JPH0230624A - Production of copper molybdenum sulfide - Google Patents

Production of copper molybdenum sulfide

Info

Publication number
JPH0230624A
JPH0230624A JP17916488A JP17916488A JPH0230624A JP H0230624 A JPH0230624 A JP H0230624A JP 17916488 A JP17916488 A JP 17916488A JP 17916488 A JP17916488 A JP 17916488A JP H0230624 A JPH0230624 A JP H0230624A
Authority
JP
Japan
Prior art keywords
sulfide
copper
molybdenum
quartz container
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17916488A
Other languages
Japanese (ja)
Inventor
Takao Tanaka
隆夫 田中
Yukihiro Yoda
與田 幸廣
Hiroshi Fukui
弘 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17916488A priority Critical patent/JPH0230624A/en
Publication of JPH0230624A publication Critical patent/JPH0230624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title high-purity sulfide safely and in high efficiency by charging a quartz vessel with a formulation comprising metallic copper, metallic molybdenum and simple substance sulfur and by making a reaction on heating under a vacuum so as to produce a specified compound. CONSTITUTION:A raw material (a) is prepared by formulating each powdery metallic copper, metallic molybdenum and simple substance sulfur so as to obtain the target copper molybdenum sulfide of formula I (x is 1.5-4; y is 0-0.4). A quartz vessel is then charged with the component a so as to satisfy the relationships: II (D is the total amount of the component a (g); C is inner volume of the vessel (ml)) and III (A is rate of temperature rise deg.C/hr; B is maximum pressure for the vessel kg/cm<2>-G) followed by heating under a vacuum at 500-700 deg.C for 6-24 hr to produce a precursor sulfide (b) free from unreacted simple substance sulfur. Thence, the component b is ground and put into the vessel again followed by reaction on heating under a vacuum at 900-1,100 deg.C for 24-120hr, thus obtaining the objective copper molybdenum sulfide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅モリブデン硫化物の製造方法に関する。更に
詳しくは金属銅、金属モリブデン及び単体硫黄からの銅
モリブデン硫化物の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing copper molybdenum sulfide. More specifically, the present invention relates to a method for producing copper molybdenum sulfide from metallic copper, metallic molybdenum, and elemental sulfur.

〔従来の技術及び発明が解決しようとする課題〕一般式
力’MxMoaS*−¥ (但しMは金属、y= 0〜
0.4)で表されるシェブレル相化合物は、1971年
にシュブレル等によって合成された大きなオーブンチャ
ンネルを持った三次元化合物で、Mo1stクラスター
が配列して出来る隙間に、第三成分の金属Mが入り込ん
だ構造となっている。
[Problems to be solved by conventional technology and invention] General formula 'MxMoaS*-¥ (where M is metal, y=0~
The Chevrel phase compound represented by 0.4) is a three-dimensional compound with a large oven channel synthesized by Chevrell et al. in 1971, and the third component metal M is placed in the gap formed by the arrangement of Mo1st clusters. It has an intricate structure.

このシェブレル相化合物は、超伝導に対して特異的な性
質を示し、金属MがCuである銅モリブデン硫化物はM
o1stクラスターが配列して出来る間隙に入った銅イ
オンが極めて動きやすという性質を持っていることから
二次電池の電極材料としても注目されている。また、こ
の二次電池の電極材料に使用するには微細なものが要求
されている。
This Chevrel phase compound exhibits specific properties for superconductivity, and copper molybdenum sulfide in which the metal M is Cu is
It is attracting attention as an electrode material for secondary batteries because it has the property that copper ions that enter the gaps formed by the arrangement of o1st clusters are extremely mobile. In addition, fine particles are required for use as electrode materials for secondary batteries.

金属硫化物の一般的製造方法としては、(1)ガラス製
または石英製の封管中で、単体金属または/及び金属硫
化物と硫黄を直接反応させる方法、(2)酸性溶液から
の硫化水素あるいは硫化アンモニアによる沈澱反応法、
(3)金属塩あるいは金属元素と硫化水素とを反応させ
る方法等がある。
General methods for producing metal sulfides include (1) direct reaction of an elemental metal or/and metal sulfide with sulfur in a sealed tube made of glass or quartz, and (2) hydrogen sulfide from an acidic solution. Or precipitation reaction method using ammonia sulfide,
(3) There is a method of reacting a metal salt or a metal element with hydrogen sulfide.

これらの方法のうち(2)と(3)の方法については銅
モリブデン硫化物に関する報告例は殆どなく、(1)の
方法が一般的である。
Among these methods, methods (2) and (3) have hardly been reported regarding copper molybdenum sulfide, and method (1) is common.

(1)の方法で合成した例は多く、(a)硫化銅、二硫
化モリブデン、単体硫黄の粉末を石英製の封管に真空装
入し、1000°Cで100時間加熱する方法〔井上徹
、電気化学、■、812、(1986) ) (bl金
属銅、金属モリブデン、単体硫黄の各粉末゛を石英製の
封管に真空装入し、これを400°Cで一晩加熱、次に
1000°Cで2日間加熱、その後1100℃で3日間
加熱する方法(K、Y、Cheung et、al、 
; Mat、Res、Bull、、151717 (1
980)) (C)硫化銅、二硫化モリブデン、金属モ
リブデンを石英製の封管に真空封入して400℃で一晩
加熱、次に1000″Cで2日間加熱、その後内容物を
取り出して粉砕した後、再度石英製の封管に真空装入し
1000℃で3日間加熱する方法(S、Yamamot
o et、al、; Mat、Res、Bull、+ 
ifl  1311(1983) ) (d)金属銅、
金属モリブデン、単体硫黄の各粉末を石英製の封管に真
空装入し、4〜6時間毎に振盪しなから440’Cで4
8時間加熱し、次いで1000℃で24時間加熱する方
法(J、Mizusaki et、al、;5olid
 5tate Ionics、 11293 (198
4) )などが報告されている。
There are many examples of synthesis using method (1), including (a) a method in which powders of copper sulfide, molybdenum disulfide, and elemental sulfur are vacuum charged into a sealed quartz tube and heated at 1000°C for 100 hours [Toru Inoue] , Electrochemistry, ■, 812, (1986)) (bl) Each powder of metallic copper, metallic molybdenum, and elemental sulfur was vacuum charged into a sealed quartz tube, heated at 400°C overnight, and then Method of heating at 1000 °C for 2 days and then heating at 1100 °C for 3 days (K, Y, Cheung et al.
; Mat, Res, Bull,, 151717 (1
980)) (C) Copper sulfide, molybdenum disulfide, and metal molybdenum are vacuum sealed in a sealed quartz tube and heated at 400°C overnight, then heated at 1000″C for 2 days, then the contents are removed and crushed. After that, the tube is vacuum charged again into a sealed quartz tube and heated at 1000°C for 3 days (S, Yamamot
o et, al,; Mat, Res, Bull, +
ifl 1311 (1983)) (d) Metallic copper,
Powders of metallic molybdenum and elemental sulfur were vacuum charged into a sealed quartz tube and heated at 440'C for 4 hours without shaking every 4 to 6 hours.
A method of heating for 8 hours and then heating at 1000°C for 24 hours (J, Mizusaki et al,; 5olid
5tate Ionics, 11293 (198
4)) etc. have been reported.

