JPH02307024A - Far infrared sensor - Google Patents

Far infrared sensor

Info

Publication number
JPH02307024A
JPH02307024A JP12949089A JP12949089A JPH02307024A JP H02307024 A JPH02307024 A JP H02307024A JP 12949089 A JP12949089 A JP 12949089A JP 12949089 A JP12949089 A JP 12949089A JP H02307024 A JPH02307024 A JP H02307024A
Authority
JP
Japan
Prior art keywords
far
pressure
infrared rays
elastic film
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12949089A
Other languages
Japanese (ja)
Inventor
Akira Utsuki
宇津木 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP12949089A priority Critical patent/JPH02307024A/en
Publication of JPH02307024A publication Critical patent/JPH02307024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To allow quantitative measurement with far IR rays of a specific wavelength by constituting the sensor of a case having a far IR filter, a thermally expanding member and a pressure-sensitive element. CONSTITUTION:The heat absorber of the thermally expanding member 6 absorbs the far IR rays of the specific wavelength if a certain far IR ray transmits the far IR filter and a transparent plate 3. Liquid paraffin to serve as an expanding liquid is then expanded by the absorbed heat. The thermally expanding member 6 is then sealed into an elastic film 5 the upper aperture of which is closed by the transparent plate 3. Since the side faces of the elastic film 5 are enclosed by a case body 2, the pressure in the expanding part of the member 6 is fully applied downward and is transmitted through the elastic film 5 to conductive rubber 8 of the pressure-sensitive element 7. The elastic film 5, therefore, applies the pressure to the rubber 8 and the resistance value of the rubber 8 changes. The change in the resistance value is detected between electrode plates 9 and 10. The rubber 8 is constituted as a part of a bridge circuit, etc., assembled to the outside via lead wires 11, 12, by which the above- mentioned change is detected as a change in voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、遠赤外線の強さを検出する遠赤外線センサに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a far-infrared sensor that detects the intensity of far-infrared rays.

〔従来の技術1 近時、遠赤外線は調理、医療、住宅等の分野で広(活用
されるようになってきている。そして、遠赤外線を検出
する遠赤外線センサとしては、エネルギーを吸収すると
物質の温度が変化する熱型赤外線センサ、光量子として
遠赤外線を直接検知する量子型遠赤外線センサの二種類
に大別される。前記の熱型赤外線センサとしては熱電対
、ボロメータ、ゴーレイ等が知られている。後者の里子
型赤外線センサとしてはPbS、P、bSe等を用いた
光電圧センサが知られ、これらは半導体赤外線センサと
して構成されている。
[Conventional technology 1] In recent years, far infrared rays have become widely used in fields such as cooking, medicine, and housing. There are two types of thermal infrared sensors: thermal infrared sensors whose temperature changes, and quantum far infrared sensors that directly detect far infrared rays as photons.Thermal infrared sensors include thermocouples, bolometers, and Golays. As the latter type of infrared sensor, photovoltage sensors using PbS, P, bSe, etc. are known, and these are configured as semiconductor infrared sensors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然るに、前述した従来技術の遠赤外線センサのうち、前
者の熱型遠赤外線センサは、平坦な波長特性をもっては
いるものの、特定波長の遠赤外線の測定には不向きであ
り、放射温度計等への応用に限られている。
However, among the conventional far-infrared sensors mentioned above, although the former thermal type far-infrared sensors have flat wavelength characteristics, they are not suitable for measuring far-infrared rays of a specific wavelength, and are not suitable for use with radiation thermometers, etc. Limited to applications.

一方、後者の量子型遠赤外線センサは、センサ特性に見
合った特定の波長帯域の遠赤外線についてその有無を測
定することができる利点を有しているから1種々の用途
が可能であり、赤外線温度センサ、赤外線スイッチ等と
して広く用いられている。
On the other hand, the latter quantum far-infrared sensor has the advantage of being able to measure the presence or absence of far-infrared rays in a specific wavelength band that matches the sensor characteristics, so it can be used in a variety of ways. Widely used as sensors, infrared switches, etc.

