JPH02307677A - Automatic welding method for polygonal member - Google Patents

Automatic welding method for polygonal member

Info

Publication number
JPH02307677A
JPH02307677A JP1126722A JP12672289A JPH02307677A JP H02307677 A JPH02307677 A JP H02307677A JP 1126722 A JP1126722 A JP 1126722A JP 12672289 A JP12672289 A JP 12672289A JP H02307677 A JPH02307677 A JP H02307677A
Authority
JP
Japan
Prior art keywords
welding
speed
corner
circular arc
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1126722A
Other languages
Japanese (ja)
Other versions
JPH0669624B2 (en
Inventor
Yuji Sugitani
祐司 杉谷
Hisahiro Tamaoki
玉置 尚弘
Kenichiro Yamashita
健一郎 山下
Hideaki Kanayama
金山 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
JFE Engineering Corp
Original Assignee
Nachi Fujikoshi Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, NKK Corp, Nippon Kokan Ltd filed Critical Nachi Fujikoshi Corp
Priority to JP1126722A priority Critical patent/JPH0669624B2/en
Publication of JPH02307677A publication Critical patent/JPH02307677A/en
Publication of JPH0669624B2 publication Critical patent/JPH0669624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To set the bead height of a circular arc part to the same height as that of a linear part by allowing a polygonal member to be rotated with a positioner, and setting the welding speed at the time of welding the circular arc part with a welding robot to the specific speed. CONSTITUTION:A linear part 11a is welded at the welding speed VS, and from the start point B of a corner part 12a to an end point C, welding is executed by changing the speed to the welding speed VC shown by the expression. Where, (h) ri, and VfS, VfC in the expression denote the height of a welding bead, the inside peripheral radius of the welding bead of the i-th layer of a circular arc part, and the feeding speeds of an eldctrode wire at the time of welding the linear part and the circular arc part, respectively. While executing the welding, a joint core 30 is rotated by a 90 deg. positioner, and a welding torch 1 is moved by synchronizing it therewith. When the welding of the corner part 12a is ended, and the welding torch reaches the end point C, the welding speed is switched from VC to VS and the whole periphery is welded similarly. In such a manner, the bead height of the circular arc part can be set to the same height as that of the linear part.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、例えば柱と梁との接合部に使用される仕口コ
ア等のごとき角型部材の自動溶接方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic welding method for rectangular members such as shikichi cores used for joints between columns and beams.

[従来の技術] 鉄骨構造物における仕口コアは、第8図及び第9図に示
すように、鉄骨柱とH形鋼等の鋼製梁との接合部に使用
されるものであり、図において、30は仕口コア、34
は鉄骨柱、36は鋼製梁である。
[Prior Art] Shiguchi cores in steel frame structures are used at joints between steel columns and steel beams such as H-beams, as shown in Figures 8 and 9. , 30 is a shikichi core, 34
36 is a steel column and 36 is a steel beam.

このような仕口コア30は、一般に四角形の角型コラム
31と、このコラム31の上下両端に溶接され、梁36
からの応力を伝達するためのダイヤフラム32とから構
成されている。コラム31とダイヤフラム32の継手は
通常、突合せ継手であり、その開先33の形状は第10
図に示すようにし字型か普通である。このような開先3
3に多層盛溶接を行って仕口コア30を製作する。なお
、第10図において38はバッキングである。
Such a shikichi core 30 is generally welded to a rectangular square column 31 and both upper and lower ends of this column 31, and is attached to a beam 36.
diaphragm 32 for transmitting stress from the diaphragm 32. The joint between the column 31 and the diaphragm 32 is usually a butt joint, and the shape of the groove 33 is 10th.
As shown in the figure, it is a rectangular shape or normal. Bevel like this 3
In step 3, multi-layer welding is performed to manufacture the shiiguchi core 30. In addition, in FIG. 10, 38 is a backing.

そして、仕口コア30のダイヤフラム32の面に柱34
の端面を溶接し、一方、ダイヤフラム32の辺とコラム
31の面に梁36の端面を溶接することにより、鉄伺構
造物を構築している。
Then, a pillar 34 is attached to the surface of the diaphragm 32 of the shikichi core 30.
The steel shelving structure is constructed by welding the end faces of the beam 36 to the side of the diaphragm 32 and the surface of the column 31.

