JPH0230756A - Reactive ion plating device - Google Patents

Reactive ion plating device

Info

Publication number
JPH0230756A
JPH0230756A JP17722588A JP17722588A JPH0230756A JP H0230756 A JPH0230756 A JP H0230756A JP 17722588 A JP17722588 A JP 17722588A JP 17722588 A JP17722588 A JP 17722588A JP H0230756 A JPH0230756 A JP H0230756A
Authority
JP
Japan
Prior art keywords
ion plating
reaction gas
flow rate
reactive gas
discharge light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17722588A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
一弘 鈴木
Masao Iguchi
征夫 井口
Yasuhiro Kobayashi
康宏 小林
Fumihito Suzuki
鈴木 文仁
Tsuneo Nagamine
長嶺 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17722588A priority Critical patent/JPH0230756A/en
Publication of JPH0230756A publication Critical patent/JPH0230756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To make the quality of a film stable and uniform by detecting discharge spark at the time of ion plating as an indicator of the balance between the amt. of a reactive gas introduced into a vacuum vessel and the amt. of vapor generated from an evaporating source and by feeding back the detected value so as to regulate the flow rate of the reactive gas. CONSTITUTION:This reactive ion plating device is composed essentially of a vacuum vessel 1, a part 7 for introducing a reactive gas into the vessel 1, a crucible 4 holding starting material 3 to be evaporated, a heater 6 for heating the crucible 4 and an ionizer for ionizing vapor of the starting material and the reactive gas. Discharge spark received by a spark receiving part 8 is spectrally analyzed in a spectral analyzing part 9 and the resulting signals are processed to calculate the flow rate of the reactive gas in a computing part 10. The flow rate of the reactive gas is regulated by a controller 11 according to the calculated result.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、基板に化合物被覆、例えばTiN。[Detailed description of the invention] (Industrial application field) In this invention, a substrate is coated with a compound, for example, TiN.

TiC,CrN等のセラミックス被膜を成膜さセる反応
性イオンプレーティング装置に関し、安定した特性を有
する被膜を成膜させることのできる装置を提案しようと
するものである。
Regarding a reactive ion plating apparatus for forming ceramic coatings such as TiC and CrN, the present invention attempts to propose an apparatus capable of forming coatings with stable characteristics.

(従来の技術) イオンプレーティング法によって金属部材表面等にセラ
ミックス等の被膜を成■9させることによって耐摩耗性
、耐食性及び装飾性を高める手法が開発されている。
(Prior Art) A method has been developed to improve wear resistance, corrosion resistance, and decorativeness by forming a coating of ceramic or the like on the surface of a metal member by ion plating.

しかし、これらの被膜の膜特性は、安定しているとはい
えず、バッチごとによる変動や成膜位置による変動及び
これらの経時的変動がしばしば認められる。
However, the film properties of these films cannot be said to be stable, and variations from batch to batch, variation depending on the film forming position, and variation over time are often observed.

その原因の1つとしてるつぼ内の蒸発原料の融解状態が
時間の推移につれて変化し、しかもその制御も困難であ
るため、この融解状態の変化により蒸気量が経時的に変
化すること、またその原料蒸気の空間分布が変化するこ
とが挙げられる。その結果、成膜速度は無論のこと1、
その膜質も時間的にも、また位置的にも変化していくの
である。
One of the reasons for this is that the melting state of the evaporated raw material in the crucible changes over time, and it is difficult to control, so the amount of vapor changes over time due to changes in the melting state, and the raw material One example is that the spatial distribution of vapor changes. As a result, it goes without saying that the deposition rate is 1,
The quality of the film also changes over time and position.

このような問題を解決するため、特開昭60−2137
7号公報、特11n昭60−21378号公報及び特開
昭60−21379号公報において、蒸着材の蒸気が被
蒸着材の表面に到達する導路中にシャッターを設け、こ
のシャッターの開度を調節することにより蒸気流量及び
その分布の均一性を制御する技術が開示されている。
In order to solve such problems, Japanese Patent Application Laid-Open No. 60-2137
In Publication No. 7, Special Publication No. 11n Sho 60-21378, and Japanese Unexamined Patent Publication No. Sho 60-21379, a shutter is provided in the guide path through which the vapor of the evaporation material reaches the surface of the material to be evaporated, and the opening degree of this shutter is controlled. Techniques are disclosed for controlling the steam flow rate and the uniformity of its distribution by adjusting it.