しかし、従来技術によるものは、特定波長をもった遠赤
外線の有無の検出は可能であっても、特定波長をもった
遠赤外線の量、効果1強さ等を定量的にとらえることは
困難であるという問題点がある。このため、例えば、調
理機等の温度分布。
However, with conventional technology, although it is possible to detect the presence or absence of far infrared rays with a specific wavelength, it is difficult to quantitatively determine the amount of far infrared rays with a specific wavelength, the strength of the effect, etc. There is a problem. For this reason, for example, the temperature distribution of cooking machines, etc.

熱量分布、赤外線の効果等を定量的に測定することはで
きず、焼き上りや高級化を判断するための遠赤外線の解
析ができなかった。
It was not possible to quantitatively measure the heat distribution, the effect of infrared rays, etc., and it was not possible to analyze far infrared rays to judge whether the product was baked or whether it was upgraded.

本発明は上記従来技術に鑑みなされたもので、特定波長
の遠赤外線について定量的に測定を可能とし、もって調
理機等への適用を容易とした遠赤外線センサを提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned prior art, and an object of the present invention is to provide a far-infrared sensor that can quantitatively measure far-infrared rays of a specific wavelength, and thus can be easily applied to cooking machines and the like.

【・課題が解決するための手段〕[・Means to solve the problem]

上述した課題を解決するために、本発明が採用する構成
は、遠赤外線を透過する遠赤外線フィルタを有するケー
スと、該ケース内に充填され、前記遠赤外線フィルタを
介して透過した遠赤外線を吸収して膨張する熱膨張部材
と、前記ケース内に設けられ該熱膨張部材の膨張による
圧力を検出して電気量の変化として導出する感圧素子と
から構成される。
In order to solve the above-mentioned problems, the configuration adopted by the present invention includes a case having a far-infrared filter that transmits far-infrared rays, and a case that is filled in the case and absorbs the far-infrared rays that have passed through the far-infrared filter. The device is composed of a thermal expansion member that expands as a result of the expansion, and a pressure sensing element that is provided in the case and detects the pressure caused by the expansion of the thermal expansion member and derives it as a change in the amount of electricity.

〔作用〕[Effect]

上記構成により、遠赤外線を熱膨張部材の膨張量から感
圧素子の電気量に変換して検出することによって、遠赤
外線の量、効果1強さを定量的に測定することができる
With the above configuration, the amount of far infrared rays and the strength of effect 1 can be quantitatively measured by converting the amount of expansion of the thermal expansion member into the amount of electricity of the pressure sensitive element and detecting the far infrared rays.

【実施例〕【Example〕

第1図は本発明の第1の実施例を示し、図中1は本実施
例のケースで、該ケースlは非膨張性の素材、例えばセ
ラミック材によって底部2Aとフランジ部2Bとを有す
る有底筒状のケース本体2と、主に透明なガラス材から
なり、該ケース本体2の開口側を施蓋する透明板3とか
ら構成されている。
FIG. 1 shows a first embodiment of the present invention. In the figure, 1 is a case of this embodiment, and the case 1 is made of a non-expandable material, such as a ceramic material, and has a bottom portion 2A and a flange portion 2B. It is composed of a case body 2 having a cylindrical bottom shape and a transparent plate 3 which is mainly made of transparent glass material and covers the opening side of the case body 2.

4は特定の波長に対して遠赤外線の透過率の高い材料、
例えばGe、GeとCuの合金等でできた遠赤外線フィ
ルタを示し、該遠赤外線フィルタ4は前記透明板3にケ
ース本体2の開口を閉塞するように埋設されている。
4 is a material with high transmittance of far infrared rays for a specific wavelength;
For example, a far-infrared filter 4 made of Ge, an alloy of Ge and Cu, etc. is shown, and the far-infrared filter 4 is embedded in the transparent plate 3 so as to close the opening of the case body 2.

5は弾性を有する材料によって、底部5Aとフランジ部
5Bとからなる有底筒状に形成された弾性膜で、該弾性
膜5は前記ケース本体2のフランジ部5Bと透明板3と
の間で全周にわたって圧着され、該透明板3で閉塞され
た内部空間5Cが画成されている。
Reference numeral 5 denotes an elastic membrane made of an elastic material and formed into a bottomed cylindrical shape consisting of a bottom portion 5A and a flange portion 5B. An internal space 5C is defined by being crimped around the entire circumference and closed by the transparent plate 3.

