JPH0230762A - Composite body having film composed principally of carbon - Google Patents

Composite body having film composed principally of carbon

Info

Publication number
JPH0230762A
JPH0230762A JP17785088A JP17785088A JPH0230762A JP H0230762 A JPH0230762 A JP H0230762A JP 17785088 A JP17785088 A JP 17785088A JP 17785088 A JP17785088 A JP 17785088A JP H0230762 A JPH0230762 A JP H0230762A
Authority
JP
Japan
Prior art keywords
nitrogen
carbon
film
hydrogen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17785088A
Other languages
Japanese (ja)
Inventor
Shigenori Hayashi
茂則 林
Toshiji Hamaya
敏次 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP17785088A priority Critical patent/JPH0230762A/en
Priority to US07/380,328 priority patent/US5238705A/en
Publication of JPH0230762A publication Critical patent/JPH0230762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To satisfy simultaneously mechanical stress resistance, troubles due to static electricity, and transparency by forming a film having a composition which is composed principally of carbon and in which nitrogen or nitrogen and hydrogen are added on the surface of a substrate by a CVD method. CONSTITUTION:A film having a composition which is composed principally of carbon and in which about 0.1-50 atomic % of nitrogen or nitrogen and hydrogen are actively added is formed on a substrate of glass, metal, ceramics, organic resin, etc., by using a plasma CVD method. It is desirable to use nitride as the nitrogen in consideration of the trouble of the corrosion of the inner wall of a reaction chamber. The characteristics of this film, such as electric conductivity, hardness, and transmissivity, can be easily changed by changing electric discharge parameters, such as applied electric power, reaction pressure, shape of electric discharge vessel, and flow rates of carbon starting raw material and nitrogen starting raw material. By this method, the service life and reliability of a composite body can be improved.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、ガラス、金属、セラミックス、有機樹脂等の
表面に耐機械的ストレス、静電気対策を同時に解決する
ことを目的として、赤外および可視域に透明な炭素を主
成分とする被膜がコーティングされている、炭素を主成
分とする被膜を有する複合体に関するものである。
Detailed Description of the Invention "Field of Application of the Invention" The present invention aims to simultaneously solve mechanical stress resistance and static electricity countermeasures on the surfaces of glass, metals, ceramics, organic resins, etc. The present invention relates to a composite body having a carbon-based coating, which is coated with a transparent carbon-based coating.

「従来の技術」 ガラス、金属、プラスチックス、樹°脂等の比較的柔ら
かい材料の表面を、それら柔らかい材料よりも硬い膜で
コーティングすることは、摩耗、ひっかき等の機械的ス
トレスに対して、有効である。
``Prior art'' Coating the surface of relatively soft materials such as glass, metals, plastics, and resins with a film that is harder than the soft materials is effective against mechanical stresses such as abrasion and scratches. It is valid.

そのような膜としては、AlzOi、TiN、BN、W
C,S i C,S i、N、、SiO□等の無機膜お
よび、本発明人の出願による「炭素被膜ををする複合体
J (昭和56年特許願第146930号)が知られて
いる。しかしながら、上記既知の保護膜は、既して電気
的に高い抵抗率をもち、静電気が発生しやすく、雰囲気
中のゴミやチリをその表面に吸着しやすい性質があった
。また、電子写真プロセスに用いられる感光体等のよう
に積極的に電界をかけ、静電気を利用するような複合材
料に用いた場合などは、電気抵抗の高い保護膜には電荷
が蓄積されてしまい、期待される性能が長期にわたり発
揮できない問題があった。
Such films include AlzOi, TiN, BN, W
Inorganic films such as C, S i C, S i, N, SiO□, etc., and "Composite J with a carbon film (Patent Application No. 146930 of 1982) filed by the present inventor are known. However, the above-mentioned known protective films already have high electrical resistivity, tend to generate static electricity, and tend to attract dirt and dust in the atmosphere to their surfaces. When used in composite materials that actively apply an electric field and utilize static electricity, such as photoreceptors used in processes, charges accumulate in the protective film with high electrical resistance, and the expected There was a problem that the performance could not be achieved for a long time.

そのような問題を解決する方法として前記既知膜中に導
電性物質を添加する方法が考えられる。
One possible way to solve such problems is to add a conductive substance to the known film.

この場合添加された導電性物質が光の吸収中心となり、
前記既知の保護膜中での光の吸収が発生して、赤外およ
び可視域での透光性を必要とする応用に適用できなくな
る。
In this case, the added conductive substance becomes a light absorption center,
Light absorption occurs in the known protective film, making it unsuitable for applications requiring transparency in the infrared and visible ranges.