(発明が解決しようとする課題) しかし、上記した技術は、蒸気流が粘性流領域である場
合は有効であるものの、作動圧力が1O−3torr以
下の分子流領域である反応性イオンプレーティング法に
用いた場合には、シャック−の開度調整による蒸気流分
布の均一化は困難であった。
(Problems to be Solved by the Invention) However, although the above-mentioned techniques are effective when the vapor flow is in the viscous flow region, the reactive ion plating method is effective in the case where the vapor flow is in the viscous flow region, but the reactive ion plating method is effective in the case where the vapor flow is in the viscous flow region. When used for this purpose, it was difficult to make the vapor flow distribution uniform by adjusting the opening degree of the shack.

この発明は、上記の問題を有利に解決するもので、成I
IAさせる被膜の特性が、時間的にも又空間的にも安定
している反応性イオンプレーティング装置を提案するこ
とを目的とする。
This invention advantageously solves the above problems and achieves
The purpose of the present invention is to propose a reactive ion plating device in which the characteristics of the film subjected to IA are stable both temporally and spatially.

(課題を解決するための手段) 発明者らは、成膜させる被膜の特性の経時的変動や空間
的変動が少なく、安定して成膜させることのできる反応
性イオンプレーティング装置に°ついて検討を重ねた結
果、膜特性の多くは蒸発源から発生する蒸気の星と、真
空容器内に導入さ−Uる反応ガスとのバランスによって
決定されるごと、そしてこの蒸気■と反応ガス流量との
バランスは、イオンプレーティング時における蒸発源と
基板間の電離空間の放電光の色にて示し得ることの知見
を得た。
(Means for Solving the Problem) The inventors have studied a reactive ion plating device that can stably form a film with little temporal or spatial variation in the characteristics of the film to be formed. As a result of repeated studies, we found that many of the film properties are determined by the balance between the vapor stars generated from the evaporation source and the reactant gas introduced into the vacuum chamber, and the relationship between this vapor and the reactant gas flow rate. We have found that the balance can be indicated by the color of discharge light in the ionized space between the evaporation source and the substrate during ion plating.

そこで蒸発原料の融解状態に変動が生じた場合には、電
離空間の放電光の色変化が生じるのでこれに応じて蒸気
量又は反応ガス流量を制御すればよいわけであるが、蒸
気量の制御よりも反応ガス流星の制御のほうが応答性も
良く制御性も高いことから発明者らは、イオンプレーテ
ィング時の電離空間における放電光の色及びその分布を
検知して、それを導入する反応ガス流量にフィードバッ
クさせることによりイオンプレーティング法により得ら
れるIり質の安定化、均一化を図るこの発明の反応性イ
オンプレーティング装置を開発するに至ったのである。
Therefore, if there is a change in the melting state of the evaporated raw material, the color of the discharge light in the ionized space will change, so the amount of vapor or the flow rate of the reaction gas can be controlled accordingly. Since the control of reactive gas meteors is more responsive and controllable, the inventors detected the color of discharge light and its distribution in the ionized space during ion plating, and detected the color and distribution of the discharge light in the ionized space during ion plating. This led to the development of the reactive ion plating apparatus of the present invention, which stabilizes and homogenizes the ion quality obtained by the ion plating method by feeding back the flow rate.