6は前記弾性膜5の内部空間5Cに充填された熱膨張部
材で、該熱膨張部材6は熱吸収体となる熱吸収率の良好
な高分子化合物と、膨張液となる流動パラフィン等のワ
ックスとの混合体からなっている。ここで、前記熱吸収
体としては遠赤外線の吸収波長に応じて種々の高分子化
合物材料が適用され、例久ば6〜llumの遠赤外線を
吸収する材料としてはメラミン樹脂が用いられ、3〜4
μmの遠赤外線を吸収する材料としてはポリプロピレン
が用いられる。そして、前記膨張液は熱吸収体が吸収し
た熱量に応じて熱膨張するようになっている。
Reference numeral 6 denotes a thermal expansion member filled in the internal space 5C of the elastic membrane 5, and the thermal expansion member 6 is made of a polymer compound with good heat absorption rate as a heat absorber and a wax such as liquid paraffin as an expansion liquid. It consists of a mixture of Here, as the heat absorber, various polymer compound materials are applied depending on the absorption wavelength of far infrared rays, and for example, melamine resin is used as a material that absorbs far infrared rays of 6 to 100 lum, 4
Polypropylene is used as a material that absorbs far infrared rays of μm. The expansion liquid is configured to thermally expand according to the amount of heat absorbed by the heat absorber.

7はケース本体2の底部2A内に位置して弾性膜5の底
部5Aとの間に挟持されるように設けられた感、圧素子
で、該感圧素子7は作用する圧力(荷重)によって電気
抵抗特性ないし電圧特性が変化する導電性ゴム8と、該
導電性ゴム8の上。
Reference numeral 7 denotes a pressure sensing element located within the bottom 2A of the case body 2 and sandwiched between the bottom 5A of the elastic membrane 5, and the pressure sensing element 7 is moved by the applied pressure (load). A conductive rubber 8 whose electrical resistance characteristics or voltage characteristics change, and the top of the conductive rubber 8.

下面に該導電性ゴム8を挾むように設けられた電極板9
.10と、該電極板9.10に接続されたリード線11
.12とから構成されている。そして、前記導電性ゴム
8は熱膨張部材が膨張することによって荷重を受け、当
該荷重に応じた出力を発生するものである。
An electrode plate 9 provided on the lower surface to sandwich the conductive rubber 8
.. 10, and a lead wire 11 connected to the electrode plate 9.10.
.. It consists of 12. The conductive rubber 8 receives a load due to the expansion of the thermal expansion member, and generates an output corresponding to the load.

図中、13はケース本体2の外周を覆う断熱材で、該断
熱材13は例えば発泡樹脂によって形成されている。
In the figure, reference numeral 13 denotes a heat insulating material that covers the outer periphery of the case body 2, and the heat insulating material 13 is made of, for example, foamed resin.

本実施例はこのように構成されるが、次にその作用につ
いて述べる。
The present embodiment is configured as described above, and its operation will be described next.

いま、ある遠赤外線が遠赤外線フィルタ4.透明板3を
透過すると、熱膨張部材6の熱吸収体が特定波長の遠赤
外線を吸収し、膨張液となる流動パラフィンが吸収した
熱によって膨張する。熱膨張部材6は、上部開口が透明
板3によって閉塞された弾性膜5内に封入され、かつ、
該弾性膜6の側面はケース本体2によって囲まれている
ため、熱膨張部材6の膨張部分の圧力は全て下方に加わ
リ、弾性膜5を通して感圧素子7の導電性ゴム8に伝わ
る。従って、弾性膜5は導電性ゴム8に圧力を加え、該
導電性ゴム8の抵抗値が変化し、電極板9,10間でそ
の抵抗値の変化を検出する。
Now, a certain far infrared ray is filtered through a far infrared filter 4. When transmitted through the transparent plate 3, the heat absorber of the thermal expansion member 6 absorbs the far infrared rays of a specific wavelength, and the liquid paraffin serving as the expansion liquid expands due to the absorbed heat. Thermal expansion member 6 is enclosed within elastic membrane 5 whose upper opening is closed by transparent plate 3, and
Since the side surface of the elastic membrane 6 is surrounded by the case body 2, all the pressure of the expanded portion of the thermal expansion member 6 is applied downward and is transmitted to the conductive rubber 8 of the pressure sensitive element 7 through the elastic membrane 5. Therefore, the elastic membrane 5 applies pressure to the conductive rubber 8, the resistance value of the conductive rubber 8 changes, and the change in resistance value is detected between the electrode plates 9 and 10.

