JPH02308535A - Plasma treatment apparatus for forming compound thin film - Google Patents

Plasma treatment apparatus for forming compound thin film

Info

Publication number
JPH02308535A
JPH02308535A JP12876989A JP12876989A JPH02308535A JP H02308535 A JPH02308535 A JP H02308535A JP 12876989 A JP12876989 A JP 12876989A JP 12876989 A JP12876989 A JP 12876989A JP H02308535 A JPH02308535 A JP H02308535A
Authority
JP
Japan
Prior art keywords
chamber
plasma
evaporation source
reaction chamber
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12876989A
Other languages
Japanese (ja)
Inventor
Masaharu Tanaka
正治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12876989A priority Critical patent/JPH02308535A/en
Publication of JPH02308535A publication Critical patent/JPH02308535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form a high quality compound film by a method wherein gases which are produced in a plasma generating chamber and an evaporation source chamber and not necessary for forming the film are removed and a plasma particle flow and an evaporation atom flow are formed through a fine holes provided between the plasma generating chamber and a reaction chamber and between the evaporation source chamber and the reaction chamber respectively. CONSTITUTION:A plasma generating chamber 4, an evaporation source chamber 20 and a reaction chamber 5 are evacuated in a differential manner to eliminate most of raw gases or rare gases which do not contribute to plasma generation from a plasma generation in the generating chamber 4 by an evacuation pump 8. At the same time, charged particles, active species and plasma lights in the plasma are made to flow through the fine hole 13a of a conical skimmer 13 into the reaction chamber 5 maintained in a high vacuum state and reach a work substrate 15 on a substrate holder 14. On the other hand, an evaporated atom flow from the evaporation source chamber 20 are made to flow through the fine hole 22a of a conical skimmer 22 into the reaction chamber 5 maintained in a high vacuum and guided to the work substrate 15 on the substrate holder 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロ波を利用した化合物薄膜形成用プラ
ズマ処理装置に関し、特に、半導体、絶縁体等の基板に
化合物薄膜を形成するに適したプラズマ処理装置に関す
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a plasma processing apparatus for forming compound thin films using microwaves, and in particular, to a plasma processing apparatus suitable for forming compound thin films on substrates such as semiconductors and insulators. This invention relates to plasma processing equipment.

〔従来の技術〕[Conventional technology]

近年、プラズマを利用したドライプロセスが、半導体デ
バイス製造等の工程における薄膜形成技術として、一般
的に普及し、従来の被処理材料を加熱する必要のあるC
VD法に換えて、低温成膜技術として採用されている。
In recent years, dry processes using plasma have become popular as a thin film forming technology in processes such as semiconductor device manufacturing, and C
It has been adopted as a low-temperature film formation technology in place of the VD method.

その例として、プラズマCVDは表面改質のため、イオ
ン窒化などの成膜方法、成膜対象も多岐に亙っている。
For example, since plasma CVD is used for surface modification, there are a wide variety of film forming methods such as ion nitridation, and a wide range of film forming targets.

・この低温プラズマプロセスは電子サイクロトロン共鳴
法(ECR)を用いてプラズマを得て成膜する場合、低
い圧力でのプラズマの生成が可能であり、成膜成長速度
が大きく、不純物に汚染されることが少なく、均一な膜
形成ができることが期待されている。
・This low-temperature plasma process uses electron cyclotron resonance (ECR) to obtain plasma to form a film, and it is possible to generate plasma at low pressure, resulting in a high film growth rate and the risk of contamination with impurities. It is expected that uniform film formation will be possible.

従来、活性化反応性蒸着法は、プラズマを利用した低温
成膜技術の一つであるが、ECRを利用することにより
、形成された薄膜中に含まれる不純物の発生を少なくす
ることができることが知られている。
Conventionally, activated reactive vapor deposition is a low-temperature film formation technology that uses plasma, but by using ECR, it is possible to reduce the generation of impurities contained in the formed thin film. Are known.

例えば、特開昭61−135126号には、活性化イオ
ン源としてECRプラズマを用い、ECRプラズマ流の
影響を避けた位置に蒸発源を配置し、同一真空容器内の
蒸発源の原子流とプラズマの荷電粒子の照射効果によっ
て、作業基板上に不純物の少ない均一な薄膜を形成する
ことが記載されている。
For example, in JP-A No. 61-135126, an ECR plasma is used as an activated ion source, the evaporation source is placed in a position that avoids the influence of the ECR plasma flow, and the atomic flow and plasma of the evaporation source in the same vacuum container are It has been described that a uniform thin film with few impurities can be formed on a working substrate by the irradiation effect of charged particles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のこの種のマイクロ波を利用した化合物薄膜形成用
プラズマ処理装置において、プラズマ発生源と蒸発源と
を同一の真空容器内に配置している以上、プラズマ発生
源と蒸発源との相互の干渉は避けることができない。
In conventional plasma processing equipment for compound thin film formation using microwaves of this kind, since the plasma generation source and the evaporation source are placed in the same vacuum container, mutual interference between the plasma generation source and the evaporation source is avoided. cannot be avoided.