すなわちこの発明は、基板の搬入、搬出可能な真空容器
内に、反応ガスを導入する反応ガス導入部と、蒸発原料
を保持するるつぼと、るつぼ内の蒸発原料を蒸発さセる
加熱装置ξと、原料蒸気及び反応ガスをイオン化させる
イオン化装置とを有する反応性イオンプレーティング装
置であって、真空容器内に生じる電離空間の放電光を受
光する放電受光部と、 この放電光受光部で受光した放電光を分光する分光部と
、 この分光部からの信号を処理して真空容器内に導入すべ
き反応ガス流量を計算する演算部及びこの演算部で計算
した結果から反応ガス流量を調整する制御部と からなる成膜安定化装置を具備することを特徴とする反
応性イオンプレーティング装置である。
That is, the present invention includes a reaction gas introduction section for introducing a reaction gas into a vacuum container into which a substrate can be carried in and taken out, a crucible for holding an evaporation raw material, and a heating device ξ for evaporating the evaporation raw material in the crucible. , a reactive ion plating apparatus having an ionization device that ionizes raw material vapor and a reaction gas, and a discharge light receiving section that receives discharge light from an ionized space generated in a vacuum container; A spectroscopic section that spectrally spectra discharge light, a calculation section that processes the signal from this spectrometer to calculate the flow rate of the reaction gas to be introduced into the vacuum container, and a control that adjusts the flow rate of the reaction gas based on the result calculated by this calculation section. This is a reactive ion plating apparatus characterized by comprising a film formation stabilizing device comprising:

第1図に、この発明の反応性イオンプレーティング装置
の構成の一例を示す。図中1は、真空容器、2は基板、
3は蒸発原料、4はるつぼ、5はプラズマ電子銃、6は
集束コイル、7は反応ガス導入管、8は放電光受光部、
9は分光部、10は演算部、11は制御部である。
FIG. 1 shows an example of the configuration of a reactive ion plating apparatus according to the present invention. In the figure, 1 is a vacuum container, 2 is a substrate,
3 is an evaporation source, 4 is a crucible, 5 is a plasma electron gun, 6 is a focusing coil, 7 is a reaction gas introduction tube, 8 is a discharge light receiver,
9 is a spectroscopic section, 10 is a calculation section, and 11 is a control section.

真空容器1は、図示されていない真空ポンプにて10−
’ torr台まで真空排気される。この真空容器l内
のるつば4は、蒸発原料3を保持する。プラズマ電子銃
5にはArガスが供給されかつ図示されていない電源か
ら電力が供給されて60 kW程度の低電圧、大電流の
プラズマ電子ビームが発生する。この電子ビームにより
蒸発原料3は用:解、蒸発し、さらに原料蒸気の一部は
イオン化する。そして反応ガス導入管7から導入された
反応ガスとこれら原料蒸気及びイオンが搬入、搬出可能
な基板2上で反応して化合物として成膜する。なお集束
コイル6は図示されていない直流電源に接続され、磁場
を発生させてプラズマ電子ビームの集束性を制御する。
The vacuum container 1 is heated by a vacuum pump (not shown) at 10-
' Vacuum pumped down to torr level. The crucible 4 in this vacuum container 1 holds the evaporation raw material 3. Ar gas is supplied to the plasma electron gun 5, and electric power is supplied from a power supply (not shown) to generate a plasma electron beam with a low voltage of about 60 kW and a large current. The evaporation raw material 3 is evaporated by this electron beam, and a part of the raw material vapor is also ionized. Then, the reaction gas introduced from the reaction gas introduction pipe 7 and these raw material vapors and ions react on the substrate 2, which can be carried in and out, to form a film as a compound. Note that the focusing coil 6 is connected to a DC power source (not shown) and generates a magnetic field to control the focusing property of the plasma electron beam.

放電光受光部8は、イオンプレーティング中の電離空間
の放電光を受光する。これは主に光学系で構成されてい
て、受光した入射光を分光部9へ導く。受光された放電
光を、分光部9にて分光し電気信号に変換する。この分
光部9は、プリズム又は回折格子にて放電光を分光した
のち光電管にて電気信号に変換するものである。演算部
10は、分光部9から得た信号を処理するとともに実験
的に得られたデータを基に真空容器1内に導入すべき反
応ガス流量を決定する演算を行う。演算部10にて決定
された反応ガス流星に基づき、制御部11において反応
ガス流量を制御する。
The discharge light receiver 8 receives discharge light from the ionized space during ion plating. This is mainly composed of an optical system, and guides the received incident light to the spectroscopic section 9. The received discharge light is separated by a spectrometer 9 and converted into an electrical signal. This spectroscopic section 9 spectrally spectra discharge light using a prism or a diffraction grating, and then converts it into an electric signal using a phototube. The calculation section 10 processes the signal obtained from the spectroscopic section 9 and performs calculations to determine the flow rate of the reaction gas to be introduced into the vacuum vessel 1 based on experimentally obtained data. Based on the reactive gas meteor determined by the calculation unit 10, the control unit 11 controls the flow rate of the reactive gas.