上記の仕口コア30は比較的単純な形状をしているが、
角型コラム31とダイヤフラム32との溶接線はコラム
31の辺にあたる直線部とコーナ一部にあたる円弧部の
組合せである。したがって、特にコーナ一部での溶接が
難しいため、従来は、直線部とコーナ一部に分けて半自
動溶接により別個に溶接していた。しかし、直線部とコ
ーナ一部を別個に溶接するのでは、能率が悪いうえに溶
接ビードの継目が多くなり、これが溶接欠陥の発生の原
因となったり、ビード形状の不良を招くおそれがあるな
どの問題があった。そこで、溶接の自動化か要請される
。このため溶接ロボット等の利用か考えられるが、この
ような自動溶接の場合においても、直線部とコーナ一部
では溶接条件(溶接速度、電流等)を変更する必要かあ
るばかりでなく、一般に多層盛溶接となるため溶接プロ
グラムの作成に多大な時間、手数を要するという問題が
ある。さらに、コラム31は精度の面で常に良好とはい
えず、このため溶接の自動化を一層困難なものにしてい
る。
Although the above-mentioned Shiguchi core 30 has a relatively simple shape,
The weld line between the rectangular column 31 and the diaphragm 32 is a combination of a straight part corresponding to the side of the column 31 and a circular arc part corresponding to a part of the corner. Therefore, it is particularly difficult to weld a part of the corner, so conventionally, the straight part and part of the corner were separately welded by semi-automatic welding. However, welding the straight part and the corner part separately is not only inefficient, but also increases the number of weld bead joints, which may cause welding defects or cause defects in the bead shape. There was a problem. Therefore, automation of welding is required. For this reason, it may be possible to use a welding robot, etc., but even in such automatic welding, it is not only necessary to change the welding conditions (welding speed, current, etc.) for straight sections and some corners, but also for multi-layer welding. There is a problem in that it takes a lot of time and effort to create a welding program because it is a welding process. Furthermore, the accuracy of the column 31 is not always good, which makes it even more difficult to automate welding.

[発明が解決しようとする課題] 仕口コア30における自動溶接で最も問題となるのは、
コラム31のコーナ一部における溶接であることは明ら
かである。その一つに、コーナ一部における溶接速度の
適正化とビード形状の平滑化がある。すなわち、直線部
と円弧部を含む溶接線が鉛直面内に置かれる場合、コー
ナ一部の溶接速度が不適正であると直線部と同じビード
高さか得られないばかりでなく、仮にその速度か適正で
あるとしても溶融プールの重心位置かアーク点より後方
に離れているため、コーナ一部においては上進溶接の状
態となり、このためビードの断面形状が凸になりやすく
、またビード高さか一様てなく歪曲したりしてビード形
状の平滑さを損う。そこて、この対策としては溶融プー
ルをできるだけ小さく、つまり溶融プールの重心位置を
アーク点に近づけるように小さくする必要がある。
[Problem to be solved by the invention] The biggest problem with automatic welding in the shikichi core 30 is:
It is clear that part of the corner of column 31 is welded. One of these is optimizing the welding speed at some corners and smoothing the bead shape. In other words, when a weld line including a straight part and a circular arc part is placed in a vertical plane, if the welding speed at a part of the corner is inappropriate, not only will it not be possible to obtain the same bead height as the straight part, but even if the welding speed is Even if the center of gravity of the molten pool is located far back from the arc point, upward welding will occur in some corners, which tends to cause the cross-sectional shape of the bead to be convex, and the bead height may vary. The bead shape may become distorted and the smoothness of the bead shape may be impaired. Therefore, as a countermeasure to this problem, it is necessary to make the molten pool as small as possible, that is, to make the molten pool's center of gravity closer to the arc point.

したがって、本発明の目的は、仕口コアのごとき角型部
材の自動溶接において、特にコーナ一部における溶接速
度の適正化及びビード形状の平滑化を図った自動溶接方
法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an automatic welding method for automatically welding a rectangular member such as a joint core, which optimizes the welding speed particularly at a corner part and smoothes the bead shape.

[課題を解決するための手段] 上記の目的を達成するため、本発明に係る角型部材の自
動溶接方法は、溶接線が鉛直面内に置かれかつ直線部と
円弧部を含む角型部材の自動溶接において、溶接ロボッ
トと、角型部材を取り付けそれを所定角度回転する手段
を含むポジショナとを使用して開先を溶接し、この場合
において円弧部においては溶接電流値を直線部のときよ
り低くして溶接し、かつ直線部及び円弧部における溶接
゛速度をそれぞれv  、v  とし、また電極ワイヤ
S       C の送給速度をそれぞれv 、■ とすると、円弧fs 
  fc 部における溶接速度V が次式を満足するように角型部
材を溶接ロボットの動作と同期させて回転させ、該円弧
部を溶接することとしたものである。
[Means for Solving the Problems] In order to achieve the above object, the automatic welding method for a square member according to the present invention provides a method for automatically welding a square member in which a welding line is placed in a vertical plane and includes a straight portion and a circular arc portion. In automatic welding, a welding robot and a positioner including a means for attaching a square member and rotating it by a predetermined angle are used to weld a groove, and in this case, the welding current value in the circular arc part is changed from that in the straight part. If welding is performed at a lower speed, and the welding speeds in the straight section and the arc section are v and v, respectively, and the feeding speeds of the electrode wire S are v and ■, respectively, the arc fs
The arcuate portion is welded by rotating the rectangular member in synchronization with the operation of the welding robot so that the welding speed V at the fc portion satisfies the following equation.

