JPH02307883A - Production of aquamarine single crystal - Google Patents

Production of aquamarine single crystal

Info

Publication number
JPH02307883A
JPH02307883A JP12807689A JP12807689A JPH02307883A JP H02307883 A JPH02307883 A JP H02307883A JP 12807689 A JP12807689 A JP 12807689A JP 12807689 A JP12807689 A JP 12807689A JP H02307883 A JPH02307883 A JP H02307883A
Authority
JP
Japan
Prior art keywords
aquamarine
raw materials
seed crystal
crystals
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12807689A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuroda
浩 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP12807689A priority Critical patent/JPH02307883A/en
Publication of JPH02307883A publication Critical patent/JPH02307883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the high-quality product having less internal strains at a low temp. by growing the aquamarine single crystal by a hydrothermal crystallization method using an aq. NaNO3 soln. as a solvent. CONSTITUTION:Raw materials 4 for growing and a coloring material 8 are installed in the bottom of a pressure vessel body 1 which is sealed of pressure by a cover 3 via a seal ring 2. The raw materials 4 which are synthesized by a flux method or are formed by grinding and pulverizing natural beryl crystals are used. A seed crystal 6 is then disposed above the raw materials 4 and the coloring material 8 via a supporting frame 5. While a planar crystal cut at 45 deg. angle from the less defective C-axis of the natural beryl crystals is used as the seed crystal 6, artificial beryl crystals are equally satisfactory and the cutting angle may be other angles as well. A baffle plate 7 is provided between the raw materials 4 and the seed crystal 6 and the aq. NaNO3 soln. is packed as the medium into the body 1 at such a packing rate at which a prescribed pressure is obtd. at a prescribed temp. The hydrothermal crystallization is then executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、装飾用の宝石として広く用いられているアク
アマリン単結晶の製造方法に関わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing aquamarine single crystals, which are widely used as decorative jewelry.

〔発明の概要〕[Summary of the invention]

本発明は、溶媒としてNaJO,水溶液を用い所定の温
度、圧力を与え種子結晶上に結晶を育成する水熱合成法
により装飾用として利用できる品質のアクアマリン単結
晶を育成できるアクアマリン単結晶の製造方法を提供す
るものである。
The present invention is an aquamarine single crystal that can grow aquamarine single crystals of quality that can be used for decoration by a hydrothermal synthesis method in which crystals are grown on seed crystals using NaJO as a solvent and an aqueous solution at a predetermined temperature and pressure. A manufacturing method is provided.

〔従来の技術〕[Conventional technology]

従来、アクアマリンは、天然のものが装飾品として使わ
れてきた。しかし、不純物インクルージヨンあるいはマ
イクロクランク等の入った結晶が多く、良質の大型結晶
は非常に少なかった。
Traditionally, natural aquamarine has been used as a decorative item. However, there were many crystals with impurity inclusions or microcranks, and there were very few large crystals of good quality.

また水熱合成法は従来、人工水晶の育成についての研究
開発が最も盛んであり水熱合成法における結晶育成とし
ては、最も成功した例であるといえる。現在までに人工
水晶に関してはほとんど量産化技術が確立している。し
かし、人工水晶以外の結晶については、現在までのとこ
ろ、量産化技術の確立しているものはない。
Furthermore, hydrothermal synthesis has traditionally been the most active area of research and development for growing artificial crystals, and can be said to be the most successful example of crystal growth using hydrothermal synthesis. To date, mass production technology has been established for most of the artificial quartz crystals. However, for crystals other than artificial quartz, mass production technology has not been established to date.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術、フラックス法について述べれば、単結晶の内
部に欠陥が多い、特にインクルージシンが多いことが問
題となる。フラックス法の場合、1000℃付近の高温
の溶融したフラックスより単結晶が合成されるためフラ
ックスをまき込み、インクルージシンとして結晶の内部
欠陥となる。これは、フラックス法には不可避の欠点で
ある。一方、水熱合成法はフラックス法と比較して溶媒
は低粘度の水溶液であり合成温度も500℃前後と低く
インクルージヨンあるいは熱による内部歪が発生する程
度も低くなり欠陥の少ない高品質のアクアマリン単結晶
を製造できる方法である。
Regarding the conventional technology, the flux method, the problem is that there are many defects inside the single crystal, especially includicine. In the case of the flux method, since a single crystal is synthesized from molten flux at a high temperature of around 1000° C., the flux is mixed in and becomes internal defects in the crystal as inclusions. This is an unavoidable drawback of the flux method. On the other hand, compared to the flux method, in the hydrothermal synthesis method, the solvent is a low-viscosity aqueous solution, and the synthesis temperature is around 500℃, which reduces the occurrence of inclusions or internal distortion due to heat, resulting in high-quality aqua with fewer defects. This is a method that can produce marine single crystals.