演算部10において反応ガス流量を決定する演算につい
て以下具体的に説明する。
The calculation for determining the reaction gas flow rate in the calculation unit 10 will be specifically described below.

蒸発原料にTi、反応ガスにN2を用い、表1に示すよ
うにTi蒸気量、N2流量を変化させてイオンプレーテ
ィングを行い、TiNを2μl被覆させた。
Using Ti as the evaporation raw material and N2 as the reaction gas, ion plating was performed by changing the Ti vapor amount and N2 flow rate as shown in Table 1, and 2 μl of TiN was coated.

成膜したTiN被膜の原子比Ti/N、ビッカース硬度
11v (kg / mm ”)及び色を表1に併記し
た。
The atomic ratio Ti/N, Vickers hardness 11v (kg/mm''), and color of the TiN film formed are also listed in Table 1.

表 このイオンプレーティング中における放電光の分光スペ
クトルを第2図に示す。図中試験番号は、表1の番号と
対応する。
Table FIG. 2 shows the spectrum of discharge light during this ion plating. The test numbers in the figure correspond to the numbers in Table 1.

表1及び第2図から明らかなように、イオンプレーティ
ング中のN2流ユが大になるにつれてTi/Nは減少し
、色は金色へと変化していく。この際放電光の分光スペ
クトルは低波長領域(300〜400nm)の相対強度
が低下していく(■〜■)。逆にTi蒸発量を増加させ
るにつれてTi/Nは増加していき、色は金色から銀白
色に変化していく(■〜■)。
As is clear from Table 1 and FIG. 2, as the N2 flow during ion plating increases, Ti/N decreases and the color changes to gold. At this time, in the spectrum of the discharge light, the relative intensity in the low wavelength region (300 to 400 nm) decreases (■ to ■). Conversely, as the Ti evaporation amount increases, Ti/N increases, and the color changes from gold to silvery white (■ to ■).

この際低波長領域(300〜400 nm)の相対強度
は増加していく。しかも、Ti蒸発量の変化であれ反応
ガス(N2)流量の変化であれ、低波長領域(300〜
400nm)の相対強度とTi/Nは一意的に対応し、
その相対強度が増加するにつれてTi/Nは増加し°ζ
いる。つまり低波長領域の相対強度、例えば波長350
nmの相対強度を常に監視しておいて、蒸発原料の融解
状態の変化による蒸気量の変化に対して、その変化によ
る相対強度の変化に対応させて反応ガス流量を制御する
ことにより、得られる化合物被膜の膜質変化は抑えられ
るのである。このような反応ガス流量の決定を演算部1
0にて行う。
At this time, the relative intensity in the low wavelength region (300 to 400 nm) increases. Furthermore, whether it is a change in the amount of Ti evaporation or a change in the flow rate of the reactant gas (N2),
400 nm) and Ti/N uniquely correspond,
Ti/N increases as its relative strength increases °ζ
There is. In other words, the relative intensity in the low wavelength region, for example, the wavelength 350
This can be obtained by constantly monitoring the relative intensity of the evaporated raw material and controlling the flow rate of the reactant gas in response to changes in the relative intensity due to changes in the amount of vapor due to changes in the melting state of the evaporated raw material. Changes in the film quality of the compound film can be suppressed. The calculation unit 1 determines the reaction gas flow rate in this way.
Perform at 0.

(作 用) この発明に従う反応性イオンプレーティング装置は、イ
オンプレーティング中に蒸発原料の融解状態が変化し例
えば蒸気量が減少した場合、電離空間の放電光は反応ガ
ス流星が過剰である場合に相当する放電光色を呈する。
(Function) In the reactive ion plating apparatus according to the present invention, if the melting state of the evaporated raw material changes during ion plating and, for example, the amount of vapor decreases, the discharge light in the ionization space will change if there is an excess of reactive gas meteors. It exhibits a discharge light color corresponding to .