ただし、hは溶接ビードの高さ、r、は」1記円弧部の
第1層目の溶接ビードの内周半径である。
Here, h is the height of the weld bead, and r is the inner radius of the weld bead of the first layer of the arc portion.

[作 用] ポジショナに取り付けられた角型部材に対し溶接ロボッ
トで開先を溶接する。この場合において、溶接線は鉛直
面内に置かれかつ直線部と円弧部を含む。そして、その
直線部に対して、溶接電流値工 、ワイヤ送給速度Vf
s及び溶接速度v8で溶接し、円弧部に対して上記■ 
より低い溶接電流値■ 、同様に上記v、8より遅いワ
イヤ送給速度■、。及び上記■8に対し溶接電流値を低
下したことに伴うワイヤ送給速度の変化分を見込んで補
正した溶接速度V 、具体的には上記(])式を満足す
るような溶接速/iv  て溶接する。すなわち、円弧
部において溶接電流値を直線部のときよりも低くすれば
溶融プールが小さくなってその重心位置がアーク点に近
づくため、上進溶接の状態をはとんと解消できる。しか
しなから、溶接電流値を低くすればワイヤ送給速度も当
然、円弧部では遅くなるので、ビード高さを同一にする
にはワイヤ送給速度の変化分を見込んで溶接速度を補正
する必要がある。この結束、円弧部においてもビード高
さは変わらず、かっビード形状の平滑さを保つことがで
きる。
[Operation] A welding robot welds a groove to a square member attached to a positioner. In this case, the weld line is placed in a vertical plane and includes a straight section and a circular arc section. Then, for the straight part, welding current value, wire feeding speed Vf
Weld at s and welding speed v8, and apply the above ■ to the arc part.
Lower welding current value ■, similarly slower wire feeding speed ■ than v, 8 above. and Welding speed V corrected by taking into account the change in wire feeding speed due to the reduction in welding current value for (8) above, specifically, welding speed /iv that satisfies the above formula (]) Weld. That is, if the welding current value is lower in the arc portion than in the straight portion, the molten pool becomes smaller and its center of gravity approaches the arc point, so that the upward welding condition can be quickly eliminated. However, if the welding current value is lowered, the wire feed speed will naturally become slower in the arc section, so in order to keep the bead height the same, it is necessary to correct the welding speed by taking into account the change in wire feed speed. There is. The bead height does not change even in this bundling and arcuate portion, and the smoothness of the bead shape can be maintained.

・ところで、円弧部の溶接の際、ポジショナは溶接ロボ
ットと同期して動作する。したがって、溶接トーチか直
線部から円弧部の始点に到達した時に角型部材をポジシ
ョナにより所定角度回転させ、同時に溶接電流値を低く
し、かつ溶接速度を相対的に上記のV からV に切り
替える。
- By the way, when welding arc parts, the positioner operates in synchronization with the welding robot. Therefore, when the welding torch reaches the starting point of the circular arc part from the straight part, the square member is rotated by a predetermined angle by the positioner, the welding current value is simultaneously lowered, and the welding speed is relatively switched from the above-mentioned V to V.

S           C 次に、溶接トーチがその円弧部の終点に到達すると(こ
の間に角型部材の回転は終了している)、同時に溶接電
流値を高くし、かつ溶接速度を上記■ からV へ切り
替え、次の直線部をこの速度S ■ で溶接する。以後、同様の動作を繰り返すことによ
り角型部材を全周連続で自動溶接することができる。
S C Next, when the welding torch reaches the end point of its circular arc portion (during this time, the rotation of the square member has finished), at the same time the welding current value is increased and the welding speed is switched from the above ■ to V. Weld the next straight section at this speed S. Thereafter, by repeating the same operation, the square member can be continuously and automatically welded all around.

[実施例コ 以下、本発明の一実施例を図により説明す・る。[Example code] Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第1図(a)〜(c)は仕口コアの溶接線を全周連続的
に自動溶接する場合の動作説明図である。
FIGS. 1(a) to 1(c) are explanatory views of the operation when automatically welding the welding line of the joint core continuously all around the circumference.