そこで、導電性ゴム8をリード線1.1.12を介して
外部に組まれたブリッジ回路(図示せず)等の一部とし
て構成することにより電圧変化として検出することがで
きる。
Therefore, by configuring the conductive rubber 8 as a part of a bridge circuit (not shown) or the like built externally via the lead wires 1.1.12, it is possible to detect the voltage change.

このように、本実施例では熱膨張部材6と感圧素子7を
ケース本体2に組込み、遠赤外線センサとして構成する
ことにより、特定波長の遠赤外線を検出することができ
る。そして熱膨張部材6の膨張率は、遠赤外線の強さに
よるため、該熱膨張部材6を特定波長の遠赤外線に対し
てのみ熱膨張する素材を用いることにより、遠赤外線を
定量的に計測することができる。
As described above, in this embodiment, by incorporating the thermal expansion member 6 and the pressure-sensitive element 7 into the case body 2 and configuring it as a far-infrared sensor, far-infrared rays of a specific wavelength can be detected. Since the expansion coefficient of the thermal expansion member 6 depends on the strength of far infrared rays, far infrared rays can be quantitatively measured by using a material that thermally expands only for far infrared rays of a specific wavelength for the thermal expansion member 6. be able to.

例えば、調理機等の温度分布、熱量分布、遠赤外線の効
果1強さを計測する場合などに、本実施例の遠赤外線セ
ンサを用いることにより、特定波長に対する遠赤外線の
強度が計測できるため好適である。
For example, when measuring the temperature distribution, calorific value distribution, and far-infrared effect 1 strength of a cooking machine, etc., the far-infrared sensor of this embodiment is suitable because it can measure the intensity of far-infrared rays at a specific wavelength. It is.

しかも、遠赤外線フィルタ4の素材を、その検出したい
特定な遠赤外線の波長を透過する素材に変えるとともに
、熱膨張部材6の高分子化合物をその検出したい遠赤外
線の吸収波長を合わせることにより、より狭い範囲の波
長域の遠赤外線の検出を可能にすることができる。例え
ば、熱膨張部材6の熱吸収体にメラミンの代りにナイロ
ンを用いれば、6〜8μmの狭い範囲の波長を吸収する
ことができるため、メラミンに比べてより特定波長の遠
赤外線を検出することができる。また、熱膨張部材6の
熱吸収体に広い範囲で遠赤外線を吸収できる高分子化合
物が用いられれば、任意の波長の遠赤外線も検出するこ
とができる。
Moreover, by changing the material of the far-infrared filter 4 to a material that transmits the specific wavelength of the far-infrared rays to be detected, and by adjusting the polymer compound of the thermal expansion member 6 to match the absorption wavelength of the far-infrared rays to be detected, It is possible to detect far-infrared rays in a narrow wavelength range. For example, if nylon is used instead of melamine as the heat absorber of the thermally expandable member 6, it can absorb wavelengths in a narrow range of 6 to 8 μm, which makes it possible to detect far-infrared rays at more specific wavelengths than with melamine. I can do it. Further, if a polymer compound capable of absorbing far infrared rays in a wide range is used as the heat absorber of the thermal expansion member 6, far infrared rays of arbitrary wavelengths can also be detected.

次に、本発明の第2の実施例を第2図に基ずいて説明す
る。なお、前述した第1図に示す第1の実施例と同一の
構成要素に同一の符号を付し、その説明を省略するもの
とする。
Next, a second embodiment of the present invention will be described based on FIG. 2. Note that the same components as in the first embodiment shown in FIG.