しかしながら、これらの方法は何れも下記する如き問題
がある。即ち(a)及び(C)の方法では、原料である
硫化銅、二硫化モリブデンが高純度のものを得ることが
困難であるため製品の純度が低いという問題があり、(
b)及び(d)の方法では高純度の原料が得易いので、
得られる製品の純度は高いが製造に時間がかかりすぎ工
業生産には不適当である、また、(b)及び(ロ)の方
法を用い石英製の封管で加熱する場合、未反応硫黄の蒸
気圧により内部が加圧状態となるため昇温速度が大きす
ぎると封管が破裂するという危険があり、小さすぎると
製造に更に時間がかかるという問題があった。
However, all of these methods have the following problems. That is, in methods (a) and (C), there is a problem that the purity of the product is low because it is difficult to obtain high purity copper sulfide and molybdenum disulfide as raw materials.
With methods b) and (d), it is easy to obtain high-purity raw materials,
Although the resulting product has high purity, it takes too long to produce and is unsuitable for industrial production.Also, when heating in a sealed quartz tube using methods (b) and (b), unreacted sulfur is produced. If the temperature increase rate is too high, there is a risk that the sealed tube will burst, and if the temperature increase rate is too low, the manufacturing time will take longer.

本発明者等は上記問題を解決するため種々検討を重ねた
結果、石英製の容器を使用して銅モリブデン硫化物を製
造する方法において、石英製の容器の大きさ及び耐圧強
度に応じて反応温度までの昇温時間を特定すれば上記問
題を解決し、安全でかつ経済的に銅モリブデン硫化物を
製造できることを見い出し、先に特願昭63−1458
20号として出願した。
As a result of various studies to solve the above problems, the present inventors have developed a method for producing copper molybdenum sulfide using a quartz container. It was discovered that the above problem could be solved by specifying the heating time to the desired temperature, and copper molybdenum sulfide could be produced safely and economically.
The application was filed as No. 20.

〔課題を解決するための手段〕[Means to solve the problem]

しかし本発明者等のその後の検討によると、特願昭63
−145820号の方法で得た銅モリブデン硫化物は、
X線回折装置で分析した結果では単一相をなしているが
、場合によっては115メンシユの篩を通過しない粗粒
子をかなりの量含有するものもある。そしてこの115
メツシユを超える粗粒子のみをX491回折装置で分析
したところ、二硫化モリブデンを不純物としてかなり含
有していることが判明した。
However, according to subsequent studies by the present inventors,
The copper molybdenum sulfide obtained by the method of No.-145820 is
Analysis with an X-ray diffractometer reveals that the material has a single phase, but in some cases it may contain a considerable amount of coarse particles that do not pass through a 115-mesh sieve. And this 115
When only coarse particles larger than mesh were analyzed using an X491 diffractometer, it was found that they contained a considerable amount of molybdenum disulfide as an impurity.

そこで本発明者等は引続いて、二硫化モリブデン等の不
純物を含有しない高純度の銅モリブデン硫化物の製造方
法について鋭意検討を重ねた結果、金属鋼、金属モリブ
デン及び単体硫黄を石英容器中で比較的低温で加熱して
一旦単体硫黄を含まない前駆体硫化物を得、この前駆体
硫化物を粉砕混合したのち再度石英容器中で加熱すれば
、微細でかつ高純度の銅モリブデン硫化物が得られるこ
とを見い出し、本発明を完成するに至ったものである。
Therefore, the inventors of the present invention continued to conduct extensive studies on a method for producing high-purity copper molybdenum sulfide that does not contain impurities such as molybdenum disulfide. By heating at a relatively low temperature to obtain a precursor sulfide that does not contain elemental sulfur, and then pulverizing and mixing this precursor sulfide and heating it again in a quartz container, fine and highly pure copper molybdenum sulfide can be obtained. The present invention was completed based on the discovery that the present invention can be obtained.

即ち本発明は、金属銅、金属モリブデン及び単体硫黄を
石英容器に装入して真空排気した後、該石英容器を密閉
した状態で加熱して化合式がCuxMo*5s−y  
(ただしx=1.5〜4 、 V= O〜0.4)で表
わされる銅モリブデン硫化物を製造するに当たり、金属
銅、金属モリブデン及び単体硫黄を石英容器へ装入し真
空排気したのち密封し該石英容器を500〜700℃の
温度で6〜24時間加熱して未反応単体硫黄のない前駆
体硫化物を得、次いで該前駆体硫化物を石英容器より取
り出して粉砕混合し、この粉砕混合した前駆体硫化物を
再度石英容器−・装入し真空排気したのち密封し該石英
容器を900〜1100’Cの温度で24〜120時間
加熱反応させることを特徴とする銅モリブデン硫化物の
製造方法を提供するものである。
That is, in the present invention, metallic copper, metallic molybdenum, and elemental sulfur are charged into a quartz container, evacuated, and then the quartz container is heated in a sealed state to form a compound with a compound formula of CuxMo*5s-y.
(However, x = 1.5 to 4, V = O to 0.4) When producing copper molybdenum sulfide, metal copper, metal molybdenum, and elemental sulfur are charged into a quartz container, evacuated, and then sealed. Then, the quartz container is heated at a temperature of 500 to 700°C for 6 to 24 hours to obtain a precursor sulfide free of unreacted elemental sulfur.Then, the precursor sulfide is taken out from the quartz container and pulverized and mixed. A method for producing copper molybdenum sulfide, which is characterized in that the mixed precursor sulfide is charged into a quartz container again, the container is evacuated, the container is sealed, and the quartz container is reacted by heating at a temperature of 900 to 1100'C for 24 to 120 hours. A manufacturing method is provided.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

本発明を更に詳細に説明する。 The present invention will be explained in more detail.