この場合、溶接線10は鉛直面内に置かれ、直線部11
a、1]、b、]、1c、lldとコーナ一部12 a
、  12 b、  12 c、  12 dを含むも
のである。溶接トーチ1は、この溶接線10に対して垂
直でかつ後方または前方(紙面の表裏方向)に一定の角
度で傾斜しており、上記コーナ一部ではその軸線がコー
ナ一部の曲率中心を向くように姿勢制御される。なお、
開先断面形状は全周について一様である。
In this case, the weld line 10 is placed in a vertical plane, and the straight section 11
a, 1], b, ], 1c, lld and corner part 12 a
, 12 b, 12 c, and 12 d. The welding torch 1 is perpendicular to this welding line 10 and inclined at a certain angle backward or forward (in the direction of the front and back of the page), and at the above-mentioned part of the corner, its axis is directed toward the center of curvature of the part of the corner. The posture is controlled as follows. In addition,
The cross-sectional shape of the groove is uniform around the entire circumference.

第1図において、仕口コア30の断面の輪郭形状か破線
で示されており、仕口コア30は後述するようにポジシ
ョナに取りイτjけられ、溶接ロボットと同期して動作
するように制御される。
In FIG. 1, the outline shape of the cross section of the joint core 30 is shown by a broken line, and the joint core 30 is placed in a positioner τj as will be described later, and is controlled to operate in synchronization with the welding robot. be done.

第1図に基ついて溶接動作を説明する。まず、溶接開始
点Aを水平な直線部11aの適当な位置に設定する(第
1図(a)参照)。この開始点A及び各々の直線部とコ
ーナ一部との接続点B、C。
The welding operation will be explained based on FIG. First, a welding starting point A is set at an appropriate position on the horizontal straight section 11a (see FIG. 1(a)). This starting point A and connection points B and C between each straight section and a corner part.

D、・・・、■の各位置は仕口コア30の寸法あるいは
溶接ロボットによるティーチングによって制御装置(図
示せず)の記憶部に記憶されている。また、これらの直
線部及びコーナ一部に対応して溶接電流値が変更設定さ
れる。すなわち、コーナ一部では直線部のときI より
も低い値I  (普通、S             
      C10〜30%減)に設定される。さらに
、電極ワイヤ2の送給速度についても直線部のVfsか
らコーナ一部の■、。に変更設定されるとともに、溶接
電流値の低下に伴いワイヤ送給速度も遅くなるため、コ
ーナ一部の溶接速度V を、上記(1)式に従ってワイ
ヤ送給速度の変化分を見込んで補正するよう制御される
。したがって、溶接開始点Aから第1のコーナ一部12
aの始点Bまではあらかしめ設定された溶接速度V で
溶接する。このときの溶接電流値はI であり、ワイヤ
送給速度はvfsである。
The positions of D, . Further, the welding current value is changed and set corresponding to these straight portions and a portion of the corner. In other words, in some corners, a value I (usually S
C10-30% reduction). Furthermore, the feeding speed of the electrode wire 2 varies from Vfs in the straight section to ■ in the corner part. At the same time, as the welding current value decreases, the wire feeding speed also slows down, so the welding speed V at some corners is corrected by taking into account the change in the wire feeding speed according to equation (1) above. controlled like this. Therefore, from the welding start point A to the first corner part 12
Welding is performed at the previously set welding speed V up to the starting point B of point a. The welding current value at this time is I, and the wire feeding speed is vfs.

次いで、第1コーナ一部12aの始点Bから終点Cまで
は溶接速度V に対し、上記(1)式を満足する溶接速
度V に変更して溶接する(第1図(b)参照)。この
ときの溶接電流値工 は直線部の溶接電流値I より低
い値であり、これに伴いワイヤ送給速度V、。も直線部
のワイヤ送給速度vfsより遅くなる。そのため、コー
ナ一部においでも直線部と同じゼード高さを得るため、
溶接速度V。についてワイヤ送給速度の変化分を見込ん
だ補正をする必要があるのである。なお、コーナ一部の
溶接の場合、後述するように、同時に仕口コア30を9
0°回転させながら溶接する。
Next, from the starting point B to the ending point C of the first corner portion 12a, welding is performed by changing the welding speed V 2 to a welding speed V 2 that satisfies the above equation (1) (see FIG. 1(b)). The welding current value I at this time is lower than the welding current value I in the straight section, and accordingly, the wire feeding speed V. The wire feeding speed vfs is also slower than the wire feeding speed vfs in the straight section. Therefore, in order to obtain the same height as the straight part even in some corners,
Welding speed V. Therefore, it is necessary to make a correction that takes into account changes in the wire feeding speed. In addition, in the case of welding a part of the corner, as will be described later, the Shiguchi core 30 is welded at the same time.
Weld while rotating by 0°.

次に、上記のコーナ一部の溶接速度V を求めるにあた
って第2図を参照しながら説明する。まず、開先の断面
形状は直線部、コーナ一部共に一様であるとする。
Next, the determination of the welding speed V 2 of the above-mentioned corner part will be explained with reference to FIG. 2. First, it is assumed that the cross-sectional shape of the groove is uniform in both the straight portion and the corner portion.

