JPH0230766Y2 - - Google Patents

Info

Publication number
JPH0230766Y2
JPH0230766Y2 JP1691382U JP1691382U JPH0230766Y2 JP H0230766 Y2 JPH0230766 Y2 JP H0230766Y2 JP 1691382 U JP1691382 U JP 1691382U JP 1691382 U JP1691382 U JP 1691382U JP H0230766 Y2 JPH0230766 Y2 JP H0230766Y2
Authority
JP
Japan
Prior art keywords
solid electrolyte
heating
oxygen concentration
concentration meter
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1691382U
Other languages
Japanese (ja)
Other versions
JPS58120959U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1691382U priority Critical patent/JPS58120959U/en
Publication of JPS58120959U publication Critical patent/JPS58120959U/en
Application granted granted Critical
Publication of JPH0230766Y2 publication Critical patent/JPH0230766Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 本考案は出力の安定した固体電解質酸素濃度計
に関するものである。
[Detailed Description of the Invention] The present invention relates to a solid electrolyte oxygen concentration meter with stable output.

固体電解質酸素濃度計は周知のごとくネルンス
トの式、すなわち E=RT/4FlnPc/Pa 式中 E:起電力 R:気体定数 T:絶対温度 F:フアラデー定数 Pc:試料ガスの酸素分圧 Pa:基準ガスの酸素分圧 に基づき起電力Eを測定し、検体の酸素濃度を求
めるのであるが、上記の式から明らかなごとく検
出素子部における雰囲気温度の安定性は検出素子
としての安定性を決定する一要素であり、また特
に酸素イオン伝導性固体電解質として酸化ジルコ
ニウムを用いる場合には、該物質は高いゼーベツ
ク係数を有するので電極間の温度差、すなわち加
熱体の温度分布も無視できない問題となる。
As is well known, the solid electrolyte oxygen concentration meter uses the Nernst equation, that is, E=RT/4FlnPc/Pa where E: Electromotive force R: Gas constant T: Absolute temperature F: Faraday constant Pc: Oxygen partial pressure of sample gas Pa: Reference The electromotive force E is measured based on the oxygen partial pressure of the gas to determine the oxygen concentration of the sample, but as is clear from the above equation, the stability of the ambient temperature in the detection element determines the stability of the detection element. When zirconium oxide is used as an oxygen ion-conducting solid electrolyte, the temperature difference between the electrodes, that is, the temperature distribution of the heating element, becomes a problem that cannot be ignored because this material has a high Seebeck coefficient.

それ故従来検出素子を均一に加熱保持し得る加
熱体として例えば第1図に示すごとく酸素イオン
伝導性固体電解質1と電極2よりなる検出素子の
周囲を絶縁性セラミツクにタングステンやモリブ
デン等の金属導体を埋設した加熱体3で被覆構成
した固体電解質酸素濃度計が使用され、図中に示
したA、Bのいずれか一方に試料ガスを流し、他
方に比較ガスとして酸素濃度既知のガスを流す構
造となつており、該検出素子部に酸素濃淡電池を
形成し、試料の酸素分圧を起電力として電圧計4
で検出する構造となつている。
Therefore, as shown in FIG. 1, a conventional heating body capable of uniformly heating and maintaining a detection element is, for example, a detection element consisting of an oxygen ion conductive solid electrolyte 1 and an electrode 2, and a metal conductor such as tungsten or molybdenum surrounded by an insulating ceramic. A solid electrolyte oxygen concentration meter is used, which is covered with a heating element 3 that is buried in the oxygen concentration meter, and a sample gas is passed through either A or B shown in the figure, and a gas with a known oxygen concentration is passed through the other as a comparison gas. An oxygen concentration cell is formed in the detection element section, and the oxygen partial pressure of the sample is used as an electromotive force to generate a voltmeter 4.
The structure is such that it can be detected by

しかしながらかかる濃度計においても金属導体
直上と金属導体と金属導体間の温度が異なり、セ
ラミツクシートにプリントした金属導体のパター
ンにもよるが、その温度分布は必ずしも満足し得
るにたるほど均一に保たれているとは限らない。
However, even in such a concentration meter, the temperature directly above the metal conductor and between the metal conductors is different, and although it depends on the pattern of the metal conductor printed on the ceramic sheet, the temperature distribution cannot always be kept sufficiently uniform. It doesn't necessarily mean that

かかる状況に鑑み本考案者らは加熱体内の温度
分布が均一、すなわち出力の安定した固体電解質
酸素濃度計を得るべく鋭意検討を行なつた結果、
本考案を完成するに至つた。
In view of this situation, the inventors of the present invention conducted intensive studies to obtain a solid electrolyte oxygen concentration meter with a uniform temperature distribution within the heating element, that is, a stable output.
The present invention was completed.