21は第1の実施例による感圧素子7に代わる本実施例
の感圧素子を示し、該感圧素子21は圧電セラミック2
2と、該圧電セラミック22の上、下を挟むように配設
された電極板23.24と、上記電極板23と弾性膜5
の底部5Aとの間に設けられた皿状の板バネ25と、前
記電極板23.24に接続されたリード!126.27
とから構成されている。
Reference numeral 21 denotes a pressure sensitive element of this embodiment which replaces the pressure sensitive element 7 according to the first embodiment, and the pressure sensitive element 21 is made of a piezoelectric ceramic 2.
2, electrode plates 23 and 24 arranged to sandwich the top and bottom of the piezoelectric ceramic 22, and the electrode plate 23 and the elastic membrane 5.
A dish-shaped plate spring 25 provided between the bottom 5A of the ! and the lead connected to the electrode plate 23, 24! 126.27
It is composed of.

そして、本実施例の感圧素子21は、熱膨張部材6が熱
膨張すると、その圧力を板バネ25に伝え、該板バネ2
5の荷重変化を圧電セラミック22に伝えることにより
、該圧電セラミック22はピエゾ抵抗効果によって電圧
出力特性が変化するようになっている。
When the thermal expansion member 6 thermally expands, the pressure sensitive element 21 of this embodiment transmits the pressure to the leaf spring 25.
By transmitting the load change No. 5 to the piezoelectric ceramic 22, the voltage output characteristic of the piezoelectric ceramic 22 changes due to the piezoresistive effect.

次に、第2の実施例における作用を説明すれば、遠赤外
線が遠赤外線フィルタ4を透過すると、遠赤外線を吸収
して膨張する熱膨張部材6の膨張部分の圧力は全て下方
に加わり、弾性膜5を通して感圧素子21の板ばね25
から圧電セラミック22に伝わる。これにより、該圧電
セラミック22はピエゾ抵抗が発生し、電極板23.2
4間で抵抗変化を検出し、リード線26.27から外部
に抵抗、電圧等の信号として出力する。
Next, to explain the operation of the second embodiment, when far infrared rays pass through the far infrared filter 4, all the pressure of the expanding part of the thermal expansion member 6 that absorbs the far infrared rays and expands is applied downward, and the elastic Leaf spring 25 of pressure sensitive element 21 through membrane 5
and is transmitted to the piezoelectric ceramic 22. As a result, piezoresistance is generated in the piezoelectric ceramic 22, and the electrode plate 23.2
A change in resistance is detected between 4 and outputted as a signal such as resistance or voltage to the outside from lead wires 26 and 27.

なお、本発明の感圧素子は実施例に示す導電性ゴムや圧
電セラミック代えて、半導体圧電素子や感圧導電ゴム等
を用いることができる。
Note that the pressure-sensitive element of the present invention may be a semiconductor piezoelectric element, a pressure-sensitive conductive rubber, or the like instead of the conductive rubber or piezoelectric ceramic shown in the embodiments.

〔発明の効果〕〔Effect of the invention〕

以上、詳述した通り本発明によれば、遠赤外線フィルタ
を有するケース内に遠赤外線を吸収することにより膨張
する熱膨張部材と、該熱膨張部材の膨張圧力を受けると
電気量の変化する圧電素子とを設けることにより、遠赤
外線の強さを定量的に計測することができ、また、遠赤
外線フィルタや熱膨張部材の選択によって種々の遠赤外
線を計測することができるため、計測したい特定波長の
遠赤外線を計測する場合は、この波長に合った赤外線フ
ィルタまたは熱膨張部材を選定すればよ(、従来技術で
は不可能であった遠赤外線の量。
As described in detail above, according to the present invention, there is provided a thermal expansion member that expands by absorbing far infrared rays in a case having a far infrared filter, and a piezoelectric material that changes the amount of electricity when subjected to the expansion pressure of the thermal expansion member. By providing an element, the intensity of far infrared rays can be measured quantitatively, and various far infrared rays can be measured by selecting a far infrared filter and a thermal expansion member, so it is possible to measure the specific wavelength that you want to measure. When measuring far-infrared rays, you need to select an infrared filter or thermal expansion member that matches this wavelength (the amount of far-infrared rays that was impossible with conventional technology).