直線部でビート高さhを得る溶接速度V で内面曲率半
径r、のコーナ一部を移動さぜたときの溶着量W と、
該コーナ一部で同じビード高さhを得るための溶接速度
V て曲率半径r のコーす一部を移動させたときの溶
着量W との1ヒCt、C 次のように表される。
The amount of welding W when a part of the corner of the inner curvature radius r is moved at the welding speed V to obtain the bead height h in the straight section, and
The welding speed V to obtain the same bead height h at the corner part and the welding amount W when moving a part of the coat with the radius of curvature r are expressed as follows.

また、曲率半径r、のコーナ一部を速度■1 ワイヤ送
給速度V て移動させたときの溶着量Wit、Cヨ  
 S  x −」ニー W8    vo    vrS したがって、 となって、上記(1)式か得られる。
In addition, when moving a part of the corner with the radius of curvature r at a speed of 1 wire feeding speed V, welding amount Wit, C
S x -'' knee W8 vo vrS Therefore, the above equation (1) can be obtained.

いま、仮にワイヤ送給速度を直線部、コーナ一部共に同
一で、溶接速度のみを変えた場合、上式%式% コーナ一部の溶接速度V は、 O となる。したがって、ワイヤ送給速度か一定の場合、(
2)式に従ってコーナ一部の溶接速度を制御すれば、コ
ーナ一部のビード高さhを直線部と同じにすることかで
きる。しかしながら、コーナ一部の溶接は一般に上進溶
接の状態となる。これを第3図、第4図について説明す
る。
Now, if the wire feeding speed is the same for both the straight part and the corner part, and only the welding speed is changed, the welding speed V of the corner part will be O. Therefore, if the wire feed rate is constant, (
By controlling the welding speed of a part of the corner according to equation 2), the bead height h of the part of the corner can be made the same as that of the straight part. However, the welding of a part of the corner is generally upward welding. This will be explained with reference to FIGS. 3 and 4.

アーク溶接において、アーク点3と溶融プール4の重心
位置Gとは第3図に示すように一致せず、後方に多少熱
れている。この距離Ωは主に溶接電流値に関係し、溶接
電流値1=250Aで、ρ−5〜6 +nm位である。
In arc welding, the arc point 3 and the center of gravity G of the molten pool 4 do not coincide as shown in FIG. 3, and there is some heat toward the rear. This distance Ω is mainly related to the welding current value, and is about ρ-5 to 6+nm when the welding current value 1=250A.

したがって、あるコーナ一部のR止まり(直線部と該コ
ーナ一部との接続点)にアーク点3が到達した時に仕口
コア30が回転を始めるとすると、第4図(a)に示す
ように、溶融プール4の重心位置Gにおける接線5は水
平とならず、水平線6との間に傾斜角α(”、Q /r
、)を持つ。
Therefore, if the shikichi core 30 starts rotating when the arc point 3 reaches the R end of a part of a certain corner (the connection point between the straight part and the part of the corner), as shown in FIG. 4(a), , the tangent line 5 at the center of gravity G of the melt pool 4 is not horizontal, and there is an inclination angle α('', Q /r
,)have.

また、当該コーナ一部における傾斜角αを図示すると第
4図(b)のようになる。図中、■ は隣接直線部の溶
接速度である。
Further, the inclination angle α at a part of the corner is illustrated as shown in FIG. 4(b). In the figure, ■ is the welding speed of the adjacent straight section.

このように溶融プール4の重心はコーナ一部において常
に上り勾配にさらされ、このため上進溶接の状態のよう
になり、第5図(a)に示すようにビード7の断面形状
か凸になりやすく、また同図(b)に示ずようにビード
高さ1〕が直線部と同じ高さにならす歪曲することとな
る。
In this way, the center of gravity of the molten pool 4 is always exposed to an upward slope in a part of the corner, which results in a state similar to upward welding, and the cross-sectional shape of the bead 7 becomes convex as shown in FIG. 5(a). Moreover, the bead height 1] may be distorted to the same height as the straight portion, as shown in FIG.

したかって、コーナ一部では溶接電流値を低くすること
によって、溶融プール4かできるだけ小さくなるように
し、これによって溶融プール4の重心位置Gをアーク点
3に近づける。また、このようにすることにより傾斜角
αかゼロに近くなり水平に近づくため上進溶接の状態を
ほとんど解消することができる。この結果、上述したよ
うなビード形状の不具合を生ぜず、平滑なものとなる。
Therefore, by lowering the welding current value in a part of the corner, the molten pool 4 is made as small as possible, thereby bringing the center of gravity G of the molten pool 4 closer to the arc point 3. Further, by doing so, the inclination angle α becomes close to zero and becomes close to horizontal, so that the upward welding state can be almost eliminated. As a result, the above-mentioned defects in bead shape do not occur, and the bead becomes smooth.