〔課題を解決するための手段) 水熱合成法によるアクアマリン単結晶の製造をより工業
レベルに近づけるためには、まず溶媒となる)容/夜の
選択が重要である。この?容?flのもつ条件としては
アクアマリン単結晶BeJ j! z(SiO*)a(
Feイオンドープ)に対しである程度の溶解度を持つこ
と、この溶液中(高温、高圧状態)においてアクアマリ
ン単結晶が安定に存在すること、圧力容器に対して腐食
性の少ないことがあげられる。
[Means for Solving the Problems] In order to bring the production of aquamarine single crystals by hydrothermal synthesis closer to an industrial level, it is important to first select the solvent (solvent). this? Yong? The conditions for fl are aquamarine single crystal BeJ j! z(SiO*)a(
It has a certain degree of solubility in Fe ion dope), the aquamarine single crystal exists stably in this solution (at high temperature and high pressure), and it is less corrosive to pressure vessels.

上記の条件に適合するものとして本発明では、NaNO
3水溶液が溶媒として最適であることを見出した。
In the present invention, NaNO
It has been found that an aqueous solution of 3 is optimal as a solvent.

〔作用〕[Effect]

水熱合成法においては、適当な温度と圧力のもとで出発
原料を適当な溶媒の水溶液に溶解させ、温度差を利用し
て、対流により養分を輸送することにより、結晶を晶出
あるいは適当な基板上に育成する。このようなアクアマ
リン単結晶の育成において、前記の通りNaJO)水溶
液は理想的な)容器である。
In the hydrothermal synthesis method, starting materials are dissolved in an aqueous solution of an appropriate solvent at an appropriate temperature and pressure, and the temperature difference is used to transport nutrients by convection to crystallize or Grow on a suitable substrate. As mentioned above, an aqueous NaJO solution is an ideal container for growing such aquamarine single crystals.

以下、実施例に従い詳しく説明する。Hereinafter, a detailed explanation will be given according to examples.

〔実施例〕〔Example〕

第1図に本実施例の構成を模式的に表す断面図を示す。 FIG. 1 shows a cross-sectional view schematically showing the configuration of this embodiment.

圧力容器はステライト25によるオートクレーブである
。圧力容器本体1はシールリング2を介してカバー7に
より圧力シールがされている。
The pressure vessel is a Stellite 25 autoclave. The pressure vessel main body 1 is pressure-sealed by a cover 7 via a seal ring 2.

以上の構成のオートクレーブにおいて、圧力容器本俸の
底部に育成用原料4及び着色材8を設置する。この育成
用原料4は、フラックス法により合成したベリル結晶あ
るいは天然のベリル結晶を粉砕粉末化したものを使用す
る。次に種結晶支持枠5を介して種結晶6が育成用原料
4及び着色材8の上に配置されている。種結晶としては
天然のベリル結晶の欠陥の少ないものを選ぶC軸から4
5゜の角度で切断した板状のものを使用した。ただし、
種結晶は人工のベリル結晶であってもかまわない。
In the autoclave having the above configuration, the raw material for growth 4 and the coloring material 8 are placed at the bottom of the pressure vessel. As the raw material 4 for growth, beryl crystals synthesized by a flux method or natural beryl crystals pulverized into powder are used. Next, a seed crystal 6 is placed on the growth raw material 4 and the coloring material 8 via a seed crystal support frame 5 . As a seed crystal, choose a natural beryl crystal with few defects.4 from the C axis.
A plate cut at an angle of 5° was used. however,
The seed crystal may be an artificial beryl crystal.