効果1強さ等を定量的にとらえることができる。Effect 1 Strength etc. can be understood quantitatively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第2図は本発明の実施例に係り、第1図は
第1の実施例による遠赤外線センサの縦断面図、第2図
は第2の実施例による遠赤外線センサの縦断面図を示す
。 l・・・ケース、2・・・ケース本体、3・・・透明板
、4・・・遠赤外線フィルタ、5・・・弾性膜、6・・
・熱膨張部材、7,21・・・感圧素子、8・・・導電
性ゴム、13・・・断熱材、22・・・圧電セラミック
。 特許出願人  日本電子機器株式会社 代理人 弁理士   広 瀬 和 彦 第1図
1 and 2 relate to embodiments of the present invention, FIG. 1 is a longitudinal cross-sectional view of a far-infrared sensor according to the first embodiment, and FIG. 2 is a longitudinal cross-section of a far-infrared sensor according to the second embodiment. Show the diagram. l...Case, 2...Case body, 3...Transparent plate, 4...Far infrared filter, 5...Elastic membrane, 6...
- Thermal expansion member, 7, 21... Pressure sensitive element, 8... Conductive rubber, 13... Heat insulating material, 22... Piezoelectric ceramic. Patent Applicant Japan Electronics Co., Ltd. Agent Patent Attorney Kazuhiko Hirose Figure 1

Claims (1)

【特許請求の範囲】[Claims] 遠赤外線を透過する遠赤外線フィルタを有するケースと
、該ケース内に充填され、前記遠赤外線フィルタを介し
て透過した遠赤外線を吸収して膨張する熱膨張部材と、
前記ケース内に設けられ、該熱膨張部材の膨張による圧
力を検出して電気量の変化として導出する感圧素子とか
ら構成してなる遠赤外線センサ。
a case having a far-infrared filter that transmits far-infrared rays; a thermal expansion member that is filled in the case and expands by absorbing the far-infrared rays that have passed through the far-infrared filter;
A far-infrared sensor comprising a pressure sensitive element provided in the case and configured to detect pressure due to expansion of the thermal expansion member and derive it as a change in electrical quantity.
JP12949089A 1989-05-23 1989-05-23 Far infrared sensor Pending JPH02307024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12949089A JPH02307024A (en) 1989-05-23 1989-05-23 Far infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12949089A JPH02307024A (en) 1989-05-23 1989-05-23 Far infrared sensor

Publications (1)

Publication Number Publication Date
JPH02307024A true JPH02307024A (en) 1990-12-20

Family

ID=15010769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12949089A Pending JPH02307024A (en) 1989-05-23 1989-05-23 Far infrared sensor

Country Status (1)

Country Link
JP (1) JPH02307024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267169A (en) * 2001-12-28 2002-09-18 Sharp Corp Thawing device
JP2003042950A (en) * 2001-07-25 2003-02-13 Oyo Kogaku Kenkyusho Instrument for measuring gas component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042950A (en) * 2001-07-25 2003-02-13 Oyo Kogaku Kenkyusho Instrument for measuring gas component
JP2002267169A (en) * 2001-12-28 2002-09-18 Sharp Corp Thawing device

Similar Documents

Publication Publication Date Title
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
US4373392A (en) Sensor control circuit
US6129673A (en) Infrared thermometer
KR101840480B1 (en) Infrared sensor
US7525092B2 (en) Infrared sensor having thermo couple
KR20020007853A (en) absolute humidity sensor and circuit for detecting temperature and humidity using the same
JPH0943051A (en) Infrared detector
US8523427B2 (en) Sensor device with improved sensitivity to temperature variation in a semiconductor substrate
US5860741A (en) Absolute radiation thermometer
US20130206989A1 (en) Radiation Sensor
JPH02307024A (en) Far infrared sensor
JPH1164111A (en) Infrared detecting element
JP3222579B2 (en) Infrared sensor
CN213397399U (en) Infrared thermal capacitance temperature sensor
JP3358684B2 (en) Thermal dependency detector
JP2003156395A (en) Infrared temperature sensor
US4134304A (en) Air pressure transducer of diffusion type
JPH0868700A (en) Sensor circuit and infrared detection element
US3531989A (en) Transient heat transfer gauge
JPH05223763A (en) Thermal analysis device using a thermocouple
KR101578374B1 (en) Thermopile sensor module
JP2793615B2 (en) Infrared sensor
JPH11153490A (en) Semiconductor infrared ray detector
JPH0750681Y2 (en) Temperature-corrected infrared detector
JPH08201166A (en) Infrared sensor