本発明の銅モリブデン硫化物とは上記化学式で表わされ
る化合物であり、通称シェブレル型化合物といわれるも
のの一種で、Mo、S、クラスターが配列して出来る隙
間に銅が入り込んだ構造となっている。従って、上記化
学式においてCuO値は、1.5〜4の間で任意の値を
取り得ることができる。また、Sの値は基本的には8で
あるが、Cuの値が3.5以下の場合はSの値は8未満
とした方が均一な化合物となり易い。
The copper molybdenum sulfide of the present invention is a compound represented by the above chemical formula, and is a type of what is commonly called a Chevrel type compound, and has a structure in which copper enters the gaps formed by the arrangement of Mo, S, and clusters. Therefore, the CuO value in the above chemical formula can take any value between 1.5 and 4. Further, the value of S is basically 8, but when the value of Cu is 3.5 or less, it is easier to form a uniform compound by setting the value of S to less than 8.

従ってこれらのことを勘案し、用途によってCu、Mo
、 Sのモル比を上記化学式のただし書が示す範囲内で
変更すればよい。
Therefore, taking these things into consideration, Cu, Mo
, The molar ratio of S may be changed within the range indicated by the proviso to the above chemical formula.

本発明では先ず前駆体硫化物を製造するが、これについ
て述べる。
In the present invention, first, a precursor sulfide is produced, which will be described below.

原料である金属銅、金属モリブデン及び単体硫黄は石英
容器に装入される。この場合、これらの原料はそれぞれ
粉末状のものを予め均一に混合して石英容器に装入する
のが、均一組成の前駆体硫化物を得る上で好ましく、ま
た反応時間を極力短縮する上でも好ましい、ただし、単
体硫黄は上記前駆体硫化物の反応温度においてはガス状
であるので、必ずしも粉末である必要はなく粒状または
塊状のものでも差支えないが、石英容器として後記する
如き石英製の封管を使用する場合には、粉末状のものが
該封管に装入しやすいので好ましい。
The raw materials, metal copper, metal molybdenum, and elemental sulfur, are charged into a quartz container. In this case, it is preferable to uniformly mix these raw materials in powder form beforehand and charge them into a quartz container in order to obtain a precursor sulfide with a uniform composition, and also to shorten the reaction time as much as possible. Preferably, however, since elemental sulfur is in a gaseous state at the reaction temperature of the precursor sulfide, it does not necessarily have to be in the form of powder and may be in the form of granules or lumps, but a quartz container with a seal made of quartz as described later may be used. When using a tube, powdered material is preferred because it can be easily loaded into the sealed tube.

尚、これらの粉末の粒度には特に限定はないが、何れも
50メツシエより小さいものが好ましい。
The particle size of these powders is not particularly limited, but it is preferable that the particle size is smaller than 50 mesh.

金属銅、金属モリブデン及び単体硫黄の各純度にも特に
限定はないが、必要とする製品銅モリブデン硫化物の純
度に応じてその純度を選択すればよい。
There are no particular limitations on the respective purity of metallic copper, metallic molybdenum, and elemental sulfur, but the purity may be selected depending on the purity of the required product copper molybdenum sulfide.

本発明では、上記の各原料を石英容器に装入するに当た
っては、その装入量は、得ようとする製品銅モリブデン
硫化物のモル比と同じ割合に装入する。
In the present invention, each of the above raw materials is charged into a quartz container in the same amount as the molar ratio of the product copper molybdenum sulfide to be obtained.

各原料を装入した石英容器は、加熱した状態で内部の空
気を真空排気したのち密閉される。上記の加熱温度は特
に限定はないが、加熱温度が低い場合は、原料に吸着さ
れている空気等のガスが、完全に排気されずに一部残留
するので好ましくなく、逆に、加熱温度が高すぎると単
体硫黄の揮散が生じるので、これまた好ましくない。従
って、この加熱温度は50〜100°C程度が好ましい
The quartz container charged with each raw material is heated, the air inside is evacuated, and then the container is sealed. The above heating temperature is not particularly limited, but if the heating temperature is low, gases such as air adsorbed by the raw materials will not be completely exhausted and will remain partially, which is undesirable. If it is too high, volatilization of elemental sulfur will occur, which is also not preferable. Therefore, this heating temperature is preferably about 50 to 100°C.

石英容器の真空排気については、真空排気後の石英容器
内が高真空である程好ましいが、本発明では通常I T
orr以下になるように、真空排気される。
Regarding vacuum evacuation of the quartz container, it is preferable that the inside of the quartz container be in a high vacuum after evacuation.
The vacuum is evacuated to below orr.

本発明では原料の単体硫黄は前駆体硫化物の反応温度に
おいては加熱されてガス化しているので、使用する石英
容器は、このガス化された単体硫黄が接触する可能性の
ある部分が全て石英製であれば、どのような形式のもの
でも使用ができるが、通常、石英製の封管が一般的に使
用される。また、セパラブルフラスコや、例えば脱着可
能な底板を備えたつり鐘状の容器(ペルジャー)のよう
に分割が可能な容器でも、真空排気口が設けられていて
、かつ高温で密閉が可能な構造であれば好適に使用する
ことができる。
In the present invention, elemental sulfur as a raw material is heated and gasified at the reaction temperature of the precursor sulfide, so the quartz container used has all parts that may come into contact with this gasified elemental sulfur made of quartz. Although any type of tube can be used as long as it is made of quartz, a sealed tube made of quartz is generally used. In addition, even containers that can be divided, such as separable flasks and bell-shaped containers (pell jars) with removable bottom plates, have a structure that has a vacuum exhaust port and can be sealed at high temperatures. If so, it can be suitably used.

かくして金属銅、金属モリブデン及び単体硫黄(以下、
これらを総括して原料と略記する)を装入後密閉された
石英容器は、電気炉等の加熱装置により500〜700
℃の温度まで昇温した後、この温度にて6〜24時間反
応させて前駆体硫化物を得るが、上記反応温度までの昇
温速度は、本発明者等が先に出願した特願昭63−14
5820号に記載した昇温速度が好ましい。
Thus, metallic copper, metallic molybdenum and elemental sulfur (hereinafter referred to as
After charging the raw materials (collectively referred to as raw materials), the sealed quartz container is heated to 500 to 700
℃ and then reacted at this temperature for 6 to 24 hours to obtain a precursor sulfide. 63-14
The heating rate described in No. 5820 is preferred.

即ち、原料の石英容器への装入量の合計量D(g)が下
記1)式の関係を満足しており、かつ昇温速度A(”C
/h)は下記2)式の範囲で実施される。
In other words, the total amount D (g) of raw materials charged into the quartz container satisfies the relationship of equation 1) below, and the temperature increase rate A ("C
/h) is carried out within the range of formula 2) below.