さらに、前記既知の保護膜は成膜過程の条件にもよるが
、内部応力が蓄積され、膜のビーリングが発生する間凹
もあった。したがって膜厚をうすすくする、前記保護膜
と下地材料の間に密性性の向上を目的とした中間層を設
ける等の対策が必要となるが、膜厚の低下は耐機械スト
レスの低下を意味し、中間層の存在はプロセス増加によ
るコスト高の問題が発生する。
Furthermore, depending on the conditions of the film-forming process, the known protective film may accumulate internal stress and have dents during which the film becomes beaded. Therefore, it is necessary to take measures such as reducing the thickness of the film or providing an intermediate layer between the protective film and the underlying material to improve the density. This means that the presence of an intermediate layer causes the problem of increased costs due to increased processes.

「発明の構成」 本発明は、以上述べた問題を解決し、保護膜としての耐
機械ストレス、静電気に由来する問題点、透明性を同時
に満足する被膜として、炭素を主成分とする被膜に窒素
または水素と窒素を0.1〜50原子パーセント添加し
、該窒素が添加された炭素を主成分とする被膜を基体表
面にコーティングされたことを特徴とする、炭素を主成
分とする被膜を有する複合体を提供することを目的とす
る。
``Structure of the Invention'' The present invention solves the above-mentioned problems and provides a coating that satisfies mechanical stress resistance as a protective film, problems arising from static electricity, and transparency at the same time. Or it has a coating mainly composed of carbon, which is characterized by adding 0.1 to 50 atomic percent of hydrogen and nitrogen and coating the surface of the substrate with a coating mainly composed of carbon to which the nitrogen is added. The purpose is to provide a complex.

本発明による複合体に用いる窒素が添加された炭素を主
成分とする被膜は炭素の原料としてノクン(CH,)、
エタン(C,H&)、エチレン(CZH4)、アセチレ
ン(C2H2)等の炭化水素をプラズマ中に導入し、前
記炭素原料を分解、励起し、所定の基板上に堆積させる
ことによって形成することができる。この時、同時に窒
素の原料としてNl(、、NF、 、N、等の原料気体
をプラズマ中に導入して炭素を主成分とする被膜性に窒
素を添加する。添加量は、窒素を含む物質の流量によっ
て制御することができる。
The coating mainly composed of nitrogen-doped carbon used in the composite according to the present invention uses Nokun (CH,) as the carbon raw material,
It can be formed by introducing hydrocarbons such as ethane (C, H&), ethylene (CZH4), acetylene (C2H2), etc. into plasma, decomposing and exciting the carbon raw material, and depositing it on a predetermined substrate. . At this time, a raw material gas such as Nl (, , NF, , N, etc.) is simultaneously introduced into the plasma as a nitrogen raw material to add nitrogen to the film whose main component is carbon. can be controlled by the flow rate.

ここで、炭素を含む原料ガスとして、前記炭化水素の他
にCF、、CH,F、等のフッ化炭素、CCl4等の塩
化炭素、CH,Br等の臭化炭化水素を用いてもよい。
Here, as the raw material gas containing carbon, in addition to the above hydrocarbons, fluorocarbons such as CF, CH, F, etc., carbon chlorides such as CCl4, and brominated hydrocarbons such as CH, Br may be used.

しかしながら、窒素としては、プラズマ反応室内壁の腐
蝕の問題から窒素化物が最も利用しやすい。また、窒素
添加量制御の点から炭素原料物質としては窒素を含まな
い炭化水素が有効である。
However, as nitrogen, nitrides are most easily used due to the problem of corrosion of the walls of the plasma reaction chamber. Furthermore, from the viewpoint of controlling the amount of nitrogen added, hydrocarbons that do not contain nitrogen are effective as carbon raw materials.

本発明による被膜は、以上述べたような原料物質、すな
わち炭素原料物質と窒素材料を同時にプラズマ反応室に
導入し、この時含窒素系原料物質の流星を調整すること
によって被膜の窒素添加量を制御することができる。
The film according to the present invention is produced by introducing the above-mentioned raw materials, that is, a carbon raw material and a nitrogen material into a plasma reaction chamber at the same time, and adjusting the amount of nitrogen added to the film by adjusting the meteorite of the nitrogen-containing raw material. can be controlled.

窒素添加量は導電率、透過率、硬度の違いとして観測さ
れる。以下に窒素原料物質の流量を変えた時の導電率の
変化の実験結果を示す。
The amount of nitrogen added is observed as a difference in conductivity, transmittance, and hardness. The experimental results of changes in electrical conductivity when the flow rate of the nitrogen source material is changed are shown below.