すなわち本考案は第2図に示すごとく酸素イオ
ン伝導性固体電解質の隔壁1とその壁面に多孔性
電極2を備えた検出素子と、半導体面に金属導体
を配着して構成され、検出素子等を動作温度に加
熱保持するための加熱体3と、検出素子と加熱体
との間隙部に絶縁体層5を介在させて構成された
固体電解質酸素濃度計を提供するにある。
That is, as shown in FIG. 2, the present invention is composed of a sensing element having a partition wall 1 made of an oxygen ion conductive solid electrolyte, a porous electrode 2 on the wall surface, and a metal conductor arranged on the semiconductor surface. An object of the present invention is to provide a solid electrolyte oxygen concentration meter which is constructed by having a heating body 3 for heating and maintaining the temperature at an operating temperature, and an insulating layer 5 interposed in a gap between the detection element and the heating body.

以下本考案を詳細に説明する。 The present invention will be explained in detail below.

本考案において発熱体3を構成する半導体物質
としては400〜800℃における電気抵抗が102
10-4Ω・cmの物性を有するものが適用され、例え
ばランタンクロマイト、ペログスカイト型複合酸
化物、イツトリア、カルシア等で安定化されたジ
ルコニア、炭化ケイ素等が挙げられる。
In the present invention, the semiconductor material constituting the heating element 3 has an electrical resistance of 10 2 to 10 2 at 400 to 800°C.
Materials having a physical property of 10 -4 Ω·cm are used, and examples thereof include lanthanum chromite, perogskite type composite oxide, zirconia stabilized with ittria, calcia, etc., and silicon carbide.

金属導体としては通常のセラミツクヒーターに
用いられている物質であれば特に制限されること
なく使用でき、タングステン、モリブデン、白
金、モリブデン−マンガン合金、ニツケル−クロ
ム合金、カンタル等の抵抗発熱材料が挙げられ
る。
As the metal conductor, any material used in ordinary ceramic heaters can be used without any particular restrictions, and examples include resistance heating materials such as tungsten, molybdenum, platinum, molybdenum-manganese alloy, nickel-chromium alloy, and kanthal. It will be done.

また絶縁体層5としては通常使用される耐熱、
耐絶縁性物質であればよく、例えばアルミナ、ベ
リリア、ムライト、ジルコニア、コージイエライ
ト等の耐熱耐絶縁性を有するセラミツク製の管状
物等が挙げられる。該絶縁体層は加熱体と検出素
子との間に介在せしめればよく、例えば絶縁性セ
ラミツク管を加熱体と検出素子との間隙部に挿入
する方法、あるいは加熱体の形成時に、すなわち
半導体生シート上に金属導体を配着し、さらにそ
の上面に絶縁性セラミツク質生シートを重ね合せ
て圧着し、管状体等に成形後焼成し、検出素子に
対向する面に絶縁体層がくるように加熱体を形成
することも可能である。
In addition, as the insulator layer 5, a commonly used heat-resistant layer,
Any material may be used as long as it is insulating resistant, and examples thereof include tubular materials made of heat-resistant and insulating-resistant ceramics such as alumina, beryllia, mullite, zirconia, and cordierite. The insulating layer may be interposed between the heating body and the detection element, for example, by inserting an insulating ceramic tube into the gap between the heating body and the detection element, or when forming the heating body, that is, by inserting a semiconductor layer into the gap between the heating body and the detection element. A metal conductor is placed on the sheet, and an insulating ceramic green sheet is superimposed and crimped on top of the sheet, formed into a tubular body, etc., and then fired, so that the insulating layer is on the surface facing the detection element. It is also possible to form a heating body.

本考案の固体電解質酸素濃度計に用いる加熱体
は従来の絶縁性セラミツクシートを基本とし、こ
れに金属導体パターンをプリントし、更に該プリ
ント上部に絶縁性セラミツクシートを圧接し、加
熱体を得る方法に変え、半導体物質で生シートを
作製し、該生シートを基本としてこれに金属導体
パターンをプリントし、上部より半導体生シート
を圧接して加熱体を作成し、金属導体に供給され
る電流の少なくとも1%以上、好ましくは10〜20
%が固体電解質酸素濃度計の使用温度において半
導体層に分流せしめる構造としたもので、発熱が
金属導体上に片寄らないため、加熱体の温度分布
はより均一化される。
The heating element used in the solid electrolyte oxygen concentration meter of the present invention is based on a conventional insulating ceramic sheet, and a metal conductor pattern is printed on this, and an insulating ceramic sheet is then pressure-bonded on top of the print to obtain the heating element. Instead, a raw sheet is made of a semiconductor material, a metal conductor pattern is printed on it using the raw sheet as a base, and a heating element is created by pressure-welding the semiconductor raw sheet from above, and the current supplied to the metal conductor is At least 1% or more, preferably 10-20
% is diverted to the semiconductor layer at the operating temperature of the solid electrolyte oxygen concentration meter, and as the heat is not concentrated on the metal conductor, the temperature distribution of the heating element is made more uniform.