例えば蒸発原料がCr、反応ガスがN2の場合は、Cr
の蒸気量が減少するにつれて放電光色は青緑色から黄橙
色へと変化していく。この放電光色の変化を受光部で検
知し、分光部で分光して放電光色の変化を電気信号に変
換する。この電気信号と実験的に得られたデータとから
演算部にて蒸気量と反応ガス流量との比を算出して導入
する反応ガス流量の適正量を計算し、この信号を制御部
に伝達して反応ガス流量の制御を行い、この場合反応ガ
ス流量を減少させるのである。このようにして蒸発原料
の蒸気量又は反応ガス流量が変化しても常に一定の膜質
が得られるのである。
For example, if the evaporation raw material is Cr and the reaction gas is N2, Cr
As the amount of vapor decreases, the color of the discharge light changes from blue-green to yellow-orange. This change in the color of the discharge light is detected by the light receiving section, and the light is separated by the spectrometer to convert the change in the color of the discharge light into an electrical signal. Based on this electrical signal and experimentally obtained data, the calculation section calculates the ratio between the steam amount and the reaction gas flow rate, calculates the appropriate amount of reaction gas flow rate to be introduced, and transmits this signal to the control section. In this case, the reaction gas flow rate is reduced. In this way, even if the amount of vapor of the evaporation raw material or the flow rate of the reaction gas changes, a constant film quality can always be obtained.

第3図に、この発明の別の態様を示す。同図は電離空間
を2領域に分割し、この2領域に対してそれぞれ放電光
受光部、分光部、演算部、制御部からなる成膜安定化装
置を配置したものであるが、この発明は、電離空間の分
割数及びそれに対応する成膜安定化装置の配置数は何ら
限定されるものではない。
FIG. 3 shows another embodiment of the invention. In the figure, the ionization space is divided into two regions, and a film-forming stabilizing device consisting of a discharge light receiving section, a spectroscopic section, a calculation section, and a control section is arranged for each of these two regions. The number of divisions of the ionized space and the number of corresponding deposition stabilization devices are not limited at all.

図中番号は第1図と同一部分には同一番号を付し、12
は反応ガス導入管、13は放電光受光部、14は分光部
、15は演算部、16は制御部である。
The numbers in the figure are the same as those in Figure 1, and 12
13 is a reaction gas introduction tube, 13 is a discharge light receiving section, 14 is a spectroscopic section, 15 is a calculation section, and 16 is a control section.

さて蒸発原料3の融解状態が変化し、このため蒸気量の
空間分布に変化が生じた場合、それに伴い電離空間の放
電光色の空間分布が変化する。例えば真空容器内のるつ
ぼ4から、蒸発する蒸気量が第3図の左部方向で大とな
り右部方向で小となると電離空間左部の放電光は、蒸発
遣過剰に相当する色を呈し、逆に電離空間右部の放電光
は、反応ガス過剰に相当する色を呈する。これらを左部
と右部とにそれぞれ設けた放電光受光部で検知し、前述
と同様にして反応ガス流量を制御し、この場合は反応ガ
ス導入管7より供給させる反応ガス流量を減少させ、一
方反応ガス導入管12より供給させる反応ガスを増加さ
せて一定の膜質を得るのである。また、反応ガス導入管
のガス吐出口を基板幅又は長さ方向に分布せしめ、各々
独立に供給量制御可とする装置とすれば、さらに均質な
成膜が可能となる。
Now, when the melting state of the evaporated raw material 3 changes and therefore the spatial distribution of the amount of vapor changes, the spatial distribution of the discharge light color in the ionized space changes accordingly. For example, if the amount of vapor evaporated from the crucible 4 in the vacuum container increases toward the left in FIG. 3 and decreases toward the right, the discharge light at the left of the ionization space will exhibit a color corresponding to excessive evaporation. On the contrary, the discharge light on the right side of the ionization space exhibits a color corresponding to an excess of reactive gas. These are detected by the discharge light receivers provided on the left and right parts, respectively, and the flow rate of the reaction gas is controlled in the same manner as described above, in this case, the flow rate of the reaction gas supplied from the reaction gas introduction pipe 7 is reduced, On the other hand, a constant film quality is obtained by increasing the amount of reaction gas supplied from the reaction gas introduction pipe 12. Moreover, if the gas discharge ports of the reaction gas introduction tube are distributed in the width or length direction of the substrate, and the supply amount can be controlled independently, a more homogeneous film can be formed.