もぢろん、ビード高さは変化しない。Of course, the bead height does not change.

よって、本発明においては、コーナ一部で溶接電流値を
低くするとともに、それによるワイヤ送給速度の変化分
を加味した、上記(1)式に従う溶接速度V としたも
のである。
Therefore, in the present invention, the welding current value is lowered in a part of the corner, and the welding speed V is set according to the above formula (1), taking into account the change in wire feeding speed caused by this.

再び、第1図に戻って、仕口コア30の回転について説
明すると、溶接1・−チ1がB点に到達した時に、ポジ
ショナにより0点を中心に90°回転させる。同時に、
この回転動作に同期させて溶接1・−チ1を動かす(第
1図(b)参照)。また、溶接電流値及びワイヤ送給速
度も上述のようにそれぞれ直線部のときよりも小さくし
た値I 及びC V「。に切り替えられていることはいうまでもない。
Returning to FIG. 1 again, the rotation of the joint core 30 will be explained. When the welding core 30 reaches the point B, the positioner rotates it 90 degrees around the 0 point. at the same time,
Welding 1.--chi.1 is moved in synchronization with this rotational movement (see FIG. 1(b)). It goes without saying that the welding current value and wire feeding speed are also changed to values I and C V, which are smaller than those for the straight section, respectively, as described above.

また、仕口コア30の回転動作中第1コーナ一部12a
の溶接速度V は上記(1)式を満足するよう制御され
る。ところで、B点の運動軌跡B −B−81(15)
は判っているので、1・−チ1の運動軌跡もこのB点の
運動軌跡15から容易に求められるとともに、仕口コア
30の回転中における溶接速度V は、B点の移動速度
つまりポジンヨナの回転速度(既知)から相対的に上記
(1)式を満足するように制御することができる。
Also, during the rotation operation of the joint core 30, the first corner portion 12a
The welding speed V is controlled so as to satisfy the above equation (1). By the way, the motion trajectory of point B B-B-81 (15)
is known, the locus of motion of 1. The rotation speed (known) can be controlled so as to relatively satisfy the above equation (1).

任意の1つのコーナーの円弧部において溶接速度V を
実現する手段について説明すると、第6図において Ll :溶接線の縦辺の長さ L2:溶接線の横辺の長さ R:円弧部の曲率中心の回転半径 r・円弧部の半径 とすると、 1つのコーナーの円弧部の長さ=πr / 2その円弧
部を溶接するときのロボットの移動距離−πR/2 L1=L2のときは R=、、/−丁(L/2−r)し
たかって、溶接速度V を実現するためのロボット移動
速度V。(Rob)は、 となる。したがって、コーナ一部人口にトーチが到達し
たときポジショナを回転し始め、ロボットは半径Rの円
弧上を速度R/ rX v  で移動ずればよい。
To explain the means for realizing the welding speed V at the arc portion of any one corner, in Fig. 6, Ll: Length of the vertical side of the weld line L2: Length of the horizontal side of the weld line R: Curvature of the arc portion If the rotation radius of the center is r and the radius of the arc part, then the length of the arc part of one corner = πr / 2 The distance the robot moves when welding that arc part - πR / 2 When L1 = L2, R = ,,/-d (L/2-r), therefore, the robot movement speed V to realize the welding speed V. (Rob) is as follows. Therefore, when the torch reaches a part of the corner, the positioner starts rotating, and the robot only needs to move on an arc of radius R at a speed R/rX v .

なお、ポジショナの回転速度はトーチが1つのコーナ一
部の円弧上を移動する間(1)に90゜回転すればよい
ので、 /IQt となり、ポジショナの回転角速度は、 となる。
Note that the rotational speed of the positioner is /IQt since the torch only needs to rotate by 90 degrees during (1) while moving on the arc of a part of one corner, and the rotational angular speed of the positioner is as follows.

第1コーナ一部]、 2 aの終点Cに溶接トーチ1が
到達した時には溶接速度を上記のV からv8へ切り替
え、かつ溶接電流値及びワイヤ送給速度もそれぞれ上記
の1 からより高いI へ、vfcS からより速いvfSへ切り替え、この溶接速度v8で次
の第2直線部]、 1 bを溶接する(第1図(C)参
照)。以後、上記と同様に第2コーナ一部12b、第3
直線部11C1第3コーナ一部12C1第4直線部]1
d、及び第4コーナ一部12dの順に溶接し、第1直線
部11aの溶接開始点Aに戻って一周する。2層目以降
は」二足の動作を繰り返すことになる。このようにして
仕口コア30を全周連続で自動溶接することかできる。
When the welding torch 1 reaches the end point C of 2a], the welding speed is switched from the above V to V8, and the welding current value and wire feeding speed are also changed from the above 1 to the higher I. , vfcS to faster vfS, and weld the next second straight section], 1b at this welding speed v8 (see Fig. 1 (C)). Thereafter, in the same manner as above, the second corner part 12b and the third corner part 12b
Straight section 11C1 3rd corner part 12C1 4th straight section] 1
d, and the fourth corner portion 12d, and then return to the welding start point A of the first straight portion 11a and go around. From the second layer onwards, the two-legged action will be repeated. In this way, the joint core 30 can be continuously and automatically welded all around.