D≦0.70 −・  −−・−・−・−−i >(0
,5X B x C) /D≦A≦(1,5xBxC)
/D・−・−・・−・−・−・−2) ただしA;昇温速度(”C/h) B;石英容器の耐圧(kg/cd−G)C;石英容器の
内容積(d) D;金属銅、金属モリブデン及び単体硫黄の合計の装入
量(g) 原料の石英容器への装入量の合計量D(g)が石英容器
の内容積C(Id)の0.7を越える場合は、前駆体硫
化物の反応温度までの昇温中に石英容器が破裂する可能
性が非常に大きくなるので避けなければならない。
D≦0.70 −・ −−・−・−・−−i >(0
, 5X B x C) /D≦A≦(1,5xBxC)
/D. d) D: Total charge amount (g) of metallic copper, metallic molybdenum, and elemental sulfur If the total amount D (g) of the raw materials charged into the quartz container is 0.0% of the internal volume C (Id) of the quartz container. If it exceeds 7, there is a very high possibility that the quartz container will burst during heating up to the reaction temperature of the precursor sulfide, so it must be avoided.

また、装入量の合計ID(g)が上記1)式を満足する
場合でも、昇温速度Aが上記2〉式に示す範囲の上限を
越えると、昇温中に石英容器が破裂する可能性が非常に
大きくなり、捲めて危険であるので好ましくない、逆に
、昇温速度Aが2)式に示す範囲の下限未満では、昇温
に時間がかかりすぎてやはり実用的ではなくなる。
Furthermore, even if the total charge ID (g) satisfies formula 1) above, if the heating rate A exceeds the upper limit of the range shown in formula 2> above, the quartz container may burst during temperature rise. This is undesirable because the temperature increase becomes very large and it is dangerous to curl it.On the other hand, if the heating rate A is less than the lower limit of the range shown in equation 2), it takes too long to raise the temperature and it is not practical.

尚、前記2)式において石英容器の耐圧B (kg/c
d−G)は強度計算上の最大応力を70kg/c+J−
G (安全率3〜5倍)として計算した値とする。
In addition, in the above equation 2), the pressure resistance B (kg/c
d-G) is the maximum stress in the strength calculation of 70kg/c+J-
The value calculated as G (safety factor 3 to 5 times).

反応温度及び反応時間は前記の通りであるが、前記の範
囲内において反応時間は反応温度に関連して変化する0
反応温度が低い場合は長時間の反応が必要であり、反応
温度が高い場合は比較的短時間の反応でよい6従って反
応時間は選択した反応温度により、X線回折装置で分析
し単体硫黄が認められなくなる時間以上とすればよい。
The reaction temperature and reaction time are as described above, but within the above range the reaction time varies in relation to the reaction temperature.
When the reaction temperature is low, a long reaction time is required, and when the reaction temperature is high, a relatively short reaction time is sufficient6.Therefore, the reaction time depends on the selected reaction temperature, and when analyzed with an X-ray diffraction device, elemental sulfur can be detected. It is sufficient that the time is longer than the time when it is no longer recognized.

反応が終了すると、石英容器を冷却して内容物を取り出
すが、冷却の速度は特に制限はなく、徐冷しても急冷し
てもよい。
When the reaction is completed, the quartz container is cooled and the contents are taken out, but the cooling rate is not particularly limited and may be cooled slowly or rapidly.

かくして得られた前駆体硫化物は石英容器より取り出し
た後粉砕混合する。粉砕装置は特に限定はないが、前駆
体硫化物の粒径が115メンシユより小さくなるまで粉
砕する。
The precursor sulfide thus obtained is taken out from the quartz container and then pulverized and mixed. Although there are no particular limitations on the crushing device, the precursor sulfide is crushed until the particle size of the precursor sulfide becomes smaller than 115 mesh.

次に銅モリブデン硫化物の製造について説明する。Next, the production of copper molybdenum sulfide will be explained.

上記で得られた粉砕混合された前駆体硫化物は、前駆体
硫化物の製造に使用されたものと同様の石英容器に装入
した後、前駆体硫化物の製造の場合と全く同様な方法で
真空排気した後密封する。
The pulverized and mixed precursor sulfide obtained above is charged into a quartz container similar to that used for the production of the precursor sulfide, and then processed in exactly the same manner as in the production of the precursor sulfide. After vacuum evacuation, seal.

即ち、石英容器を50〜100°C程度に加熱した状態
で、I Torr以下になるまで真空排気した後密封す
る。
That is, the quartz container is heated to about 50 to 100° C., evacuated to below I Torr, and then sealed.

密封された石英容器は電気炉等の加熱装置により900
〜1100℃の温度まで昇温され、この温度で24〜1
20時間反応させることにより銅モリブデン硫化物とす
る。尚、この場合の反応温度までの昇温速度は特に制限
はなく、石英容器に歪みや亀裂等の悪影響を及ぼさない
範囲の速度で昇温すればよい。
The sealed quartz container is heated to 900℃ using a heating device such as an electric furnace.
The temperature was raised to ~1100℃, and at this temperature 24~1
Copper molybdenum sulfide is obtained by reacting for 20 hours. In this case, there is no particular restriction on the rate of temperature rise to the reaction temperature, and the temperature may be raised within a range that does not cause any adverse effects such as distortion or cracking on the quartz container.

反応温度と反応時間の関係は前駆体硫化物の製造の場合
と同様に相関する。従って、反応時間は選択した反応温
度により、X線回折装置で分析し単一のシェブレル相が
生成する時間以上とすればよい。
The relationship between reaction temperature and reaction time is similar to that in the production of precursor sulfides. Therefore, depending on the reaction temperature selected, the reaction time may be longer than the time required to generate a single Chevrel phase when analyzed with an X-ray diffraction device.

反応が終了すると石英容器を冷却して内容物を取り出す
が、冷却速度は特に制限はなく、徐冷しても急冷しても
よい。
When the reaction is completed, the quartz container is cooled and the contents are taken out, but the cooling rate is not particularly limited and may be cooled slowly or rapidly.

〔実施例〕〔Example〕

以下、実施例にて本発明を更に具体的に説明するが、本
発明はこれらの実施例に制約されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 金N鋼として純度99.7%、粒度50メツシユパスの
電解銅粉末を13゜3g 、純度99.9%、粒度50
メツシユパスの金属モリブデン粉末を60.0g 、純
度が99.9%、粒度50メツシユパスの単体硫黄粉末
26.1gをそれぞれ秤量し、これを混合した。(モル
比Cu:Mo:S =2:6:7.8) 石英容器として、外径3411Il、内径28m5+の
石英管より製作した内容積150dの封管に、上記混合
物を装入し、次いで、この封管をヒーターで60℃の温
度に加熱した状態で、封管内の空気を真空ポンプでl 
Torr以下の圧力に真空排気し融封した。
Example 1 13°3g of electrolytic copper powder with a purity of 99.7% and a particle size of 50 mesh pass as gold N steel, a purity of 99.9% and a particle size of 50
60.0 g of mesh pass metallic molybdenum powder and 26.1 g of elemental sulfur powder having a purity of 99.9% and a particle size of 50 mesh pass were weighed and mixed. (Molar ratio Cu:Mo:S = 2:6:7.8) The above mixture was charged into a sealed tube with an internal volume of 150 d, which was made from a quartz tube with an outer diameter of 3411 Il and an inner diameter of 28 m5+, as a quartz container, and then, With this sealed tube heated to 60°C using a heater, the air inside the sealed tube is pumped out using a vacuum pump.
It was evacuated to a pressure of Torr or less and melt-sealed.