このようにして搬入、搬出可能な基板2に成膜させる膜
質の時間的、また空間的なばらつきが減少するのである
In this way, temporal and spatial variations in the quality of the film formed on the substrate 2, which can be carried in and carried out, are reduced.

以上)l CD法によるイオンプレーティング装置を中
心に説明したが、この発明ではHCD法に限定されるも
のではなく、高周波励起法、活性化反応薄着法、アーク
放電法等においても適用できる。
Although the above explanation has focused on an ion plating apparatus using the CD method, the present invention is not limited to the HCD method, and can also be applied to a high frequency excitation method, an activation reaction thin deposition method, an arc discharge method, and the like.

(実施例) 実施例1 第1図に示す反応性イオンプレーティング装置にて医発
原料にTi、反応ガスにアセチレンを用いて厚さ1mm
の   鋼板にTiCを1077111成膜させた。こ
の際のイオンプレーティング条件を表2に示す。鋼板は
搬入されたのちに静止してコーティングされ、終了後搬
出される。
(Example) Example 1 Using Ti as the medical raw material and acetylene as the reaction gas using the reactive ion plating apparatus shown in Fig. 1, a plate with a thickness of 1 mm was prepared.
A film of 1077111 TiC was formed on a steel plate. Table 2 shows the ion plating conditions at this time. After the steel plates are brought in, they are coated stationary and then taken out.

表  2 その後、TiC被膜の硬度を測定したところ、マイクロ
ビッカース硬度(荷重3oog)にて平均11v=30
00kg/++nw”であった1次に被膜表面から深さ
方向の元素分析をIHMAにて測定した。その結果を第
4図に示す、同図から明らかなように、Ti/Cの原子
比は、深さ方向に対してほぼ一定であった。
Table 2 After that, the hardness of the TiC coating was measured, and the average was 11v = 30 at micro Vickers hardness (load 30og).
Elemental analysis in the depth direction from the primary coating surface was measured using IHMA.The results are shown in Figure 4.As is clear from the figure, the Ti/C atomic ratio is , which was almost constant in the depth direction.

これは成膜状態が安定していて、常に同じ膜質のTiC
被膜が成膜したことを示す。
This is because the film formation state is stable and the film quality is always the same.
Indicates that a film has been formed.

比較のため、放電光受光部8、分光部9、演算部10、
制御部11からなる成膜安定化装置を作動させないで前
述の条件と同じ条件でTiC被膜を10//11被覆さ
せた。その後TiC被膜表面から深さ方向の元素分析を
行った。その結果を第5図に示す。同図から明らかなよ
うに深さ方向のTi及びCの元素濃度に変化が見られた
。すなわち軟化用やぜい比相が生成し、硬度も平均11
v = 2000kg / mm ”と成膜安定化装置
を作動させた実施例と比較して低硬度であった。
For comparison, a discharge light receiving section 8, a spectroscopic section 9, a calculation section 10,
A TiC film was coated on 10//11 under the same conditions as described above without operating the film-forming stabilizing device consisting of the control unit 11. Thereafter, elemental analysis was performed in the depth direction from the surface of the TiC film. The results are shown in FIG. As is clear from the figure, changes were observed in the element concentrations of Ti and C in the depth direction. In other words, a softening phase with a hardness ratio is formed, and the average hardness is 11.
v = 2000 kg/mm'', which was a low hardness compared to the example in which the film-forming stabilization device was operated.

実施例2 第3図に示す反応性イオンプレーティング装置にて蒸発
原料にTi1反応ガスにN2を用いてステンレス冷延帯
鋼にTiN被膜のイオンプレーティングを行った。ステ
ンレス冷延帯鋼は、図示さていない搬送系にて紙面垂直
方向に連続的に移動しながらTiN被覆された。この際
のイオンプレーティング条件を表3に示す。
Example 2 Ion plating of a TiN film was performed on a cold rolled stainless steel strip using a reactive ion plating apparatus shown in FIG. 3 using Ti as the evaporation raw material and N2 as the reaction gas. The cold-rolled stainless steel strip was coated with TiN while being continuously moved in a direction perpendicular to the plane of the paper in a conveyance system (not shown). Table 3 shows the ion plating conditions at this time.