窒素原料物質としてNH,を用いた。炭素原料物質とし
てエチレンを用い、エチレンの流量1105cC、反応
圧力10Pa、投入電力密度0.08W/cm”とした
。第1図に示すようにNH,の星が増すに従い、導電率
が高くなっている。また、第2図に示すようにNH,流
量が増すに従い透過率は高くなる。さらに第3図に示す
ようにNH,流量が増すに従い硬度は低下する。硬度が
低下するということは、すなわち、内部応力が低下する
ことを意味する。
NH was used as a nitrogen source material. Ethylene was used as the carbon raw material, and the ethylene flow rate was 1105 cC, the reaction pressure was 10 Pa, and the input power density was 0.08 W/cm.As shown in Figure 1, as the number of NH stars increases, the conductivity increases. In addition, as shown in Figure 2, as the NH flow rate increases, the permeability increases.Furthermore, as shown in Figure 3, as the NH flow rate increases, the hardness decreases. That is, it means that internal stress is reduced.

窒素または窒素と水素が添加された炭素を主成分とする
被膜を用いれば、以上述べたように比較的広い範囲にわ
たって被膜の導電率、硬さ、透過率を変えることができ
る。すなわち種々の応用に要求される最適特性が、比較
的安価に容易に得ることができる。
By using a film whose main component is nitrogen or carbon to which nitrogen and hydrogen are added, the conductivity, hardness, and transmittance of the film can be varied over a relatively wide range, as described above. That is, the optimum characteristics required for various applications can be easily obtained at relatively low cost.

以上窒素原料物質の流量を変えることによって窒素添加
量を変えることを述べたが、もちろん放電時の投入電力
、反応圧力、放電容器の形、炭素原料物質流量等の放電
条件は一定である。また、これらの放電条件のうち1つ
もしくは2つ以上を変化させても、窒素添加量を変える
ことができる。
Although it has been described above that the amount of nitrogen added is changed by changing the flow rate of the nitrogen raw material, the discharge conditions such as the input power during discharge, the reaction pressure, the shape of the discharge vessel, and the flow rate of the carbon raw material are constant. Furthermore, the amount of nitrogen added can be changed by changing one or more of these discharge conditions.

−例として、投入電力を変化させた場合の導電率の変化
を第4図に示す。すなわち、投入電力を増すに従い導電
率は高くなる。この場合も勿論、投入電力以外の放電パ
ラメータである反応圧力、放電容器の形、NH,流量、
C2H,流量等は一定である。
- As an example, FIG. 4 shows the change in conductivity when the input power is changed. That is, as the input power increases, the conductivity increases. In this case, of course, the discharge parameters other than the input power are the reaction pressure, the shape of the discharge vessel, NH, flow rate,
C2H, flow rate, etc. are constant.

以上述べたように、窒素または水素と窒素を含む炭素を
主成分とする被膜の導電率、硬さ、透過率等の膜特性は
、投入電力、反応圧力、放電容器の形、炭素原料物質流
量、窒素原料物質流量等の放電パラメータを変えること
により、容易に、安価に比較的広い範囲で変化させるこ
とができる。
As mentioned above, the film properties such as conductivity, hardness, and transmittance of a film whose main components are nitrogen or hydrogen and carbon containing nitrogen are determined by the input power, reaction pressure, the shape of the discharge vessel, the flow rate of the carbon raw material, etc. By changing discharge parameters such as the flow rate of the nitrogen raw material, it is possible to easily and inexpensively change the discharge parameters over a relatively wide range.

また窒素が添加された炭素を主成分とする被膜は内部応
力が小さいという特徴がある。これは、通常炭素中に存
在する未結合手(グングリングボンド)には、水素がタ
ーミネートされ未結合手の引力を緩和することにより内
部応力を低減させるが、未結合手すべてに水素がターミ
ネートされるわけではなく、多少の未結合手が膜中に残
っており、これが内部応力の原因の1つと考えられる。
Furthermore, a coating mainly composed of carbon to which nitrogen is added is characterized by low internal stress. This is because the dangling bonds that normally exist in carbon are terminated with hydrogen and reduce the internal stress by relaxing the attractive force of the dangling bonds. Rather, some dangling bonds remain in the film, and this is thought to be one of the causes of internal stress.

ここに水素よりも反応性の高い窒素、例えば窒素がプラ
ズマ中に存在すると窒素と炭素は容易にCN結合をつく
り炭素の未結合手は水素のみの場合よりも低減すると考
えられる。すなわち、内部応力が低減されることになる
。また、内部応力の低下により膜のビーリングの発生が
防止されることも特徴の1つである。
It is thought that if nitrogen, which is more reactive than hydrogen, such as nitrogen, is present in the plasma, nitrogen and carbon will easily form a CN bond, and the number of dangling bonds in carbon will be reduced compared to when only hydrogen is present. In other words, internal stress is reduced. Another feature is that the reduction in internal stress prevents the occurrence of membrane beerling.