特に、10−’Torr以下の低い圧力領域において発
生するプラズマを利用して良質な薄膜形成を期待する場
合、例えば、蒸発源の蒸発原子と共に混在する坩堝材の
元素による作業基板、真空系への汚染化や、前記不純物
とプラズマの荷電粒子。
In particular, when it is expected to form a high-quality thin film using plasma generated in a low pressure region of 10-' Torr or less, for example, the work substrate or vacuum system may be Contamination and charged particles of said impurities and plasma.

活性種との干渉、反応、汚染を生じることになる。Interference with active species, reaction, and contamination will occur.

本発明は、作業基板を配置する反応室とは別にプラズマ
発生源を含むプラズマ発生源室、蒸発源を含む蒸発源室
とを個別に真空排気して、各室の相互干渉による汚染の
発生を極力避け、汚染物質の反応室への流入を阻止し、
プラズマ発生源室から荷電粒子、活性種を、蒸発源室か
ら金属原子をそれぞれ反応室へ正確に流入させる手段を
備えた化合物薄膜形成用プラズマ処理装置を提供するこ
とを目的とするものである。
The present invention separately evacuates the plasma generation source chamber containing the plasma generation source and the evaporation source chamber containing the evaporation source in addition to the reaction chamber in which the work substrate is placed, thereby preventing the occurrence of contamination due to mutual interference between the respective chambers. Avoid as much as possible and prevent contaminants from entering the reaction chamber.
It is an object of the present invention to provide a plasma processing apparatus for forming a compound thin film, which is equipped with means for accurately flowing charged particles and active species from a plasma source chamber and metal atoms from an evaporation source chamber into a reaction chamber.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記目的を達成するために、プラズマ発生室で
原料ガスのうちの一つの元素ガスを電子サイクロトロン
共鳴法によりプラズマ化して反応室内の作業基板に照射
すると共に、金属9合金を蒸発させる蒸発源室からの金
属原子流を作業基板に向かわせて、プラズマ粒子と蒸発
金属とによる反応生成物を反応室に設けた作業基板表面
に化合物薄膜として形成するプラズマ処理装置において
、プラズマ発生室及び蒸発源室のそれぞれに反応室の真
空排気手段とは別に真空排気手段を設け、プラズマ発生
室及び蒸発源室において生じた薄膜形成に不要なガスを
除去し、プラズマ発生室及び蒸発源室と反応室との間に
設けた細孔を介してプラズマ粒子流、蒸発原子流を形成
することを特徴とするものである。
In order to achieve the above object, the present invention turns one elemental gas of raw material gases into plasma in a plasma generation chamber using an electron cyclotron resonance method, irradiates a work substrate in a reaction chamber, and evaporates metal 9 alloy. In a plasma processing apparatus, a flow of metal atoms from a source chamber is directed toward a work substrate, and a reaction product of plasma particles and evaporated metal is formed as a thin compound film on the surface of a work substrate provided in the reaction chamber. A vacuum evacuation means is provided in each of the source chambers separately from the evacuation means for the reaction chamber, and gases unnecessary for thin film formation generated in the plasma generation chamber and the evaporation source chamber are removed, and the plasma generation chamber, the evaporation source chamber, and the reaction chamber are It is characterized by forming a plasma particle flow and an evaporated atom flow through the pores provided between the two.

〔作 用〕[For production]

本発明の構成により、作業基板を配置する反応室とは別
にプラズマ発生源を含むプラズマ発生源室、蒸発源を含
む蒸発源室のそれぞれを個別に真空排気して、各室の相
互干渉による汚染の発生を極力避け、汚染物質が反応室
へ流入することを阻止し、プラズマ発生源室から荷電粒
子、活性種を、蒸発源室から金属原子をそれぞれ反応室
へ正確に流入させ、作業基板上に良質の薄膜を形成する
ことができる。
According to the configuration of the present invention, each of the plasma generation source chamber containing the plasma generation source and the evaporation source chamber containing the evaporation source is evacuated separately from the reaction chamber in which the work substrate is arranged, thereby preventing contamination due to mutual interference between the respective chambers. This prevents contaminants from flowing into the reaction chamber as much as possible, and allows charged particles and active species to flow accurately into the reaction chamber from the plasma source chamber and metal atoms from the evaporation source chamber. can form a high-quality thin film.

〔実施例] 以下、本発明の実施例を図面に基づいて説明する。〔Example] Embodiments of the present invention will be described below based on the drawings.