次に、第7図は上記の自動溶接を行う溶接装置の斜視図
であり、本装置は、多関節の溶接ロボット20と、仕口
コア30を取り伺はロボット20と同期動作を行うポジ
ショナ24とから構成されている。
Next, FIG. 7 is a perspective view of a welding device that performs the above-mentioned automatic welding. It is composed of.

ポジショナ24は、仕口コア30を水平に片持ち状に取
り付ける回転テーブル25を有し、この回転テーブル2
5により仕口コア30を所定角度回転させる。その動作
は前述したように溶接ロホッI・20の動作に同期させ
て行う。
The positioner 24 has a rotary table 25 on which the shikichi core 30 is horizontally cantilevered.
5, the joint core 30 is rotated by a predetermined angle. This operation is performed in synchronization with the operation of the welding hole I/20 as described above.

以上の説明から明らかなように、溶接線]0は四角形の
ものに限らず、多角形すなわち三角形、五角形、六角形
等のものにも同様に適用できるものである。
As is clear from the above description, the welding line]0 is not limited to a square shape, but can be similarly applied to a polygonal shape, such as a triangle, pentagon, or hexagon.

[発明の効果] 以上のように本発明によれば、溶接線が鉛直面内に置か
れかつ直線部と円弧部を含む角型部祠に対し、溶接ロボ
ットとポジショナを使用し全周連続で自動溶接すること
ができ、しかも円弧部における溶接電流値を直線部のと
きより低くし、かつ溶接速度V を直線部の溶接速度V
 に対して前S 記(1)式を満足するように切り替えて該円弧部を溶接
することとしたので、円弧部における溶融プールが小さ
くなり、その重心位置がアーク点に近づくため、上進溶
接の状態をほとんど解消でき、その結果、直線部と同じ
ビード高さで、かつそのビード形状を平滑にすることが
できるという効果がある。
[Effects of the Invention] As described above, according to the present invention, a welding robot and a positioner are used to continuously weld the entire circumference of a rectangular part where the weld line is placed in a vertical plane and includes a straight part and a circular arc part. Automatic welding is possible, the welding current value in the circular arc section is lower than that in the straight section, and the welding speed V is lower than the welding speed V in the straight section.
Since we decided to weld the circular arc part by switching the switch so that formula (1) above is satisfied, the molten pool in the circular arc part becomes smaller and its center of gravity approaches the arc point, so upward welding is performed. As a result, the bead height can be the same as that of the straight portion, and the bead shape can be made smooth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明による角型部制の自動溶
接方法の動作説明図、第2図はコーナ一部(円弧部)の
溶接速度を求めるための説明図、第3図はアーク点と溶
融プールの重心位置までの距離ρの関係図、第4図(a
)、(b)は角型部刊の回転時溶融プールの重心位置に
おける接線が傾斜角を示す状態及びその傾斜角の変化状
態を示した図、第5図(a)、(b)は溶融プールが大
きいときのコーナ一部のビード形状を示した図、第6図
は円弧部で溶接速度V を実現する手段に用いる図、第
7図は本発明の自動溶接方法に使用する溶接装置の斜視
図、第8図は仕口コアの使用状態を示した図、第9図は
仕口コアの斜視図、第10図は仕口コアにおける開先の
断面図である。 1・・・溶接トーチ 2・・・電極ワイヤ 3・アーク点 4・・・溶融プール 10・・・溶接線 11a〜lld・・・直線部 12a〜12d・コーナ一部(円弧部)20・・溶接ロ
ボット 24・ボジンヨナ 25・・・回転テーブル 30・・・仕口コア 33・開先
Figures 1 (a) to (c) are explanatory diagrams of the operation of the automatic welding method for square parts according to the present invention, Figure 2 is an explanatory diagram for determining the welding speed of a part of a corner (arc part), and Figure 3 The figure shows the relationship between the distance ρ between the arc point and the center of gravity of the molten pool, and Figure 4 (a
) and (b) are diagrams published by Kakugaibu that show the state in which the tangent at the center of gravity of the melt pool during rotation shows an inclination angle and the state in which the inclination angle changes. A diagram showing the bead shape of a part of the corner when the pool is large, Figure 6 is a diagram used as a means to realize the welding speed V at a circular arc part, and Figure 7 is a diagram of the welding device used in the automatic welding method of the present invention. FIG. 8 is a perspective view showing the state of use of the Shiguchi core, FIG. 9 is a perspective view of the Shiguchi core, and FIG. 10 is a sectional view of the groove in the Shiguchi core. 1... Welding torch 2... Electrode wire 3, Arc point 4... Molten pool 10... Welding line 11a-lld... Straight section 12a-12d, Corner part (circular arc section) 20... Welding robot 24・bojinyona 25・rotary table 30・shiguchi core 33・bevel