尚、この封管の耐圧Bは13.4kg/cd−Gであっ
た、また、内容積Cは150d、装入量の合計りは99
.4gであるので、2)式の昇温速度Aの上限は(1,
5x B x C)/D =30.3、下限は(0,5
x B x C)/D=10.1となる。従って昇温速
度は10.1〜30.3°C/hとすればよく、かつ封
管への原料の装入量も、第1表に示す通りl)式の条件
を満たしている。
The pressure resistance B of this sealed tube was 13.4 kg/cd-G, the internal volume C was 150 d, and the total charged amount was 99
.. 4g, the upper limit of the temperature increase rate A in equation 2) is (1,
5x B x C)/D = 30.3, the lower limit is (0,5
x B x C)/D=10.1. Therefore, the temperature increase rate may be 10.1 to 30.3°C/h, and the amount of raw material charged into the sealed tube also satisfies the conditions of formula 1) as shown in Table 1.

この封管を電気炉内にて20°C/hの昇温速度で60
0°Cまで昇温し、この温度で12時間反応させて前駆
体硫化物を製造した0反応終了後は封管を自然放冷して
内容物を取り出し、X線回折装置で分析したところ単体
硫黄のピークは検出されなかった。
This sealed tube was heated to 60°C in an electric furnace at a heating rate of 20°C/h.
The temperature was raised to 0°C, and the reaction was carried out at this temperature for 12 hours to produce a precursor sulfide. After the reaction, the sealed tube was allowed to cool naturally, the contents were taken out, and analyzed with an X-ray diffraction device. No sulfur peak was detected.

次に、この前駆体硫化物を全量115メンシユパスとな
るよう乳鉢で粉砕した。
Next, this precursor sulfide was ground in a mortar so that the total amount was 115 menshupas.

この粉砕した前駆体硫化物を前駆体硫化物の製造に使用
したものと同一の石英管製の封管に装入し、次いで、こ
の封管をヒーターで60″Cの温度に加熱した状態で、
封管内の空気を真空ポンプでITorr以下の圧力に真
空排気し融封した。
This pulverized precursor sulfide was charged into a sealed quartz tube that was the same as that used for producing the precursor sulfide, and then this sealed tube was heated to a temperature of 60"C with a heater. ,
The air in the sealed tube was evacuated to a pressure of ITorr or less using a vacuum pump, and the tube was fused and sealed.

この封管を電気炉内にて第2表に示す通り100’C/
hの昇温速度で1000℃まで昇温し、この温度で24
時間反応させた0反応終了後は封管を自然放冷して内容
物を取り出しX線回折装置で分析したところ、第1図に
示す如く単一相のシェブレル型化合物のみが検出され、
原料モル比からCuaMobSq、 sと確認された。
This sealed tube was placed in an electric furnace at 100'C/min as shown in Table 2.
The temperature was raised to 1000°C at a heating rate of 24 h, and at this temperature
After 0 hours of reaction, the sealed tube was allowed to cool naturally and the contents were taken out and analyzed using an X-ray diffraction device. As shown in Figure 1, only a single-phase Chevrel-type compound was detected.
It was confirmed to be CuaMobSq,s from the raw material molar ratio.

また、この生成物を115メツシユの篩で篩分したとこ
ろ、篩下界の割合が95%と微細であった。更に、ここ
で篩分された篩下界についてもX線回折装置で分析した
が、この篩下界も単一相のシェブレル型化合物のみが検
出された。
When this product was sieved using a 115-mesh sieve, it was found that the under-sieve fraction was as fine as 95%. Further, the sieved underfield was also analyzed using an X-ray diffraction device, but only single-phase Chevrel-type compounds were detected in this undersieve.

以上のことから、本発明の方法で製造した銅モリブデン
硫化物は極めて高純度でかつ微細であることが分かる。
From the above, it can be seen that the copper molybdenum sulfide produced by the method of the present invention has extremely high purity and is fine.

比較例1 実施例1で使用した電解銅、金属モリブデン、単体硫黄
の各粉末を実施例1と同じ量混合し、これを実施例1で
使用したものと同じ石英製の封管に装入し、I Tor
r以下の圧力に真空排気して実施例1と同様にして封管
を融封した。しかる後この封管を電気炉内で20℃/h
の昇温速度で1000”Cの温度まで昇温し、この温度
で24時間反応させた0反応終了後は封管を自然放冷し
て内容物を取り出しX線回折装置で分析したところ、単
一相のシェブレル型化合物のみが検出された。しかしこ
の生成物を115メツシユの篩で篩分したところ、篩下
界の割合が38%と実施例1と比較して大きく増加して
いた。更に、この篩下界についてX線回折装置で分析し
た結果、二硫化モリブデンのピークも認められ相当量の
二硫化モリブデンが混在していることが分かった。
Comparative Example 1 The electrolytic copper, metal molybdenum, and elemental sulfur powders used in Example 1 were mixed in the same amounts as in Example 1, and this was charged into the same quartz sealed tube as used in Example 1. ,I Tor
The sealed tube was evacuated to a pressure of r or less and melt-sealed in the same manner as in Example 1. After that, this sealed tube was heated at 20℃/h in an electric furnace.
The temperature was raised to 1000"C at a heating rate of Only one-phase Chevrel-type compound was detected. However, when this product was sieved using a 115-mesh sieve, the percentage of undersieve was 38%, which was significantly increased compared to Example 1. As a result of analyzing this undersieve field using an X-ray diffraction device, a peak for molybdenum disulfide was also observed, indicating that a considerable amount of molybdenum disulfide was present.

比較例2 反応時間を48時間に変更した以外は、比較例1と全く
同一の条件で銅モリブデン硫化物を製造した。得られた
生成物を比較例1と同様に115メツシユの篩で篩分し
たところ、篩下界の割合は17%であり、比較例1より
は減少していたものの実施例1と比較すると大きく増加
していた。
Comparative Example 2 Copper molybdenum sulfide was produced under the same conditions as Comparative Example 1 except that the reaction time was changed to 48 hours. When the obtained product was sieved using a 115-mesh sieve in the same manner as in Comparative Example 1, the under-sieve ratio was 17%, which was lower than in Comparative Example 1 but significantly increased compared to Example 1. Was.