第1図には、電子サイクロトロン共鳴(ECR)法によ
り生成されたプラズマ使用の活性化反応性蒸着法からな
るプラズマ処理装置が示されている。
FIG. 1 shows a plasma processing apparatus comprising activated reactive vapor deposition using plasma generated by electron cyclotron resonance (ECR).

■はマイクロ波発注器であり、マイクロ波発生器1で発
生したマイクロ波は導波管2a、2b、2c、2dを経
て電磁石3a〜3dにより包囲されたプラズマ発生室4
に導かれる。プラズマ発生室4は真空容器本体である反
応室5の一端に形成されており、プラズマ発生室4には
、原料ガス又は放電を生じせしめるための希ガスがガス
供給装置6、マスフローコントローラ7により所定N 
注入され、プラズマ発生室4は排気ポンプ8.可変コン
ダクタンスバルブ9によって所定の圧力に保たれる。排
気ポンプ8は排気容量が比較的小さい高真空排気ポンプ
、例えばターボ分子ポンプを用いている。10は補助バ
ルブ、11は補助ポンプである。
3 is a microwave ordering device, and the microwave generated by the microwave generator 1 passes through waveguides 2a, 2b, 2c, and 2d to a plasma generation chamber 4 surrounded by electromagnets 3a to 3d.
guided by. The plasma generation chamber 4 is formed at one end of the reaction chamber 5 which is the main body of the vacuum container, and the plasma generation chamber 4 is supplied with a raw material gas or a rare gas for generating electric discharge in a predetermined manner by a gas supply device 6 and a mass flow controller 7. N
The plasma generation chamber 4 is pumped with an exhaust pump 8. A predetermined pressure is maintained by a variable conductance valve 9. The exhaust pump 8 uses a high vacuum exhaust pump with a relatively small exhaust capacity, such as a turbo molecular pump. 10 is an auxiliary valve, and 11 is an auxiliary pump.

マイクロ波導波管2a〜2dよりマイクロ波が石英窓1
2を介してプラズマ発生室4に供給されると、空芯磁界
コイルである電磁石3a〜3dとの作用により、プラズ
マが発生し、プラズマ発生に関与しない原料ガス又は希
ガスの大部分は排気ポンプ8により排除される。プラズ
マ発生室4で生成されたプラズマ中の荷電粒子、活性種
、プラズマ光は、コーン形状のスキマー13の細孔13
aを介して高真空状態に設定された反応室5内に噴流し
、反応室5に配置された基板ホルダー14上の作業基板
15に達する。スキマー13のコーン形状部分は、石英
又はアルミナセラミックス等の高誘電率体で作られ、水
冷可能な構造となっている。
Microwaves are transmitted from the microwave waveguides 2a to 2d to the quartz window 1.
2 to the plasma generation chamber 4, plasma is generated by the action of the electromagnets 3a to 3d, which are air-core magnetic field coils, and most of the source gas or rare gas that does not participate in plasma generation is removed by the exhaust pump. 8 is excluded. Charged particles, active species, and plasma light in the plasma generated in the plasma generation chamber 4 are transferred to the pores 13 of the cone-shaped skimmer 13.
The liquid flows into the reaction chamber 5 set in a high vacuum state through the tube a, and reaches the work substrate 15 on the substrate holder 14 disposed in the reaction chamber 5. The cone-shaped portion of the skimmer 13 is made of a high dielectric constant material such as quartz or alumina ceramics, and has a structure that can be water cooled.

作業基板15を配置した反応室5の高真空状態を設定す
るために、大きな排気速度を有する真空ポンプである主
ポンプ16が主バルブ17を介して設けられている。反
応室5の圧力は可変コンダクタンスバルブ18により精
度よく制御される。
In order to establish a high vacuum state in the reaction chamber 5 in which the work substrate 15 is placed, a main pump 16, which is a vacuum pump having a high pumping speed, is provided via a main valve 17. The pressure in the reaction chamber 5 is precisely controlled by a variable conductance valve 18.

反応室5内へ噴流するプラズマ粒子流に対向する位置に
、永久磁石19が作業基板15に接離自在に設けられ、
プラズマ粒子流の拡がりを変化させることができる。
A permanent magnet 19 is provided at a position facing the plasma particle flow jetting into the reaction chamber 5 so as to be able to move toward and away from the work substrate 15.
The spread of the plasma particle stream can be changed.

反応室5に設けられた作業基板15へ、プラズマ粒子流
と直交する蒸発原子流を与えるために、反応室5の底部
側に蒸発源室20が設けられている。蒸発源室20は電
子ビーム蒸発源等の蒸発源を含み、ターボ分子ポンプの
如き高真空排気ポンプ21を接続し、真空状態に排気さ
れる。
An evaporation source chamber 20 is provided on the bottom side of the reaction chamber 5 in order to provide a work substrate 15 provided in the reaction chamber 5 with an evaporation atom flow perpendicular to the plasma particle flow. The evaporation source chamber 20 includes an evaporation source such as an electron beam evaporation source, is connected to a high vacuum evacuation pump 21 such as a turbo molecular pump, and is evacuated to a vacuum state.