さらに、窒素が添加された炭素を主成分とする被膜は耐
熱性の点においても優れている。
Furthermore, a coating mainly composed of carbon to which nitrogen is added has excellent heat resistance.

また、窒素が添加された炭素を主成分とする被n父は堆
積的の基板の温度が室温から150°C以下の低温で成
膜できることも特徴の1つである。従って、複合体の基
体として、プラスチックス、樹脂等の有機物、セレン半
導体等、高温にできないものでも構成することができる
Further, one of the characteristics of the n-containing material, which is mainly composed of carbon to which nitrogen is added, is that it can be formed into a film at a deposition temperature of a substrate ranging from room temperature to 150° C. or less. Therefore, the substrate of the composite can be made of materials that cannot be heated to high temperatures, such as organic materials such as plastics and resins, and selenium semiconductors.

以下図面に従って作成方法を述べる。The production method will be described below according to the drawings.

第5図は本発明に用いた窒素が添加された炭素を主成分
とする被膜形成するためのプラズマCVD装置の概要を
示す。
FIG. 5 shows an outline of a plasma CVD apparatus used in the present invention for forming a film mainly composed of carbon doped with nitrogen.

図面において、ドーピング系(1)において、キャリア
ガスである水素を(2)より、反応性気体である炭化水
素気体例えばメタン、エチレンを(3)より、窒素を含
む気体例えばN H3を(4)よりバルブ(6)、流量
計(力をへて反応系(8)中にノズル(9)より導入さ
れる。このノズルに至る前に、反応性気体の励起用にマ
イクロ波エネルギを00)で加えて予め活性化させるこ
とは有効である。
In the drawing, in the doping system (1), hydrogen is used as a carrier gas (2), a hydrocarbon gas such as methane or ethylene is used as a reactive gas (3), and a gas containing nitrogen such as NH3 is added (4) as a reactive gas. It is introduced into the reaction system (8) through a nozzle (9) through a valve (6) and a flow meter (power).Before reaching this nozzle, microwave energy is applied to excite the reactive gas. In addition, it is effective to activate it in advance.

反応系(8)には第1の電極(11)、第2の電極02
)を設けた。この場合(第1の電極面積/第2の電極面
積)〈1の条件を満たすようにした。一対の電極(11
)、021間には高周波電源0■、マツチングトランス
04)、直流バイアス電源05)より電気エネルギが加
えられ、プラズマが発生する。排気系0ωは圧力調整バ
ルブ07)、ターボ分子ポンプ側、ロータリーポンプ0
9)をへて不要気体を排気する。反応性気体には、反応
空間e(Dにおける圧力が0.001−10Torr代
表的には0.01〜ITorrの下で高周波もしくは直
流によるエネルギにより0.1〜5KWのエネルギが加
えられる。
The reaction system (8) includes a first electrode (11) and a second electrode 02.
) was established. In this case, the condition (first electrode area/second electrode area) <1 was satisfied. A pair of electrodes (11
) and 021, electric energy is applied from a high frequency power source 0■, a matching transformer 04), and a DC bias power source 05), and plasma is generated. Exhaust system 0ω is pressure adjustment valve 07), turbo molecular pump side, rotary pump 0
9) to exhaust unnecessary gas. Energy of 0.1 to 5 KW is applied to the reactive gas by high frequency or direct current energy under a pressure of 0.001 to 10 Torr, typically 0.01 to ITorr, in the reaction space e (D).

特に励起源がIGH2以上、例えば2.45GH2の周
波数にあっては、C−H結合より水素を分離し、さらに
周波数源が0.1〜50MH2例えば13゜56MH2
の周波数にあってはC−C結合、C−C結合を分解し、
−C−C−結合を作り、炭素の不対結合手同志を互いに
衝突させて共有結合さゼ、安定なダイヤモンド構造を局
部的に有した構造とさせ得る。
In particular, when the excitation source has a frequency of IGH2 or higher, for example 2.45GH2, hydrogen is separated from the C-H bond, and the frequency source is 0.1 to 50MH2, for example 13°56MH2.
At the frequency of , the C-C bond and C-C bond are decomposed,
-C-C- bonds are formed, and the unpaired carbon bonds collide with each other to form covalent bonds, resulting in a structure locally having a stable diamond structure.

直流バイアスは一200〜600V (実質的には一4
00〜+400V)を加える。なぜなら、直流バイアス
が零のときは自己バイアスが一200V(第2の電極を
接地レベルとして)を有しているためである。
DC bias is -200 to 600V (substantially -4
00~+400V). This is because when the DC bias is zero, the self-bias has a voltage of 1200V (with the second electrode at the ground level).