Claims (1)

【特許請求の範囲】  溶接線が鉛直面内に置かれかつ直線部と円弧部を含む
角型部材の自動溶接において、 溶接ロボットと、前記角型部材を取り付けそれを所定角
度回転する手段を含むポジショナとを使用して開先を溶
接し、この場合前記溶接線の円弧部においては溶接電流
値を直線部のときより低くして溶接し、かつ直線部及び
円弧部における溶接速度をそれぞれv_s、v_cとし
、また電極ワイヤの送給速度をそれぞれV_f_s、V
_f_cとするとき、該円弧部における溶接速度v_c
が次式を満足するように前記角型部材を前記溶接ロボッ
トの動作と同期させて回転させ、該円弧部を溶接するこ
とを特徴とする角型部材の自動溶接方法。 v_c=v_s×(2r_i/2r_i+h)×(v_
f_c/v_f_s)ただし、h:溶接ビードの高さ r_i:前記円弧部の第i層目の溶接ビードの内周半径
[Claims] Automatic welding of a rectangular member in which the welding line is placed in a vertical plane and includes a straight portion and a circular arc portion, the method comprising: a welding robot; and means for attaching the rectangular member and rotating it by a predetermined angle. The groove is welded using a positioner, and in this case, the welding current value is lower in the arc part of the weld line than in the straight part, and the welding speed in the straight part and the arc part is set to v_s, respectively. v_c, and the electrode wire feeding speeds are V_f_s and V_f_s, respectively.
When _f_c, welding speed v_c at the arc portion
A method for automatically welding a square member, characterized in that the square member is rotated in synchronization with the operation of the welding robot so that the following formula is satisfied, and the circular arc portion is welded. v_c=v_s×(2r_i/2r_i+h)×(v_
f_c/v_f_s) However, h: Height of the weld bead r_i: Inner circumferential radius of the weld bead of the i-th layer of the arc portion
JP1126722A 1989-05-22 1989-05-22 Automatic welding method for square members Expired - Lifetime JPH0669624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126722A JPH0669624B2 (en) 1989-05-22 1989-05-22 Automatic welding method for square members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126722A JPH0669624B2 (en) 1989-05-22 1989-05-22 Automatic welding method for square members

Publications (2)

Publication Number Publication Date
JPH02307677A true JPH02307677A (en) 1990-12-20
JPH0669624B2 JPH0669624B2 (en) 1994-09-07

Family

ID=14942253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126722A Expired - Lifetime JPH0669624B2 (en) 1989-05-22 1989-05-22 Automatic welding method for square members

Country Status (1)

Country Link
JP (1) JPH0669624B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141974A (en) * 1980-04-09 1981-11-05 Hitachi Ltd Multilayer welding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141974A (en) * 1980-04-09 1981-11-05 Hitachi Ltd Multilayer welding method

Also Published As

Publication number Publication date
JPH0669624B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
CN107999934A (en) Saddle-shaped joint pipe groove narrow-clearance submerged arc welding connects method and apparatus
JPH02307677A (en) Automatic welding method for polygonal member
JPH02307678A (en) Automatic welding method for polygonal member
JPH02307675A (en) Automatic welding method for polygonal member
JPH02307676A (en) Automatic welding method for polygonal member
JP3323784B2 (en) Control method of bead lap welding
JP2824914B2 (en) Control method of welding torch for welding robot
JPH0252590B2 (en)
JP3233063B2 (en) Horizontal fillet welding method for corners of structures
JP2522114B2 (en) Joint welding method for steel members
JPS5921478A (en) Saddle shaped automatic welding method
JP3232933B2 (en) Vertical welding method
JPH06234074A (en) Welding method by welding robot
JPS62279080A (en) Control method for welding conditions at weaving time
JPS6031598B2 (en) All-position narrow gap single-sided MIG automatic welding method for iron pipes
JPH06262358A (en) Automatic welding method
JPH05277733A (en) Automatic welding method
JPS63130275A (en) Butt multi-layer welding method for steel plates
JP2688533B2 (en) Welding termination method for arc welding robot
JPH06262359A (en) Automatic welding method
JPH06285632A (en) Automatic welding method
JPS59153582A (en) Laminated fillet welding method of nozzle stub
JPH0675786B2 (en) Multi-layer automatic welding method for column joints with curved corners
JPS6142482A (en) Groove structure for root pass uranami welding by mig
JPH0318986B2 (en)