蒸発源室20と反応室5の間には、コーン形状のスキマ
ー22が位置し、蒸発源室20の蒸発金属流はスキマー
22の細孔22aを介して反応室5に噴流すると共に、
ラッパ形状の遮蔽板23が位置し、蒸発原子流を作業基
板15に導くことができる。
A cone-shaped skimmer 22 is located between the evaporation source chamber 20 and the reaction chamber 5, and the evaporated metal flow in the evaporation source chamber 20 is jetted into the reaction chamber 5 through the pores 22a of the skimmer 22.
A trumpet-shaped shielding plate 23 is positioned to guide the vaporized atom flow to the work substrate 15.

図面において、24は補助ポンプ、25は蒸発源家主バ
ルブ、26は反応室粗引バルブ、27゜28は補助バル
ブ、29〜31は真空計、32は蒸発漁家粗引バルブ、
33はプラズマ流、34は蒸発原子流を示している。
In the drawing, 24 is an auxiliary pump, 25 is an evaporation source homeowner valve, 26 is a reaction chamber roughing valve, 27 and 28 are auxiliary valves, 29 to 31 are vacuum gauges, 32 is an evaporation source roughing valve,
33 indicates a plasma flow, and 34 indicates an evaporated atom flow.

尚、図示されていないが、プラズマ発生室4と反応室5
の間、反応室5と蒸発源室20の間にはそれぞれシャッ
タが設けられている。主ポンプ16にクライオポンプを
用いることにより、主ポンプ立ち上げ後、補助ポンプ2
4は反応室5及び蒸発源室20の粗引き排気専用として
使用し、この粗引き終了後は、蒸発源室20を真空排気
用排気ポンプ21の補助排気として使用される。
Although not shown, the plasma generation chamber 4 and the reaction chamber 5
During this period, a shutter is provided between the reaction chamber 5 and the evaporation source chamber 20, respectively. By using a cryopump as the main pump 16, after starting up the main pump, the auxiliary pump 2
4 is used exclusively for rough evacuation of the reaction chamber 5 and the evaporation source chamber 20, and after the rough evacuation is completed, the evaporation source chamber 20 is used as an auxiliary evacuation for the evacuation pump 21 for vacuum evacuation.

又、プラズマ発生室4と反応室5との間に設けたスキマ
ー13.及び蒸発源室20と反応室5との間に設けたス
キマー22はその細孔形状、細孔径の異なる形式があり
、交換可能に取り付けることができる。
Also, a skimmer 13 provided between the plasma generation chamber 4 and the reaction chamber 5. The skimmer 22 provided between the evaporation source chamber 20 and the reaction chamber 5 has different pore shapes and pore diameters, and can be attached interchangeably.

本発明において、反応室5に高真空排気の主ポンプ16
、プラズマ発生室4及び蒸発源室20のそれぞれに高真
空排気ポンプ8,21を備え、プラズマ発生室4の圧力
を、例えばlXl0−2Paになるように設置し、蒸発
源室20の圧力を、lXl0−”Pa以下のlXl0−
3Paに設置し、反応室5は真空蒸着に適する高真空状
態の1×1O−5Paに維持することができる。
In the present invention, a main pump 16 for high vacuum evacuation is provided in the reaction chamber 5.
, the plasma generation chamber 4 and the evaporation source chamber 20 are each equipped with high vacuum pumps 8 and 21, and the pressure in the plasma generation chamber 4 is set to, for example, lXl0-2Pa, and the pressure in the evaporation source chamber 20 is lXl0-” below lXl0-”Pa
3 Pa, and the reaction chamber 5 can be maintained at 1×1 O −5 Pa, which is a high vacuum state suitable for vacuum evaporation.

このような各室を差動排気することにより、プラズマ発
生室4で発生したプラズマの中、プラズマの発生に関与
しない原料ガス又は希ガスの大部分は排気ポンプ8によ
り排除されると共に、プラズマ中の荷電粒子、活性種、
プラズマ光は、コーン形状のスキマー13の細孔13a
を介して高真空状態に設定された反応室5内に噴流し、
反応室5に配置された基板ホルダー14上の作業基板1
5に達する。
By differentially pumping each chamber, most of the raw material gas or rare gas that does not participate in plasma generation in the plasma generated in the plasma generation chamber 4 is removed by the exhaust pump 8, and the plasma generated in the plasma generation chamber 4 is charged particles, active species,
The plasma light is transmitted through the pores 13a of the cone-shaped skimmer 13.
is jetted into the reaction chamber 5 set in a high vacuum state through the
Work substrate 1 on substrate holder 14 placed in reaction chamber 5
Reach 5.