表  3 この装置にて3時間被覆を行い、180 m”のTiN
被覆冷延帯鋼を製造した。得られた冷延帯鋼のTiN被
膜外観の色度をJIS Z 8701法にて測定したと
ころ x =0.381     a、 =0.005y =
0.390    σ、 =0.006(n=150) と金色でしかもばらつきが極めて小さかった。つまり膜
質が安定していた。
Table 3 Coating was carried out for 3 hours using this equipment, and 180 m” of TiN
A coated cold-rolled steel strip was produced. The chromaticity of the appearance of the TiN coating on the obtained cold-rolled steel strip was measured using the JIS Z 8701 method, and found that x = 0.381 a, = 0.005 y =
0.390 σ = 0.006 (n = 150), which was golden in color and had extremely small variations. In other words, the film quality was stable.

一方比較のために放電光受光部8.13、分光部9.1
4、演算部10.15、制御部11.16を作動させな
いで前述と同一条件でTiNの被覆を行い、そのTiN
被膜外観の色度を測定したところ、x =0.365 
   σ、 =0.02y =0.370    σツ
ー0.03(n=150) と実施例と比較してばらつきが大であった。これは膜質
が不安定であったことにほかならない。
On the other hand, for comparison, the discharge light receiving section 8.13 and the spectroscopic section 9.1
4. Perform TiN coating under the same conditions as described above without operating the calculation unit 10.15 and control unit 11.16, and
When the chromaticity of the film appearance was measured, x = 0.365
σ, = 0.02y = 0.370 σ2y = 0.03 (n = 150), and the variation was large compared to the example. This simply means that the film quality was unstable.

(発明の効果) この発明の反応性イオンプレーティング装置を用いるこ
とによって、空間的又は経時的なばらつきの少ない、極
めて安定した膜質の化合物被膜を得ることができる。
(Effects of the Invention) By using the reactive ion plating apparatus of the present invention, it is possible to obtain an extremely stable compound film with little spatial or temporal variation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の1例を示す反応性イオンプレーテ
ィング装置の模式図、 第2図は、放電光の分光スペクトルを示すグラフ、 第3図は、この発明の別の一例を示す反応性イオンプレ
ーティング装置の模式図、 第4図は、この発明のイオンプレーティング装置にて得
られたTiC被膜の、IHMAによる深さ方向の元素濃
度変化を示すグラフ、 第5図は、従来のイオンプレーティング装置にて得られ
たTiC被膜の■財へによる深さ方向の元素濃度変化を
示すグラフである。 1・・・真空容器     2・・・基板3・・・蒸発
原料     4・・・るつぼ5・・・プラズマ電子銃
  6・・・集束コイル7.12・・・反応ガス導入管 8.13・・・放電光受光部 9.14・・・分光部1
0、15・・・演算部    11.16・・・制御部
第1図 第2図 4−一−−ろつぼ゛ e−一−−放電尤ぐ光枠 9−−−一今九卵 to−−−−7ψ−′にm− //−一一刺卸秤 疲−&(nm) 第4図 第3図 渾=Oun) 第5図 16−1%’l #舒
FIG. 1 is a schematic diagram of a reactive ion plating apparatus showing one example of the present invention, FIG. 2 is a graph showing the spectrum of discharge light, and FIG. 3 is a reaction diagram showing another example of the present invention. FIG. 4 is a graph showing the change in element concentration in the depth direction by IHMA of a TiC film obtained using the ion plating device of the present invention. FIG. 2 is a graph showing changes in element concentration in the depth direction due to the thickness of a TiC film obtained using an ion plating device. 1... Vacuum container 2... Substrate 3... Evaporation raw material 4... Crucible 5... Plasma electron gun 6... Focusing coil 7.12... Reaction gas introduction tube 8.13...・Discharge light receiving section 9.14...Spectroscopic section 1
0, 15...Arithmetic unit 11.16...Control unit Fig. 1 Fig. 2 4-1--Rotsubo e-1--Light frame 9 for discharging--Ima-Ku-to- ---7ψ-' m-

Claims (1)