以上のようにしてプラズマにより被形成面上にC−C結
合を多数形成したアモルファス構造または微結晶構造を
有するアモルファス構造の窒素を含んだ炭素を生成させ
た。さらにこの電磁エネルギは50w〜lkwを供給し
、単位面積あたり003〜3w/ciのプラズマエネル
ギーを加えた。この窒素を含んだ炭素の透過率は第6図
に示すように600nm以上の波長域では95%以上の
透過であり、400nmでも50%以上透過のほぼ透明
な膜が得られた。また、膜の内部応力は107dyn/
cm”以下と非常に小さなものであった。酸やアルカリ
、有機、溶剤等の薬品に室温にて1時間浸しておいても
、その表面を400倍の光学顕微鏡で観察する限りでは
変化は見られず、また、500°Cに加熱した恒温槽(
空気)中に1時間放置したものの表面も変化が見られず
化学的、熱的に安定な膜を得ることができた。
As described above, nitrogen-containing carbon having an amorphous structure or a microcrystalline structure with a large number of C--C bonds formed on the formation surface was generated by plasma. Further, this electromagnetic energy was supplied at 50 W to 1 KW, and plasma energy of 0.03 to 3 W/ci per unit area was added. As shown in FIG. 6, the transmittance of this nitrogen-containing carbon was 95% or more in the wavelength range of 600 nm or more, and an almost transparent film with 50% or more transmission even at 400 nm was obtained. Also, the internal stress of the film is 107 dyn/
cm" or less. Even if the surface was immersed in chemicals such as acids, alkalis, organics, and solvents for one hour at room temperature, no change was observed as long as the surface was observed with an optical microscope at 400x magnification. In addition, a constant temperature bath heated to 500°C (
Although the film was left in air for 1 hour, no change was observed on the surface, and a chemically and thermally stable film could be obtained.

以上述べた作成方法はあくまで一例であり、従来より良
く知られているグロー放電プラズマであっても、アーク
放電プラズマであっても、また、ECRを用いたプラズ
マであってもよい。
The above-described production method is just an example, and the well-known glow discharge plasma, arc discharge plasma, or plasma using ECR may be used.

以下実施例に従って本発明を応用した複合体についてさ
らに詳しく述べる。
Hereinafter, a composite to which the present invention is applied will be described in more detail according to Examples.

「実施例1」 電子写真のプロセスに用いられる感光体に、本発明によ
る複合体を応用した場合の例を以下に述べる。
"Example 1" An example in which the composite according to the present invention is applied to a photoreceptor used in an electrophotographic process will be described below.

第7図は、本発明よる炭素を主成分とした被膜を応用し
た場合の感光体の構造を示す。約200μm厚さのPE
Tシート(1)上に厚さ600人のA1蒸着層(2)、
中間層(3)をはさんで0.6〜1.271 mの電荷
発生層を(4)を設け、本発明による保護膜(6)、約
20μmの電荷移動FJ(5)を通して光(7)が入射
すると前記電荷発生層で吸収され、電子正孔対が生成さ
れる。あらかじめ、電荷移動層もしくは保護層を負に帯
電させておけば、光入射のあった領域のみ電荷発生層で
生成された正札が電荷移動層を移動し帯電された負電荷
を中和させる。この時、電荷発生層で生成された電子は
中間層を通ってA1蒸着層に達し、排出される。光入射
のなかった領域に残った負電荷は、その後トナーを吸着
し、転写紙に転写されて、光入射の有無に応じた像を転
写紙上に形成することとなる。
FIG. 7 shows the structure of a photoreceptor to which a coating mainly composed of carbon according to the present invention is applied. Approximately 200μm thick PE
A1 vapor deposition layer (2) with a thickness of 600 people on the T-sheet (1),
A charge generation layer (4) with a thickness of 0.6 to 1.271 m is provided between the intermediate layer (3), and light (7 ) is absorbed by the charge generation layer, and electron-hole pairs are generated. If the charge transfer layer or the protective layer is negatively charged in advance, the genuine tag generated in the charge generation layer moves through the charge transfer layer only in the area where light is incident, neutralizing the negative charges. At this time, electrons generated in the charge generation layer pass through the intermediate layer, reach the A1 deposited layer, and are discharged. The negative charge remaining in the area where no light was incident then adsorbs toner and is transferred to the transfer paper, forming an image on the transfer paper depending on whether or not light is incident.

ここで形成された保3WNは本発明を用いたものであり
、NH,流量によりその比抵抗を10”〜109(Ωc
m)に制御されたものである。従って、比抵抗が低ずぎ
る為に発生ずる、帯′@重電荷横方向の移動がなく、光
入射のあった領域の境界はぼけることなくはっきりとし
ている。依って、転写された像も鮮明なものであった。
The 3WN formed here uses the present invention, and its specific resistance can be varied from 10'' to 109 (Ωc) depending on the NH and flow rate.
m). Therefore, there is no lateral movement of the band'@heavy charge, which occurs because the specific resistance is too low, and the boundary of the area where the light is incident is clear without being blurred. Therefore, the transferred image was also clear.