また、切り出し角度についても成長速度の違いはあるが
、他の角度で切り出した種結晶を使用してもよい。この
種結晶に対し、必要に応じてエツチングによる前処理を
行う。このように育成用原料4及び種結晶6を配置し、
その間に種結晶支持枠5を介してバッフル板7が設置さ
れている。このバッフル板は圧力容器内の対流制御及び
温度制御の目的で設置する。このような構成の圧力容器
の内部に媒体としてNazNO3水溶液を所定の温度で
所定の圧力が得られるような充填率で充填する。
Further, although there are differences in the growth rate regarding the cutting angle, seed crystals cut at other angles may be used. This seed crystal is pretreated by etching as necessary. Arranging the growth raw material 4 and the seed crystal 6 in this way,
In between, a baffle plate 7 is installed with a seed crystal support frame 5 interposed therebetween. This baffle plate is installed for the purpose of convection control and temperature control inside the pressure vessel. The pressure vessel having such a structure is filled with a NazNO3 aqueous solution as a medium at a filling rate such that a predetermined pressure is obtained at a predetermined temperature.

以上の設定でアクアマリン単結晶の育成を行った。以下
の通りである。
Aquamarine single crystals were grown with the above settings. It is as follows.

(実施例a) 種結晶6の温度−−−390℃ 育成用原料4の温度 −420℃ 溶媒 −−−−・−3モルNaJOs水溶液着色材−−
−−−−−〜−FeCOH)s 114℃%圧力−−−
−−800 kg / cd育成期間−−−−一−−−
・−−10E1間上記条件で育成した結果、種結晶6の
上にアクアマリン単結晶が育成された。以下にその結果
、性質を示す。
(Example a) Temperature of seed crystal 6---390°C Temperature of growth raw material 4 -420°C Solvent----3 mol NaJOs aqueous solution colorant---
-------~-FeCOH)s 114℃% pressure---
--800 kg/cd growing period---1---
- As a result of growing under the above conditions for 10E1, an aquamarine single crystal was grown on the seed crystal 6. The results and properties are shown below.

成長した層の厚み−−−1、2s− 成長速度−ニー一−−−一一−=−−−−120μl/
日成長した層の性質−−−アクアマリン単結晶(XvA
回折により同定)マイクロクラック及びインクルージヨ
ンの非常に少ない完全性の高い単結晶が得られた。
Thickness of grown layer --- 1, 2 s -- Growth rate -- Knee 1 --- 11 --- 120 μl/
Properties of day-grown layer---Aquamarine single crystal (XvA
A highly complete single crystal with very few microcracks and inclusions (identified by diffraction) was obtained.

(実施例b) 種結晶6の温度−−−−−−−−=370℃育成用原料
4の温度−−−−−400℃溶媒 −−−一−−−−−
−−−−−3モルNaJO3水i8?(1着色材”””
”−””−”−−−−−Fe ((Iff) 31 w
 t ′3/。
(Example b) Temperature of seed crystal 6 -------=370°C Temperature of growing raw material 4 ----400°C Solvent ----1------
----3 mol NaJO3 water i8? (1 coloring material"""
”−””−”−−−−Fe ((Iff) 31 w
t'3/.

圧力’−−−・−−−−−−800Jy / cn!育
成期間・・・・−−−−−−・−−一−−−−−−−1
0日間上記条件で育成した結果、種結晶6の上にアクア
マリン単結晶が育成された。以下にその結果、性質を示
す。
Pressure'-----800Jy/cn! Cultivation period...------------1-----1
As a result of growing under the above conditions for 0 days, an aquamarine single crystal was grown on the seed crystal 6. The results and properties are shown below.