又、蒸発源室20における制約から上記の真空状態に設
定され′、熱エネルギーの高い蒸発原子塊以外の不要粒
子は真空排気ポンプ21により排気されると共に、蒸発
原子流はコーン形状のスキマー21の細孔21aを介し
て高真空状態に設定された反応室5内に噴流し、反応室
5に配置された基板ホルダー14上の作業基板15に導
くことができる。
Also, due to the constraints in the evaporation source chamber 20, the above-mentioned vacuum state is set, and unnecessary particles other than the evaporated atomic mass with high thermal energy are evacuated by the vacuum exhaust pump 21, and the evaporated atomic flow is passed through the cone-shaped skimmer 21. The liquid can be jetted into the reaction chamber 5 set in a high vacuum state through the pore 21a and guided to the work substrate 15 on the substrate holder 14 disposed in the reaction chamber 5.

第2図には、二つの室間の差動排気の原理図を示してい
る。
FIG. 2 shows a diagram of the principle of differential pumping between two chambers.

二つの真空容器35.36との間には、オリフィスを形
成したスキマーである邪魔板37が位置している。オリ
フィスの細孔径をd [m]とし、二つの真空容器35
.36にはそれぞれの真空ポンプが設けられ、真空容器
35は排気圧力をPo(Pa)に維持されている。真空
容器36も真空ポンプで排気され、その実効的な排気速
度をSe(m3/S)とする。この場合、真空容器35
から真空容器36ヘオリフイスの細孔径を通って定常的
に流れる気体の量をQ (Pa−m3/s)とする。真
空容器36は排気速度をSeを与える真空ポンプによっ
て排気され、その排気圧力がP。
A baffle plate 37, which is a skimmer with an orifice formed therein, is located between the two vacuum vessels 35 and 36. The pore diameter of the orifice is d [m], and two vacuum vessels 35
.. 36 are provided with respective vacuum pumps, and the exhaust pressure of the vacuum container 35 is maintained at Po (Pa). The vacuum container 36 is also evacuated by a vacuum pump, and its effective pumping speed is assumed to be Se (m3/S). In this case, the vacuum container 35
Let Q (Pa-m3/s) be the amount of gas that steadily flows through the pore diameter of the vacuum vessel 36 orifice. The vacuum vessel 36 is evacuated by a vacuum pump giving an evacuation speed Se, and the evacuation pressure is P.

(Pa)に到達しているとすれば、定常的な流れにおい
て、真空容器壁などからのガス放出量が気体の量に比べ
て極めて小さい場合は次式で示される。
(Pa), when the amount of gas released from the wall of the vacuum container is extremely small compared to the amount of gas in a steady flow, it is expressed by the following equation.

Q=C(P、−P、)。Q=C(P, -P,).

P、=Q/Se。P,=Q/Se.

よって、 5e−P、=C(Po  P+ )。Therefore, 5e-P, =C(Po P+).

ここで、Cは断面積A (m” )をもつオリフィス(
細孔)の有するコンダクタンスであり、Cは116A 
(m3/s)である。
Here, C is an orifice (
is the conductance of the pore), and C is 116A
(m3/s).

これらの式はいずれも気体の流れについて分子流領域に
対して成り立つものである。
All of these equations hold true for the molecular flow region of gas flow.

今、Pa−lX1O−”(Pa)。Now, Pa-1X1O-” (Pa).

5e=0.5 (m″/sl。5e=0.5 (m″/sl.

d−8X 10−’ (m)とすれば、P+ =4.6
X10−’(Pa)となる。
If d-8X 10-' (m), P+ = 4.6
X10-'(Pa).

よって、真空容器35をプラズマ発生室4又は蒸発源室
20とし、真空容器36を反応室5とすることによって
、差動排気の構成を得ることができる。
Therefore, by using the vacuum container 35 as the plasma generation chamber 4 or the evaporation source chamber 20 and the vacuum container 36 as the reaction chamber 5, a differential pumping configuration can be obtained.

第3図には、第1図に示されたプラズマ発生室4と反応
室5との間に位置するスキマー13の具体的構成の一実
施例である。
FIG. 3 shows an example of a specific configuration of the skimmer 13 located between the plasma generation chamber 4 and the reaction chamber 5 shown in FIG. 1.

プラズマ発生室4と反応室5とは、スキマー13により
密封状態に隔離し、且つ、スキマー13は反応室5の壁
部と絶縁状態を保って着脱自在に取付ける必要がある。
The plasma generation chamber 4 and the reaction chamber 5 must be hermetically isolated by the skimmer 13, and the skimmer 13 must be detachably attached while maintaining insulation from the wall of the reaction chamber 5.

スキマ一部を反応室の壁部から絶縁することにより、プ
ラズマ中の荷電粒子の流れに影響を生じることを避は得
る。
By insulating a portion of the gap from the wall of the reaction chamber, it is possible to avoid affecting the flow of charged particles in the plasma.