また、比抵抗が高すぎれば、繰り返し使用により徐々に
保護膜に電荷がMmされ、使用済のトナーが除去されな
くなり、転写紙が黒くなるという現象が起こるが、本発
明による保護膜は電荷が蓄積されない程度の比抵抗に制
御されているため、そのような現象もなく長期に渡り良
質の転写像を得ることができた。
In addition, if the specific resistance is too high, the charge will gradually accumulate on the protective film with repeated use, and the used toner will not be removed and the transfer paper will become black.However, the protective film according to the present invention has no charge. Since the resistivity was controlled to such an extent that no accumulation occurred, it was possible to obtain high-quality transferred images over a long period of time without such a phenomenon.

また、ここで用いた保護膜の透過率は500nm以上の
波長域で80%以上であり、400nm以上の波長域で
60%以上であった。従って、本実用例の感光体は可視
光域においても十分使用可能なものであった。
Further, the transmittance of the protective film used here was 80% or more in a wavelength range of 500 nm or more, and 60% or more in a wavelength range of 400 nm or more. Therefore, the photoreceptor of this practical example was sufficiently usable even in the visible light range.

勿論、耐摩耗性、耐引っ掻き等の機械的ス;・レスに対
する耐久性が向上していることは言うまでもない。
Of course, it goes without saying that the durability against mechanical damage such as abrasion resistance and scratch resistance is improved.

更に、ここで用いた保護膜は内部応力が低減され密着性
も良いものであった。即ち、シート状感光体゛を曲率半
径10mmまで曲げても、保護膜にクランクの発生は見
られず、また、ビーリングも生じなかった。
Furthermore, the protective film used here had reduced internal stress and good adhesion. That is, even when the sheet-like photoreceptor was bent to a radius of curvature of 10 mm, no cranking was observed in the protective film, and no beering occurred.

以上、本実施例では感光体としてシート状有機感光体に
ついて述べたが、ドラム状有機感光体、アモルファスシ
リコン感光体、セレン感光体についても同様に本発明に
よる保護膜を構成することができ、同様の効果が得られ
る。
In this embodiment, a sheet-like organic photoreceptor has been described as a photoreceptor, but the protective film according to the present invention can be similarly constructed for a drum-shaped organic photoreceptor, an amorphous silicon photoreceptor, and a selenium photoreceptor. The effect of this can be obtained.

「実施例2」 代表的なサーマルプリントヘッド構造を第8図に示す。"Example 2" A typical thermal print head structure is shown in FIG.

絶縁基板(1)上にグレーズ(2)を形成し、グレーズ
(2)と同時に発熱体部にあたる部分に突起したグレー
ズ(3)を形成し、次に基板01)上に発熱体(4)と
電気導電体(5)とを順次積層し、その後公知のフォト
リソグラフィー技術を用いて、突起したグレーズの−F
に発熱体素子部(21)を形成し、最後に本発明による
窒素を含んだ炭素を主成分とする被膜を保護膜(6)と
して形成した。
A glaze (2) is formed on an insulating substrate (1), a protruding glaze (3) is formed on the part corresponding to the heating element at the same time as the glaze (2), and then a heating element (4) is formed on the substrate 01). The electrical conductors (5) are sequentially laminated, and then the protruding glaze -F is formed using a known photolithography technique.
A heating element element portion (21) was formed thereon, and finally a film containing nitrogen-containing carbon according to the present invention as a main component was formed as a protective film (6).

通常用いられる保護膜は窒化珪素膜等の無機膜であり、
その膜厚は5μmと大きいものであるが、本応用例で用
いた保護膜(6)は応用例1で形成した保護膜と同様の
特性を有し、NH:l流量を制御することによりビッカ
ース硬度2000kg/mm”以上の硬い膜を形成する
ことができる。そのため膜厚1μm程度の被膜で実用に
際しては十分である。
The protective film usually used is an inorganic film such as a silicon nitride film.
Although the film thickness is as large as 5 μm, the protective film (6) used in this application example has the same characteristics as the protective film formed in application example 1, and by controlling the NH:l flow rate, A hard film with a hardness of 2000 kg/mm" or more can be formed. Therefore, a film thickness of about 1 μm is sufficient for practical use.

また、本実施例で用いた保護膜は内部応力が10”dy
n/cm”と小さく密着性も良好であり、500°Cに
おいて1時間(空気中)の耐熱試験でも良好であること
を1111I認した。
In addition, the protective film used in this example has an internal stress of 10" dy
It was found that the adhesion was as small as "n/cm" and had good adhesion, and that it was also good in a heat resistance test at 500°C for 1 hour (in air).