成長した石の厚み −一一一一・1.05mm成長速度
−−−−一−−−−−−−−−−−・−・−・105即
/日成長した層の性t−=−−−−−アクアマリン単結
晶(X線回折により同定)マイクロクランク及びインク
ルージジンの非常に少ない完全性の貰い単結晶が得られ
た。
Thickness of grown stone -1111・1.05mm Growth rate---1---------------・105 Immediately/day Property of layer grown t=- --- Aquamarine single crystals (identified by X-ray diffraction) Microcrank and very little integrity single crystals of inclusidine were obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば水熱合成法により
、NazNOz水溶液を溶媒として用いることにより、
天然のアクアマリン単結晶にくらべ、インクルージヨン
及びマイクロクラックの非常に少ない完全性の高いアク
アマリン単結晶を得ることが可能となる。
As detailed above, according to the present invention, by using a hydrothermal synthesis method and using an aqueous NazNOz solution as a solvent,
Compared to natural aquamarine single crystals, it is possible to obtain highly complete aquamarine single crystals with very few inclusions and microcracks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる圧力容器の構造を表す断面図で
ある。 1・・・圧力容器本体 2・・・シールリング 3・・・カバー 4・・・育成用原料 5・・・種結晶支持枠 6・・・種結晶 7・・・バッフル板 8・・・着色材 以上
FIG. 1 is a sectional view showing the structure of a pressure vessel used in the present invention. 1...Pressure vessel body 2...Seal ring 3...Cover 4...Raw material for growth 5...Seed crystal support frame 6...Seed crystal 7...Baffle plate 8...Coloring More than wood

Claims (1)

【特許請求の範囲】[Claims] Na_2NO_3水溶液中で所定の温度、圧力を与える
水熱合成法によってアクアマリン単結晶を育成したこと
を特徴とするアクアマリン単結晶の製造方法。
A method for producing an aquamarine single crystal, characterized in that the aquamarine single crystal is grown by a hydrothermal synthesis method in which a predetermined temperature and pressure are applied in an Na_2NO_3 aqueous solution.
JP12807689A 1989-05-22 1989-05-22 Production of aquamarine single crystal Pending JPH02307883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12807689A JPH02307883A (en) 1989-05-22 1989-05-22 Production of aquamarine single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12807689A JPH02307883A (en) 1989-05-22 1989-05-22 Production of aquamarine single crystal

Publications (1)

Publication Number Publication Date
JPH02307883A true JPH02307883A (en) 1990-12-21

Family

ID=14975839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12807689A Pending JPH02307883A (en) 1989-05-22 1989-05-22 Production of aquamarine single crystal

Country Status (1)

Country Link
JP (1) JPH02307883A (en)

Similar Documents

Publication Publication Date Title
BG62894B1 (en) Nucleous bodies for the synthesis of quartz crystals orientated by st-section and at-section and method for their preparation
JPS62113798A (en) Production of calcium carbonate single crystal
US4685995A (en) Process for manufacturing calcium carbonate single crystal
JPH02307883A (en) Production of aquamarine single crystal
US4956047A (en) Process of making high quality single quartz crystal using silica glass nutrient
JPH02307884A (en) Production of aquamarine single crystal
JPH0340987A (en) Growing method for single crystal
JPH01230497A (en) Production of artificial crystal
JPH02307887A (en) Method for synthesizing analcite single crystal
JP2612456B2 (en) Method for producing calcium carbonate single crystal
JPH01230492A (en) Apparatus for producing single crystal
JP2686462B2 (en) Artificial crystal manufacturing method
JPS63265893A (en) Production of artificial quartz crystal
JPH029792A (en) Production of brown rock crystal
JPH0416586A (en) Production of brown rock crystal
JPH02307886A (en) Production of green rock crystal
JP2013047158A (en) Method and apparatus for producing artificial quartz
JPH0416585A (en) Production of yellowish green rock crystal
JPS5921594A (en) Crucible
JPH0416583A (en) Production of blue rock crystal
JPH02307882A (en) Production of blue crystal
JPH02129095A (en) Production of micro quartz
JPH0416584A (en) Production of greenish brown rock crystal
JP2673255B2 (en) Watch case and manufacturing method thereof
JPS59169995A (en) Preparation of single crystal of hgcdte