この篩下界について比較例1と同様にX線回折装置で分
析した結果、二硫化モリブデンのピークも認められ相当
量の二硫化モリブデンが混在していることが分かった。
As a result of analyzing this undersieve field using an X-ray diffraction apparatus in the same manner as in Comparative Example 1, a peak of molybdenum disulfide was also observed, indicating that a considerable amount of molybdenum disulfide was present.

実施例2 前駆体硫化物から銅モリブデン硫化物を得るための反応
温度を第2表に示す通り950’C1反応時間を90時
間に変更した以外は、実施例1と全く同様な方法で銅モ
リブデン硫化物を得た。
Example 2 Copper molybdenum was produced in exactly the same manner as in Example 1, except that the reaction temperature for obtaining copper molybdenum sulfide from the precursor sulfide was changed to 950'C1 reaction time to 90 hours as shown in Table 2. Sulfide was obtained.

得られた銅モリブデン硫化物を実施例1と同様に115
メツシユの篩で篩分したところ、篩下界の割合が97%
と微細であった。更に、ここで篩分された篩下界につい
てもX線回折装置で分析したが、この篩下界も単一相の
シェブレル型化合物のみが検出され、原料モル比から第
2表に示す組成の銅モリブデン硫化物と確認された0以
上のことがら、本発明の方法で製造した銅モリブデン硫
化物は、実施例1と同様に極めて高純度でかつ微細であ
ることが分かる。
The obtained copper molybdenum sulfide was added to 115 in the same manner as in Example 1.
When sieved with a mesh sieve, the percentage of undersieve was 97%.
It was minute. Furthermore, the undersieve field sieved here was also analyzed using an X-ray diffraction device, and only single-phase Chevrel-type compounds were detected in this undersieve field, and based on the raw material molar ratio, copper molybdenum with the composition shown in Table 2 was detected. The fact that 0 or more sulfides were confirmed indicates that the copper molybdenum sulfide produced by the method of the present invention has extremely high purity and is fine as in Example 1.

実施例3 実施例1で使用したものと同一の石英管製の封管を用い
、この封管に実施例1で使用したものと同一の電解銅、
金属モリブデン及び単体硫黄の各粉末を第1表に示す量
だけ秤量し、混合した。
Example 3 A sealed tube made of the same quartz tube as that used in Example 1 was used, and the same electrolytic copper as used in Example 1 was added to the sealed tube.
The amounts of metal molybdenum and elemental sulfur powders shown in Table 1 were weighed and mixed.

以後、実施例1と同様にこの混合物を封管に装入した後
、これを実施例1と同じ条件で真空排気した後、封管の
融封、昇温、反応させ、冷却して前駆体硫化物を得た。
Thereafter, this mixture was charged into a sealed tube in the same manner as in Example 1, and after this was evacuated under the same conditions as in Example 1, the sealed tube was melt-sealed, heated, reacted, and cooled to form a precursor. Sulfide was obtained.

尚、昇温速度、反応温度、反応時間は第1表に示す通り
であった。
The heating rate, reaction temperature, and reaction time were as shown in Table 1.

この前駆体硫化物を実施例1と同様にX線回折装置で分
析したところ、単体硫黄のピークは検出されなかった。
When this precursor sulfide was analyzed using an X-ray diffraction apparatus in the same manner as in Example 1, no peak of elemental sulfur was detected.

次に、この前駆体硫化物を実施例1と同様に全1115
メツシユバスの粒度まで粉砕し、この粉砕された前駆体
硫化物を上記と同一の石英管型の封管に装入した後、実
施例1と同様に真空排気後、封管の融封、昇温、反応さ
せ、冷却して第2表に示す組成の銅モリブデン硫化物を
得た。尚、昇温速度、反応温度、反応時間は第2表に示
す通りであった。
Next, in the same manner as in Example 1, this precursor sulfide was mixed with a total of 1115
The pulverized precursor sulfide was pulverized to the particle size of a mesh bath, and the pulverized precursor sulfide was charged into the same quartz tube type sealed tube as above, and after vacuum evacuation in the same manner as in Example 1, the sealed tube was fused and sealed, and the temperature was increased. , reacted and cooled to obtain copper molybdenum sulfide having the composition shown in Table 2. The heating rate, reaction temperature, and reaction time were as shown in Table 2.

得られた銅モリブデン硫化物を実施例1と同様に115
メツシユの篩で篩分したところ、篩下品の割合が97%
と微粉であった。更に、ここで篩分された篩上品につい
てもX線回折装置で分析したが、この篩上品も単一相の
シェブレル型化合物のみが検出された9以上のことから
、本発明の方法で製造した銅モリブデン硫化物は、実施
例1と同様に極めて高純度でかつ微細であることが分か
る。
The obtained copper molybdenum sulfide was added to 115 in the same manner as in Example 1.
When sifted with a mesh sieve, the percentage of unsifted material was 97%.
It was a fine powder. Furthermore, the sieve material sieved here was also analyzed using an X-ray diffraction device, and since only single-phase Chevrel type compounds were detected in this sieve material, it was found that the sieve material was manufactured by the method of the present invention. It can be seen that the copper molybdenum sulfide has extremely high purity and is fine as in Example 1.

比較例3 実施例3と全く同様にして石英製の封管に、電解銅、金
属モリブデン、単体硫黄の各粉末の混合物を装入、真空
排気、封管を融封した後、この封管を昇温速度を30°
C/hの昇温速度で1000’Cの温度まで昇温し、こ
の速度で48時間反応させた。
Comparative Example 3 In exactly the same manner as in Example 3, a mixture of electrolytic copper, metal molybdenum, and elemental sulfur powder was charged into a sealed quartz tube, evacuated, and the sealed tube was melt-sealed. Increase heating rate to 30°
The temperature was raised to a temperature of 1000'C at a heating rate of C/h, and the reaction was carried out at this rate for 48 hours.

反応終了後は封管を自然放冷して内容物を取り出しX線
回折装置で分析したところ、単一相のシェブレル型化合
物のみが検出された。しかしこの生成物を115メツシ
ユの篩で篩分したところ、篩上品の割合が15%で実施
例3と比較して大きく増加していた。更に、この篩上品
についてX線回折装置で分析した結果、二硫化モリブデ
ンのピークも認められ二硫化モリブデンが混在している
ことが分かった。
After the reaction was completed, the sealed tube was allowed to cool naturally and the contents were taken out and analyzed using an X-ray diffraction apparatus, and only a single-phase Chevrel type compound was detected. However, when this product was sieved using a 115-mesh sieve, the proportion of the sieved product was 15%, which was significantly increased compared to Example 3. Furthermore, as a result of analyzing this sieve material with an X-ray diffraction device, a peak of molybdenum disulfide was also observed, indicating that molybdenum disulfide was present.