さらに、10I6ΩcIIl程度の比抵抗は静電気対策
に好都合であり、傷の発生原因となるゴミや塵を低減で
き、また、静電気の電子回路に及ぼす影響も低減するこ
とができた。
Further, a specific resistance of about 10I6ΩcIIl is convenient for countermeasures against static electricity, and it is possible to reduce dirt and dust that cause scratches, and also to reduce the influence of static electricity on electronic circuits.

本応用例では既知の発熱体(4)を用いたが、本発明に
よる窒素を含む炭素を主成分とする被膜を発熱体として
用いることも可能である。即ち、窒素の濃度が高くなる
ような成膜条件で被膜を作成して、被膜の比抵抗を10
3〜104Ωcmとなようにすれば、この被膜を発熱体
として用いることができる。
In this application example, a known heating element (4) was used, but it is also possible to use the coating mainly composed of carbon containing nitrogen according to the present invention as the heating element. That is, the film is formed under film forming conditions that increase the concentration of nitrogen, and the resistivity of the film is reduced to 10.
If the resistance is 3 to 104 Ωcm, this film can be used as a heating element.

「実施例3」 本実施例は密着型イメージセンサに本発明の炭素を主成
分とする被膜を適用し第9図に示す構造の炭素を主成分
とする被膜を形成したものである。
``Example 3'' In this example, the film containing carbon as the main component of the present invention was applied to a contact type image sensor to form a film containing carbon as the main component having the structure shown in FIG. 9.

第9図に示すように透明ガラス基板(33)上に電極及
びアモルファスシリコンを公知のプラズマCvD法を用
いてKs[させエキシマレーザ−により電極及びアモル
ファスシリコンの層を加工することにより光センサー素
子(34)を形成させた後、透光性ポリイミド(35)
を公知のスピンナー法で塗布し密着型イメージセンサ−
を作製した。その後上記イメージセンサ−の透光性ポリ
イミド(35)上に実施例1で述べた方法により保護膜
(36)を2.0umの厚さに形成した。
As shown in FIG. 9, electrodes and amorphous silicon are deposited on a transparent glass substrate (33) using a known plasma CVD method, and the electrodes and amorphous silicon layer are processed using an excimer laser to form a photosensor element ( After forming 34), transparent polyimide (35)
is applied using a known spinner method to create a contact image sensor.
was created. Thereafter, a protective film (36) was formed to a thickness of 2.0 um on the transparent polyimide (35) of the image sensor by the method described in Example 1.

前記保護膜のビッカース硬度を測定したところ2500
Kg/mm”であり、また比抵抗はlX1030cmで
あった。形成された炭素被膜は被形成面上と表面とにダ
イヤモンド類似の硬さと静電気対策にとって適度な電気
絶縁性とを有しているため、原稿面上の凹凸やホチキス
の金具等により上記の層に傷が付くこともなく、また原
稿と保8隻膜との間の摩擦により静電気が生じても静電
気の蓄積を防ぐことができた。また光センサー素子への
電気的影ビを抑えると共に透光性ポリイミド中の不純物
が混入することを防止できた。
The Vickers hardness of the protective film was measured and was 2500.
Kg/mm'', and the specific resistance was 1 x 1030 cm.The formed carbon film had a hardness similar to diamond on the surface to be formed and the surface, and an appropriate electrical insulation property for static electricity countermeasures. , the above layer was not scratched by irregularities on the document surface or stapler metal fittings, and even if static electricity was generated due to friction between the document and the paper, it was possible to prevent the accumulation of static electricity. In addition, it was possible to suppress the electrical influence on the optical sensor element and to prevent the contamination of impurities in the translucent polyimide.

「効果」 以上述べたように本発明は窒素または水素と窒素が添加
された炭素を主成分とする被IQを有する複合体であり
、該被膜は窒素添加■により、容易にしかも安価に該被
膜の硬度、透光性、比抵抗を変化させることができ、加
えて該被IAの内部応力は小さく密着性の良いものであ
る。
``Effects'' As described above, the present invention is a composite material having an IQ mainly composed of nitrogen or carbon to which hydrogen and nitrogen are added, and the coating can be easily and inexpensively coated by adding nitrogen. The hardness, translucency, and specific resistance of the IA can be changed, and in addition, the internal stress of the IA is small and the adhesion is good.