本考案はかかる発熱体を従来公知の加熱体に換
え、加えて加熱体より検出素子部への電流の漏洩
防止の目的で絶縁性物質の層を該加熱体と検出素
子との間の間隙部に介在させることにより加熱体
温度分布が均一化され、出力の安定した固体電解
質酸素濃度計を構成したものであり、その価値は
頗る大である。
The present invention replaces such a heating element with a conventionally known heating element, and also adds a layer of insulating material to the gap between the heating element and the detection element in order to prevent current leakage from the heating element to the detection element. The temperature distribution of the heating element is made uniform by interposing the solid electrolyte oxygen concentration meter with a stable output, and its value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来使用されている固体電解質酸素濃
度計の簡略断面図であり、第2図は本考案の濃度
計の簡略断面図を示す。 図中1:酸素イオン伝導性固体電解質の隔壁、
2:多孔性電極、3:加熱体、4:電力計、5:
絶縁体層を示す。
FIG. 1 is a simplified sectional view of a conventionally used solid electrolyte oxygen concentration meter, and FIG. 2 is a simplified sectional view of the concentration meter of the present invention. 1 in the figure: partition wall of oxygen ion conductive solid electrolyte,
2: Porous electrode, 3: Heating body, 4: Power meter, 5:
Insulator layer shown.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 酸素イオン伝導性固体電解質の隔壁1とその壁
面に多孔性電極2を備えた検出素子と、半導体面
に金属導体を配着して構成され、検出素子等を動
作温度に加熱保持するための加熱体3と、検出素
子と加熱体との間隙部に絶縁体層5を介在させて
構成された固体電解質酸素濃度計。
It is composed of a sensing element having a partition wall 1 made of an oxygen ion conductive solid electrolyte, a porous electrode 2 on the wall surface, and a metal conductor arranged on the semiconductor surface, and a heating device for heating and maintaining the sensing element etc. at an operating temperature. A solid electrolyte oxygen concentration meter configured by interposing an insulating layer 5 between a body 3, a detection element, and a heating body.
JP1691382U 1982-02-08 1982-02-08 Solid electrolyte oxygen concentration meter Granted JPS58120959U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1691382U JPS58120959U (en) 1982-02-08 1982-02-08 Solid electrolyte oxygen concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1691382U JPS58120959U (en) 1982-02-08 1982-02-08 Solid electrolyte oxygen concentration meter

Publications (2)

Publication Number Publication Date
JPS58120959U JPS58120959U (en) 1983-08-17
JPH0230766Y2 true JPH0230766Y2 (en) 1990-08-20

Family

ID=30029259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1691382U Granted JPS58120959U (en) 1982-02-08 1982-02-08 Solid electrolyte oxygen concentration meter

Country Status (1)

Country Link
JP (1) JPS58120959U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535372B2 (en) * 1988-03-09 1996-09-18 日本碍子株式会社 Ceramic heater, electrochemical device and oxygen analyzer

Also Published As

Publication number Publication date
JPS58120959U (en) 1983-08-17

Similar Documents

Publication Publication Date Title
US4559126A (en) Electrochemical device
KR0148687B1 (en) Planar polarographic probe for determining the ñù(rambda)value of gaseous mixtures
EP0162603B1 (en) Electrochemical device and method of manufacturing the same
US5108577A (en) Electrochemical device
JPH0672861B2 (en) NOx sensor
JPH07209244A (en) Planar type sensor element on solid electrolyte base body
EP0294085B1 (en) Electrochemical elements
JPS6151555A (en) Electrochemical device
JPH0516543B2 (en)
JPH0230766Y2 (en)
JP2000180402A (en) Electrochemical measurement sensor
JP3678747B2 (en) Insulating layer system for electrical isolation of current circuits.
JP2769494B2 (en) Oxygen sensor and its manufacturing method
JPH081426B2 (en) Electrochemical device
JP2005201841A (en) Oxygen concentration detecting element and its manufacturing method
JP3874691B2 (en) Gas sensor element and gas sensor
JP2002357589A (en) Gas sensor element and gas sensor
JPH0735726A (en) Gas component detecting element
JPS6358152A (en) Industrial oxygen concentration measuring apparatus
JPS6363936A (en) Industrial gas concentration measuring apparatus
JP4007892B2 (en) Gas sensor element and gas sensor using the same
JP2593823Y2 (en) Gas detector
JPH0234605Y2 (en)
JP2000235013A (en) Production of electrode for sensor for measuring oxygen concentration in gas mixture
JPH0417385B2 (en)