このため、プラズマ発生室49反応室5の間の内壁38
には、絶縁継手39を介してスキマーが取付けられてい
る。絶縁継手39はアルミナ等のセラミック材39aの
両側に真空用フランジ39b、39cを備えており、一
方の真空用フランジ39bはメタル中空リング40を介
して内壁38に支持されると共に、他方の真空用フラン
ジ39Cはスキマ一部41に形成した金属フランジ41
Cにメタルガスケット42を介して結合されている。
For this reason, the inner wall 38 between the plasma generation chamber 49 and the reaction chamber 5
A skimmer is attached to the insulating joint 39. The insulating joint 39 is equipped with vacuum flanges 39b and 39c on both sides of a ceramic material 39a such as alumina, one vacuum flange 39b is supported by the inner wall 38 via a metal hollow ring 40, and the other vacuum The flange 39C is a metal flange 41 formed in the gap part 41.
C via a metal gasket 42.

スキマ一部41は中央に細孔41aを形成したアルミナ
等の高誘電体のコーン状部41bを備え、コーン状部4
1bの端部に前記金属フランジ41Cを設けており、電
磁波の吸収、°反射を抑えることができる。43は絶縁
継手39の真空用フランジ39b、39c及びスキマ一
部41の金属フランジ41cの近傍に設けられた水冷用
パイプであり、マイクロ波による局所的な発熱、プラズ
マ流の照射による発熱を抑えることができる。
The gap portion 41 includes a cone-shaped portion 41b made of a high dielectric material such as alumina with a pore 41a formed in the center.
The metal flange 41C is provided at the end of 1b to suppress absorption and reflection of electromagnetic waves. 43 is a water cooling pipe provided near the vacuum flanges 39b, 39c of the insulating joint 39 and the metal flange 41c of the gap part 41, and is designed to suppress local heat generation due to microwaves and heat generation due to plasma flow irradiation. I can do it.

スキマ一部41はプラズマ流を反応室への送り出しの態
様により、その形状を変えることができ、着脱可能に取
付けられる。
The gap portion 41 can change its shape depending on the manner in which the plasma flow is sent to the reaction chamber, and is detachably attached.

そのスキマ一部41の細孔41aの形状は、円形である
以外、種々の形状のものを用いることができる。プラズ
マ発生室4で生成されたプラズマ流を反応室5に引き出
すため、プラズマ流の拡がりは、反応室5内の永久磁石
の位置の変更により制御する他、基板の大きさによって
は、細孔の形状を選択して制御することができる。
The shape of the pores 41a of the gap portion 41 may be of various shapes other than circular. In order to draw out the plasma flow generated in the plasma generation chamber 4 into the reaction chamber 5, the spread of the plasma flow is controlled by changing the position of the permanent magnet in the reaction chamber 5. Shapes can be selected and controlled.

その細孔の形状の一例を、第4図(イ)(ロ)に示して
いる。第4図(イ)の場合の細孔は、中心の円形状細孔
44と、円形状細孔44から放射状の複数のスリット4
5からなり、第4図(ロ)の場合の細孔は、中心の円形
状細孔44と、円形状細孔44の周りには数十ミクロン
の複数の微細孔46からなる。基板の形状との関係で、
細孔形状と永久磁石の磁場との効果によりプラズマ流を
基板表面に均等に照射できる。
An example of the shape of the pores is shown in FIGS. 4(a) and 4(b). The pores in the case of FIG. 4(a) include a central circular pore 44 and a plurality of slits 4 radiating from the circular pore 44.
The pores in the case of FIG. 4(b) consist of a central circular pore 44 and a plurality of micropores 46 of several tens of microns around the circular pore 44. In relation to the shape of the board,
The plasma flow can be uniformly irradiated onto the substrate surface due to the effect of the pore shape and the magnetic field of the permanent magnet.

第5図には、第1図に示された蒸発源室20と反応室5
との間に位置するスキマー22の具体的構成の一実施例
である。
FIG. 5 shows the evaporation source chamber 20 and reaction chamber 5 shown in FIG.
This is an example of a specific configuration of the skimmer 22 located between the two.

蒸発源室20と反応室5とは、スキマー22により密封
状態に隔離し、スキマー22から反応室5に噴出する蒸
発原子流の不必要な拡散を防ぎ、しかもスキマー22は
使用サンプルを変える場合等において交換、洗浄するこ
とから、壁部に着脱自在に取付ける必要がある。
The evaporation source chamber 20 and the reaction chamber 5 are hermetically isolated by a skimmer 22 to prevent unnecessary diffusion of the evaporated atom flow ejected from the skimmer 22 to the reaction chamber 5. Moreover, the skimmer 22 is used when changing the sample used, etc. Since it must be replaced and cleaned at the time of use, it must be removably attached to the wall.