実施例4 石英容器として内径400mm 、高さ550IIll
l、内容積651のペルジャー型の石英容器を用いた。
Example 4 As a quartz container, the inner diameter is 400 mm and the height is 550 IIll.
A Pelger-type quartz container with an internal volume of 651 cm was used.

この石英容器はスリ合わせを用いて密閉できるようにな
っており、密閉後に発生した硫黄ガスは金属と接触する
ことがなく、かつ、石英容器内の空気を真空排気後は密
閉できるようになっている。また、この石英容器の計算
上の耐圧は7.0 kg/ c+!−Gとなるように設
計した。
This quartz container can be sealed using a slotted joint, so that the sulfur gas generated after sealing does not come into contact with metal, and it can be sealed after the air inside the quartz container is evacuated. There is. Also, the calculated pressure resistance of this quartz container is 7.0 kg/c+! -G.

実施例1で使用したものと同一の電解銅粉末、金属モリ
ブデン粉末、単体硫黄粉末をそれぞれ2394g 、 
10800g、4698g秤量し混合した後、これを石
英製のトレーに入れ、この石英製のトレーを上記ペルジ
ャー型の石英容器に装入した。(仕込モル比Cu:Mo
:S =2:6:7.8)しかる後、外部に設置したヒ
ーターでペルジャー型の石英容器の温度が60°Cにに
なるように加熱した状態で、該石英容器内の空気を真空
ポンプでlτorr以下の圧力に真空排気した後密閉し
た。
2394 g each of the same electrolytic copper powder, metal molybdenum powder, and elemental sulfur powder as used in Example 1,
After weighing and mixing 10,800 g and 4,698 g, they were placed in a quartz tray, and the quartz tray was placed in the Pelger-type quartz container. (Preparation molar ratio Cu:Mo
:S = 2:6:7.8) Then, while heating the Pelger-type quartz container to a temperature of 60°C using an external heater, the air inside the quartz container is pumped with a vacuum pump. The chamber was evacuated to a pressure below lτorr and then sealed.

尚、この石英容器の耐圧Bは7.0kg/cd、内容積
Cは65000mg、原料の装入量りは17892gで
あるので、2)式の昇温速度への上限は(1,5x B
 x C)/D−38,1、下限は(0,5x B x
 C)/D =12.7となり、かつ石英容器への原料
の装入量も、第1表に示す通りl)式の条件を満たして
いる。
Note that the pressure resistance B of this quartz container is 7.0 kg/cd, the internal volume C is 65000 mg, and the amount of raw material charged is 17892 g, so the upper limit to the temperature increase rate in equation 2) is (1.5x B
x C)/D-38,1, the lower limit is (0,5x B x
C)/D = 12.7, and the amount of raw material charged into the quartz container also satisfies the condition of formula l) as shown in Table 1.

この石英容器をヒーターを用いて20℃/hの昇温速度
で600°Cまで昇温した後、この温度で12時間反応
させた0反応終了後は石英容器を自然放冷して前駆体硫
化物を取り出し、この前駆体硫化物を実施例1と同様に
X線回折装置で分析したところ、単体硫黄のピークは検
出されなかった。
This quartz container was heated to 600°C at a heating rate of 20°C/h using a heater, and then reacted at this temperature for 12 hours. After the reaction was completed, the quartz container was allowed to cool naturally to sulfurize the precursor. When the sample was taken out and the precursor sulfide was analyzed using an X-ray diffraction apparatus in the same manner as in Example 1, no peak of elemental sulfur was detected.

次に、この前駆体硫化物を実施例1と同様に全1115
メツシユバスの粒度まで粉砕し、この粉砕された前駆体
硫化物を上記の石英容器に再度装入、真空排気、封管の
融封を行なった後、電気炉にて第2表に示す通りloo
’c/hの昇温速度で1000″Cまで昇温し、この温
度で24時間反応させた。反応終了後は自然放冷にて冷
却して第2表に示す組成の銅モリブデン硫化物を得た。
Next, in the same manner as in Example 1, this precursor sulfide was mixed with a total of 1115
The pulverized precursor sulfide was pulverized to the particle size of a mesh bath, and the pulverized precursor sulfide was charged again into the above-mentioned quartz container, vacuum evacuated, and the sealed tube was melt-sealed.
The temperature was raised to 1000''C at a heating rate of 'c/h, and the reaction was carried out at this temperature for 24 hours.After the reaction was completed, the copper molybdenum sulfide having the composition shown in Table 2 was cooled by natural cooling. Obtained.

得られた銅モリブデン硫化物を実施例1と同様に115
メツシユの篩で篩分したところ、篩下品の割合が96%
と微細であった。更に、ここで篩分された篩上品につい
てもX線回折装置で分析したが、この篩上品も単一相の
シェブレル型化合物のみが検出された0以上のことから
、本発明の方法で製造した銅モリブデン硫化物は、実施
例1と同様に極めて高純度でかつ微細であることが分か
る。
The obtained copper molybdenum sulfide was added to 115 in the same manner as in Example 1.
When sieved using a mesh sieve, the percentage of unsifted products was 96%.
It was minute. Furthermore, the sieve material sieved here was also analyzed using an X-ray diffraction device, and since only single-phase Chevrel-type compounds were detected in this sieve material as well, it was found that the sieve material was manufactured by the method of the present invention. It can be seen that the copper molybdenum sulfide has extremely high purity and is fine as in Example 1.

第 第 表 表 〔発明の効果〕 以上詳細に説明したように本発明は、金属銅、金属モリ
ブデン及び単体硫黄を原料とし、この原料を石英容器中
で密閉した状態で加熱し反応させて、銅モリブデン硫化
物を製造する方法において、原料を密閉した石英容器中
で500〜700″Cの温度で6〜24時間加熱して一
旦未反応単体硫黄のない前駆体硫化物を得、この前駆体
硫化物を再度密閉した石英容器中で900〜1100°
Cの温度で24〜120時間加熱反応させるという方法
であり、本発明の方法を採用することにより高純度でか
つ微細な銅モリブデン硫化物が得られるのである。
Table 1 [Effects of the Invention] As explained in detail above, the present invention uses metallic copper, metallic molybdenum, and elemental sulfur as raw materials, heats these raw materials in a sealed quartz container, causes them to react, and produces copper. In a method for producing molybdenum sulfide, raw materials are heated in a sealed quartz container at a temperature of 500 to 700"C for 6 to 24 hours to obtain a precursor sulfide free of unreacted elemental sulfur, and this precursor sulfide is 900-1100° in a resealed quartz container
This is a method of carrying out a heating reaction at a temperature of C for 24 to 120 hours, and by employing the method of the present invention, highly pure and fine copper molybdenum sulfide can be obtained.

