1989-05-25 Electrolytic polymerization of electroconductive polymer

Publications (1)

Publication Number Publication Date
JPH02308811A true JPH02308811A (en) 1990-12-21

Family

ID=15067817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13186089A Pending JPH02308811A (en) 1989-05-25 1989-05-25 Electrolytic polymerization of electroconductive polymer

Country Status (1)

Country Link
JP (1) JPH02308811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014965A1 (en) * 2002-08-08 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Molecule alignment polymer gel and molecule alignment polymer cast film having self-organizing amphiphilic compound as template and process for producing the same
EP2224796A1 (en) * 2009-02-26 2010-09-01 ZYRUS Beteiligungsgesellschaft mbH & Co. Patente I KG Method for producing a metal structure on a substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193286A (en) * 1983-04-14 1984-11-01 Matsushita Electric Ind Co Ltd Electrolytic oxidative polymerization
JPS6130689A (en) * 1984-07-23 1986-02-12 Matsushita Electric Ind Co Ltd Electrolytically polymerizing method
JPS62138525A (en) * 1985-12-13 1987-06-22 Furukawa Electric Co Ltd:The Production of electrically conductive polymeric material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193286A (en) * 1983-04-14 1984-11-01 Matsushita Electric Ind Co Ltd Electrolytic oxidative polymerization
JPS6130689A (en) * 1984-07-23 1986-02-12 Matsushita Electric Ind Co Ltd Electrolytically polymerizing method
JPS62138525A (en) * 1985-12-13 1987-06-22 Furukawa Electric Co Ltd:The Production of electrically conductive polymeric material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014965A1 (en) * 2002-08-08 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Molecule alignment polymer gel and molecule alignment polymer cast film having self-organizing amphiphilic compound as template and process for producing the same
US7678880B2 (en) 2002-08-08 2010-03-16 Honda Giken Kogyo Kabushiki Kaisha Molecular oriented polymer gel and cast film with self-organizable amphiphilic compound as template, and their production methods
EP2224796A1 (en) * 2009-02-26 2010-09-01 ZYRUS Beteiligungsgesellschaft mbH & Co. Patente I KG Method for producing a metal structure on a substrate
WO2010097231A1 (en) * 2009-02-26 2010-09-02 Zyrus Beteiligungsgesellschaft Mbh & Co. Patente I Kg Apparatus and method for producing a conductive structured polymer film

Similar Documents

Publication Publication Date Title
Heinze et al. Experimental and theoretical studies on the redox properties of conducting polymers
Ghanbari et al. Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries
Heinze et al. Electrochemically Induced Structural Changes in Conducting Polymers
Otero et al. Reversible electrochemical reactions in conducting polymers: a molecular approach to artificial muscles
Goldenberg et al. Benzene polymerization in 1-ethyl-3-methylimidazolium chloride-AlCl3 ionic liquid
Kitani et al. Flexible polyaniline
DE69715392T2 (en) MATERIALS WITH HIGH ELECTRICAL CONDUCTIVITY AT ROOM TEMPERATURE AND METHOD FOR THE PRODUCTION THEREOF
JPH02308811A (en) Electrolytic polymerization of electroconductive polymer
Li et al. Low potential electrochemical polymerization of benzene in a composite electrolyte of boron trifluoride diethyl etherate and trifluoroacetic acid
Kathirgamanathan et al. Partially immersed cylindrical horizontally revolving electrodes for the production of conducting polymers
Atobe et al. Anodic polymerization of aromatic compounds in centrifugal fields
Naarmann Synthesis, Properties and Applications of Perconjugated Systems
Mirmohseni et al. Ion exchange properties of polypyrrole studied by electrochemical quartz crystal microbalance (EQCM)
Saçak et al. Raman and ir spectroscopy of electrochemically obtained conducting and non-conducting poly (N-vinylcarbazole)
Kupila et al. Redox processes in thick films of polypyrrole/dodecylsulfate in the presence of alkali and tetramethylammonium chlorides
JPH01139783A (en) Preparation of highly conductive polymer
Saçak et al. Characterization of electrochemically produced, two-component films of conducting polymers by Raman microscopy
JPS60137922A (en) Apparatus for electrolytic polymerization
Koeckelberghs et al. Polar Order in Spin‐Coated Films of a Regioregular Chiral Poly [(S)‐3‐(3, 7‐dimethyloctyl) thiophene]
Kim et al. Ion conductivities and interfacial characteristics of the plasticized polymer electrolytes based on poly (methyl methacrylate-co-Li maleate)
Chiarelli et al. A polymer composite showing electrocontractile response
JP2653048B2 (en) Conductive polymer composite and method for producing the same
JP4257293B2 (en) MOLECULAR ORIENTED POLYMER GEL, MOLECULAR ORIENTED POLYMER CAST FILM USING SELF-ORGANIZING AMPHOPHILIC COMPOUND AS TEMPLATE, AND METHOD FOR PRODUCING THEM
Abeysekera et al. Electroactive poly (amino acids). Part 1. Modified electrodes from platinum with an adsorbed film of poly (N ε-4-nitrobenzoyl-L-lysine)
Marco et al. Optical and electrical characterization of polymers obtained by electro-oxidation of [1] benzothieno [3, 2-b] indole derivatives