【特許請求の範囲】 1、基板の搬入、搬出可能な真空容器内に、反応ガスを
導入する反応ガス導入部と、蒸発原料を保持するるつぼ
と、るつぼ内の蒸発原料を蒸発させる加熱装置と、原料
蒸気及び反応ガスをイオン化させるイオン化装置とを有
する反応性イオンプレーティング装置であって、真空容
器内に生じる電離空間の放電光を受光する放電光受光部
と、 この放電光受光部で受光した放電光を分光する分光部と
、 この分光部からの信号を処理して真空容器内に導入すべ
き反応ガス流量を計算する演算部及び この演算部で計算した結果から反応ガス流量を調整する
制御部と からなる成膜安定化装置を具備することを特徴とする反
応性イオンプレーティング装置。
[Claims] 1. A reaction gas introduction part for introducing a reaction gas into a vacuum container into which a substrate can be carried in and out, a crucible for holding an evaporation raw material, and a heating device for evaporating the evaporation raw material in the crucible. , a reactive ion plating apparatus having an ionization device that ionizes raw material vapor and a reaction gas, and a discharge light receiving section that receives discharge light of an ionized space generated in a vacuum container; a spectroscopy section that spectrally spectra the discharge light generated by the spectrometer, a calculation section that processes the signal from the spectrometer to calculate the flow rate of the reaction gas to be introduced into the vacuum vessel, and an adjustment of the flow rate of the reaction gas based on the results calculated by the calculation section. A reactive ion plating apparatus characterized by comprising a film formation stabilizing device comprising a control section.
JP17722588A 1988-07-18 1988-07-18 Reactive ion plating device Pending JPH0230756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17722588A JPH0230756A (en) 1988-07-18 1988-07-18 Reactive ion plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17722588A JPH0230756A (en) 1988-07-18 1988-07-18 Reactive ion plating device

Publications (1)

Publication Number Publication Date
JPH0230756A true JPH0230756A (en) 1990-02-01

Family

ID=16027344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17722588A Pending JPH0230756A (en) 1988-07-18 1988-07-18 Reactive ion plating device

Country Status (1)

Country Link
JP (1) JPH0230756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229783A (en) * 2014-06-04 2015-12-21 住友重機械工業株式会社 Film deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229783A (en) * 2014-06-04 2015-12-21 住友重機械工業株式会社 Film deposition apparatus

Similar Documents

Publication Publication Date Title
US10418231B2 (en) Method for producing a multilayer coating and device for carrying out said method
Aiempanakit et al. Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides
US4895631A (en) Process and apparatus for controlling the reactive deposit of coatings on substrates by means of magnetron cathodes
JPH06128742A (en) Method and device for forming film on object
KR890002287A (en) How to control the adhesion process of thin plasma film and its control device
Scheffel et al. Reactive high-rate deposition of titanium oxide coatings using electron beam evaporation, spotless arc and dual crucible
US7179352B2 (en) Vacuum treatment system and process for manufacturing workpieces
Fontana et al. Triode magnetron sputtering TiN film deposition
CN108570647A (en) Reactive sputtering device and reactive sputtering method
US4420498A (en) Method of forming a decorative metallic nitride coating
US5413684A (en) Method and apparatus for regulating a degree of reaction in a coating process
Nouvellon et al. Emission spectrometry diagnostic of sputtered titanium in magnetron amplified discharges
JPH0230756A (en) Reactive ion plating device
JPH01283357A (en) Production of electrically conductive transparent film coated with thin metal oxide film
Baravian et al. Optical emission spectroscopy of active species in a TiCN PVD arc discharge
JP2001335932A (en) Method for controlling solid surface treatment by low temperature plasma
Atiser et al. Pressure dependence of the Al ion energy distribution functions during filtered cathodic arc thin film growth in an Ar, O2 ambient
JP6635586B2 (en) Thin film manufacturing method and film forming apparatus
JP2810225B2 (en) Method for controlling composition ratio of C and N in TiCN compound deposited film
US9090961B2 (en) Magnetron sputtering process
JPS596376A (en) Sputtering apparatus
JPH0146588B2 (en)
JPS6289869A (en) Method for synthesizing hard carbon film in vapor phase
Wouters et al. Influence of the plasma current to Ti-melt on the plasma parameters and microstructure of TiN coatings in the triode ion plating system
Wouters et al. Energy and mass spectra of ions in triode ion plating of Ti (C, N) coatings