本発明による窒素または水素と窒素が添加された炭素を
主成分とする被膜を応用した複合体において、実施例に
述べたとうり、本発明による炭素を主成分とする被膜を
適用しなかった場合に比べ、該複合体の寿命および信軌
性を格段に向上させることができた。
As described in the examples, in a composite to which the coating mainly composed of carbon to which nitrogen or hydrogen and nitrogen are added according to the present invention is applied, when the coating mainly composed of carbon according to the present invention is not applied. In comparison, the lifespan and reliability of the composite could be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はN11.流量と導電率の関係を示す。 第2図はNH,流量と透過率の関係を示す。 第3図はNH,流量と硬度の関係を示す。 第4図は投入電力と導電率の関係を示す。 第5図は本発明の炭素または炭素を主成分とする被膜を
形成するためのプラズマCVD装置の概要を示す。 第6図は窒素を含んだ炭素の透過率を示す。 第7図は、本発明よる炭素を主成分とした被膜を応用し
た場合の感光体の構造を示す。 第8図は代表的なサーマルプリン1−ヘッド構造を示す
。 第9図は密着型イメージセンサに本発明の炭素を主成分
とする被膜を適用したものである。
Figure 1 shows N11. Shows the relationship between flow rate and conductivity. Figure 2 shows the relationship between NH, flow rate, and transmittance. Figure 3 shows the relationship between NH, flow rate and hardness. FIG. 4 shows the relationship between input power and conductivity. FIG. 5 shows an outline of a plasma CVD apparatus for forming carbon or a film containing carbon as a main component according to the present invention. FIG. 6 shows the transmittance of carbon containing nitrogen. FIG. 7 shows the structure of a photoreceptor to which a coating mainly composed of carbon according to the present invention is applied. FIG. 8 shows a typical thermal printer 1-head structure. FIG. 9 shows a contact type image sensor to which the film containing carbon as a main component of the present invention is applied.

Claims (1)

【特許請求の範囲】[Claims] プラズマCVD(化学気相成長法)を用いて作成され積
極的に窒素または水素と窒素が添加された炭素を主成分
とする被膜がガラス、金属、セラミックス、有機樹脂等
の基板の上に作成されていることを特徴とする、炭素を
主成分とする被膜を有する複合体。
A film created using plasma CVD (chemical vapor deposition) and consisting mainly of carbon to which nitrogen or hydrogen and nitrogen are actively added is created on a substrate such as glass, metal, ceramics, or organic resin. A composite material having a coating mainly composed of carbon.
JP17785088A 1987-02-24 1988-07-17 Composite body having film composed principally of carbon Pending JPH0230762A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17785088A JPH0230762A (en) 1988-07-17 1988-07-17 Composite body having film composed principally of carbon
US07/380,328 US5238705A (en) 1987-02-24 1989-07-17 Carbonaceous protective films and method of depositing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17785088A JPH0230762A (en) 1988-07-17 1988-07-17 Composite body having film composed principally of carbon

Publications (1)

Publication Number Publication Date
JPH0230762A true JPH0230762A (en) 1990-02-01

Family

ID=16038195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17785088A Pending JPH0230762A (en) 1987-02-24 1988-07-17 Composite body having film composed principally of carbon

Country Status (1)

Country Link
JP (1) JPH0230762A (en)

Similar Documents

Publication Publication Date Title
US6083313A (en) Hardcoats for flat panel display substrates
JPH06202361A (en) Electrophotographic sensitive body and its production
US5145711A (en) Cyclotron resonance chemical vapor deposition method of forming a halogen-containing diamond on a substrate
US5120625A (en) Carbon material containing a halogen and deposition method for same
US6322943B1 (en) Light-receiving member, image forming apparatus having the member, and image forming method utilizing the member
Jeong et al. Effects of gas composition and rf power on properties of a–C: H/SiC: H composite films grown by plasma-enhanced chemical vapor deposition
JP3938431B2 (en) Method for producing water-repellent coating film
JPH0230762A (en) Composite body having film composed principally of carbon
JPH0230760A (en) Composite body having film composed principally of carbon
JPH0234787A (en) Laminated body having carbon-based coating film
WO2000006794A1 (en) Hardcoats for flat panel display substrates
JPH0230755A (en) Carbon-based coating film
JPH02107773A (en) Formation of carbon-based coating film
JPH0230763A (en) Composite body having film composed principally of carbon
JPH02107774A (en) Formation of carbon-based coating film
JPH0234786A (en) Laminated body having carbon-based coating film
JPH0230761A (en) Composite body having film composed principally of carbon
JPH0229662A (en) Photoconductor
KR0156562B1 (en) A method for preparing an electrophotographic photoreceptor
JPH0226822A (en) Film essentially consisting of carbon
JPS6346467A (en) Electrophotographic sensitive body
JPH0234785A (en) Carbon-based coating film
JP3057072B2 (en) Method for producing diamond-like carbon film
Hwang et al. Enhancement of the electrophotographic properties of DLC coated OPC drums by oxygen addition
JPH04247877A (en) Deposited film forming device