このため、蒸発源室209反応室5の間の内壁38に取
り付けた金属フランジ38aには、スキマ一部47の金
属フランジ47cがメタルガスケット48を介して着脱
可能に取付けられている。
Therefore, a metal flange 47c of the gap portion 47 is removably attached to a metal flange 38a attached to the inner wall 38 between the evaporation source chamber 209 and the reaction chamber 5 via a metal gasket 48.

スキマ一部47は中央に細孔47aを形成した金属材の
コーン状部47bを備え、前記コーン状部47bの端部
に金属フランジ47Cを設けている。
The gap portion 47 includes a cone-shaped portion 47b made of a metal material with a pore 47a formed in the center, and a metal flange 47C is provided at the end of the cone-shaped portion 47b.

このスキマ一部47を取り囲むように、筒状に伸びた遮
蔽板49が内壁38に支持され、この遮蔽板49とスキ
マ一部47との間に位置する空間の排気のために、遮蔽
板49には排気孔部49aが設けられている。50は溶
接部である。
A shielding plate 49 extending into a cylindrical shape is supported by the inner wall 38 so as to surround the gap portion 47. The shielding plate 49 is used to exhaust the space located between the shielding plate 49 and the gap portion 47. An exhaust hole portion 49a is provided in the exhaust hole portion 49a. 50 is a welding part.

〔効 果〕〔effect〕

本発明の構成において、反応室、プラズマ発生室、蒸発
源室をそれぞれ排気動作により所定の排気圧力を得ると
共に、プラズマ発生室と反応室。
In the configuration of the present invention, a predetermined exhaust pressure is obtained by exhausting the reaction chamber, the plasma generation chamber, and the evaporation source chamber, respectively, and the plasma generation chamber and the reaction chamber are evacuated.

蒸発源室と反応室との間にコーン形状のスキマーを設け
たことにより、反応室の作業基板は、プラズマ発生室、
蒸発源室からの相互干渉の影響を少なくして、良好な化
合物薄膜を形成することができる。すなわち、反応室、
プラズマ発生室、蒸発源室の王室の差動排気により、プ
ラズマ発生室内において注入された原料ガスのうち、プ
ラズマ生成に関与しないガス分子をプラズマ発生室内で
直接排気除去することができ、プラズマ生成に関与しな
いガス分子が反応室、蒸発源室に拡散することを防ぎ、
この結果、作業基板2反応室壁、蒸発源室の加熱源に対
する影響を少なくでき、蒸発源室も同様、坩堝材やフィ
ラメントからの不純物を直接排気することができ、反応
室に拡散することを防ぎ、プラズマ発生室への逆流を阻
止しうる。
By installing a cone-shaped skimmer between the evaporation source chamber and the reaction chamber, the working substrate of the reaction chamber can be
A good compound thin film can be formed by reducing the influence of mutual interference from the evaporation source chamber. That is, a reaction chamber,
Due to the royal differential exhaust in the plasma generation chamber and evaporation source chamber, gas molecules that are not involved in plasma generation out of the raw material gas injected into the plasma generation chamber can be directly exhausted and removed within the plasma generation chamber. Prevents non-participating gas molecules from diffusing into the reaction chamber and evaporation source chamber,
As a result, the influence on the working substrate 2 reaction chamber wall and the heating source in the evaporation source chamber can be reduced, and impurities from the crucible material and filament can be directly exhausted from the evaporation source chamber as well, preventing them from diffusing into the reaction chamber. This can prevent backflow to the plasma generation chamber.

又、反応室は、従来の単一の排気ポンプにより真空排気
を行う場合に比して、不要な粒子の少ない状態で高真空
を得ることができ、良好な化合物薄膜を形成することが
できる。
Furthermore, compared to the case where the reaction chamber is evacuated using a single conventional exhaust pump, a high vacuum can be obtained with fewer unnecessary particles, and a good compound thin film can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化合物薄膜形成用プラズマ処理装置の
概略断面図、 第2図は差動排気の原理を示す説明図、第3図はプラズ
マ発生室と反応室との間のスキマーの取付は部の断面図
、 第4図は第3図のスキマーの細孔形状の正面図、第5図
は蒸発源室と反応室との間のスキマーの取付は部の断面
図である。 4・・・プラズマ発生室、5・・・反応室、6・・・ガ
ス供給装置、8・・・プラズマ発生室用排気ポンプ、1
3・・・スキマー、15・・・作業基板、16・・・反
応室用排気ポンプ、20・・・蒸発源室、21・・・蒸
発源室用排気ポンプ、22・・・スキマー、33・・・
プラズマ流、34・・・蒸発原子流。
Figure 1 is a schematic cross-sectional view of the plasma processing apparatus for forming compound thin films of the present invention, Figure 2 is an explanatory diagram showing the principle of differential pumping, and Figure 3 is the installation of a skimmer between the plasma generation chamber and the reaction chamber. 4 is a front view of the pore shape of the skimmer shown in FIG. 3, and FIG. 5 is a sectional view of the part where the skimmer is installed between the evaporation source chamber and the reaction chamber. 4... Plasma generation chamber, 5... Reaction chamber, 6... Gas supply device, 8... Exhaust pump for plasma generation chamber, 1
3... Skimmer, 15... Work board, 16... Exhaust pump for reaction chamber, 20... Evaporation source chamber, 21... Exhaust pump for evaporation source chamber, 22... Skimmer, 33...・・・
Plasma flow, 34... Evaporated atom flow.

Claims (1)

【特許請求の範囲】[Claims] プラズマ発生室で原料ガスのうちの一つの元素ガスを電
子サイクロトロン共鳴法によりプラズマ化して反応室内
の作業基板に照射すると共に、金属、合金を蒸発させる
蒸発源室からの蒸発原子流を作業基板に向かわせて、プ
ラズマ粒子と蒸発金属とによる反応生成物を反応室に設
けた作業基板表面に化合物薄膜として形成するプラズマ
処理装置において、プラズマ発生室及び蒸発源室のそれ
ぞれに反応室の真空排気手段とは別に真空排気手段を設
け、プラズマ発生室及び蒸発源室において生じた薄膜形
成に不要なガスを除去し、プラズマ発生室及び蒸発源室
と反応室との間に設けた細孔を介してプラズマ粒子流、
蒸発原子流を形成することを特徴とする化合物薄膜形成
用プラズマ処理装置。
In the plasma generation chamber, one of the elemental gases in the raw material gas is turned into plasma using the electron cyclotron resonance method and irradiated onto the work substrate in the reaction chamber. At the same time, a flow of vaporized atoms from the evaporation source chamber that evaporates metals and alloys is directed onto the work substrate. In a plasma processing apparatus that forms a reaction product of plasma particles and evaporated metal as a thin compound film on the surface of a work substrate provided in a reaction chamber, a reaction chamber evacuation means is provided in each of the plasma generation chamber and the evaporation source chamber. Separately, a vacuum evacuation means is provided to remove unnecessary gas for thin film formation generated in the plasma generation chamber and evaporation source chamber, and to remove gas unnecessary for thin film formation from the plasma generation chamber and evaporation source chamber through the pores provided between the plasma generation chamber and evaporation source chamber and the reaction chamber. plasma particle flow,
A plasma processing apparatus for forming a compound thin film, which is characterized by forming an evaporated atomic flow.
JP12876989A 1989-05-24 1989-05-24 Plasma treatment apparatus for forming compound thin film Pending JPH02308535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12876989A JPH02308535A (en) 1989-05-24 1989-05-24 Plasma treatment apparatus for forming compound thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12876989A JPH02308535A (en) 1989-05-24 1989-05-24 Plasma treatment apparatus for forming compound thin film

Publications (1)

Publication Number Publication Date
JPH02308535A true JPH02308535A (en) 1990-12-21

Family

ID=14993018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12876989A Pending JPH02308535A (en) 1989-05-24 1989-05-24 Plasma treatment apparatus for forming compound thin film

Country Status (1)

Country Link
JP (1) JPH02308535A (en)

Similar Documents

Publication Publication Date Title
US10262838B2 (en) Deposition system with integrated cooling on a rotating drum
EP0402867B1 (en) Apparatus for microwave processing in a magnetic field
JP6696991B2 (en) Plasma process and reactor for thermochemical treatment of the surface of metal pieces
JPH02308535A (en) Plasma treatment apparatus for forming compound thin film
WO2020039188A1 (en) Apparatus for generating a high density plasma
JPS6141763A (en) Thin film manufacturing apparatus
US4973381A (en) Method and apparatus for etching surface with excited gas
JPH09118977A (en) Method for building up thin film
JP2021535554A (en) A method for generating and processing a uniform high-density plasma sheet
WO2020039191A1 (en) A high density plasma generating apparatus
WO2020039192A1 (en) A high density plasma generating apparatus
JPH06318579A (en) Dry cleaning method
JPH02163379A (en) Formation of thin film and device therefor
US20200219704A1 (en) Deposition system with integrated cooling on a rotating drum
RU2194087C2 (en) Method and apparatus for producing beryllium or beryllium-containing foil
JPH05326453A (en) Microwave plasma treatment equipment
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device
JPH0445837A (en) Bubbling mechanism and surface-treating device including the mechanism
JP3099801B2 (en) Film forming method and apparatus
JPH0244720A (en) Microwave plasma treatment device
JPH0368764A (en) Plasma treating device for forming thin film
JPS6272114A (en) Radical-beam photo-cvd device
JPH03150377A (en) Plasma treating device
WO2020039193A1 (en) A high density plasma generating apparatus
JP2021535555A (en) High-density plasma processing equipment