銅モリブデン硫化物を製造する従来の方法において、生
成した銅モリブデン硫化物はX線回折装置等で分析する
ことにより、均一相になっているかどかについては調べ
られてはいたものの、粒度と純度の関係については全く
知られていなかった。
In the conventional method of producing copper molybdenum sulfide, it has been investigated whether the produced copper molybdenum sulfide has a homogeneous phase by analyzing it with an X-ray diffraction device, etc., but the particle size and purity have not been determined. Nothing was known about their relationship.

本発明者等は生成した銅モリブデン硫化物の粒度と純度
の関係を明らかにし、更に、粒度を小さくする方法を見
い出し、これにより、高純度でかつ微細な銅モリブデン
硫化物を得ることに成功した。
The present inventors clarified the relationship between the particle size and purity of the produced copper molybdenum sulfide, and also found a method to reduce the particle size, and thereby succeeded in obtaining highly pure and fine copper molybdenum sulfide. .

銅モリブデン硫化物を二次電池の電極材料として使用す
る場合、高純度でかつ微細であることは橿めて重要であ
り、本発明の効果は非常に大なるものがある。
When copper molybdenum sulfide is used as an electrode material for a secondary battery, it is extremely important that it be highly pure and fine, and the effects of the present invention are extremely significant.

更に、本発明の実施において、上記前駆体硫化物を得る
際の反応温度までの昇温に、本発明者等が先に出願した
特願昭63−145820号に記載の昇温速度を採用す
れば、従来問題であった昇温中に封管等が屡々破裂する
という、非常に危険で生産性を阻害するという問題もな
く、安全にかつ効率よく銅モリブデン硫化物を製造する
ことができる。
Furthermore, in carrying out the present invention, the rate of temperature rise described in Japanese Patent Application No. 145820/1988, previously filed by the present inventors, should be adopted for raising the temperature up to the reaction temperature when obtaining the precursor sulfide. For example, copper molybdenum sulfide can be produced safely and efficiently without the conventional problem of sealing tubes often bursting during temperature rise, which is very dangerous and hinders productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた本発明の銅モリブデン硫化
物のX線回折図である。 特許出願人 三井東圧化学株式会社
FIG. 1 is an X-ray diffraction diagram of the copper molybdenum sulfide of the present invention obtained in Example 1. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)金属銅、金属モリブデン及び単体硫黄を石英容器
に装入して真空排気した後、該石英容器を密閉した状態
で加熱して化合式がCu_xMo_6S_8_−_y(
ただしx=1.5〜4、y=0〜0.4)で表わされる
銅モリブデン硫化物を製造するに当たり、金属銅、金属
モリブデン及び単体硫黄を石英容器へ装入し真空排気し
たのち密封し該石英容器を500〜700℃の温度で6
〜24時間加熱して未反応単体硫黄のない前駆体硫化物
を得、次いで該前駆体硫化物を石英容器より取り出して
粉砕混合し、この粉砕混合した前駆体硫化物を再度石英
容器へ装入し真空排気したのち密封し該石英容器を90
0〜1100℃の温度で24〜120時間加熱反応させ
ることを特徴とする銅モリブデン硫化物の製造方法。
(1) Metallic copper, metallic molybdenum, and elemental sulfur are charged into a quartz container and evacuated, and then the quartz container is heated in a sealed state so that the compound formula Cu_xMo_6S_8_-_y(
However, in producing copper molybdenum sulfide represented by The quartz container was heated at a temperature of 500 to 700°C.
Heating for ~24 hours to obtain a precursor sulfide free of unreacted elemental sulfur, then taking out the precursor sulfide from the quartz container, pulverizing and mixing, and charging the pulverized and mixed precursor sulfide into the quartz container again. After vacuum evacuation, the quartz container was sealed and heated to 90°C.
A method for producing copper molybdenum sulfide, which comprises carrying out a heating reaction at a temperature of 0 to 1100°C for 24 to 120 hours.
JP17916488A 1988-07-20 1988-07-20 Production of copper molybdenum sulfide Pending JPH0230624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17916488A JPH0230624A (en) 1988-07-20 1988-07-20 Production of copper molybdenum sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17916488A JPH0230624A (en) 1988-07-20 1988-07-20 Production of copper molybdenum sulfide

Publications (1)

Publication Number Publication Date
JPH0230624A true JPH0230624A (en) 1990-02-01

Family

ID=16061060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17916488A Pending JPH0230624A (en) 1988-07-20 1988-07-20 Production of copper molybdenum sulfide

Country Status (1)

Country Link
JP (1) JPH0230624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502265A (en) * 1999-06-17 2003-01-21 キネテイツク・リミテツド Method for producing lithium transition metal sulfide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502265A (en) * 1999-06-17 2003-01-21 キネテイツク・リミテツド Method for producing lithium transition metal sulfide
JP4744755B2 (en) * 1999-06-17 2011-08-10 キネテイツク・リミテツド Method for producing lithium transition metal sulfide

Similar Documents

Publication Publication Date Title
US6136062A (en) Niobium powder and a process for the production of niobium and/or tantalum powders
US9017582B2 (en) Process for preparing lithium sulfide
Gudat et al. Li3FeN2, a ternary nitride with 1∞[FeN423−] chains: Crystal structure and magnetic properties
WO2010047327A1 (en) Process for producing lithium iron sulfide, and process for producing lithium transition metal sulfide
EP0186144A2 (en) Process for preparing aluminum nitride powder
JPH0230624A (en) Production of copper molybdenum sulfide
CN114314648B (en) Preparation method of lithium titanate material with electrochemical oscillation phenomenon in charging and discharging stages
DE3908715A1 (en) METHOD FOR THE PRODUCTION OF POWDER-SHAPED HIGH-MELTING INORGANIC COMPOUNDS AND METAL MIXED BODIES
JPH01317127A (en) Production of copper molybdenum sulfide
JPH0393630A (en) Production of copper molybdenum sulfide
JPH1053414A (en) Production of metal disulfide and formation of bimetal trisulfide by further treatment thereof
CN110002407B (en) Method for synthesizing metal sulfide by carbothermic reaction
JPS6183608A (en) Production of aluminum nitride
JPH0244018A (en) Aluminum nitride powder and production thereof
Tuncel et al. New Intermetallic Compounds RE4Co2Mg3 (RE= Pr, Gd, Tb, Dy)–Syntheses, Structure, and Chemical Bonding
JPS5926909A (en) Preparation of powder
Kußmann et al. Ca3Au6. 61Ga4. 39–A New Gallide with a Three‐Dimensional Gold–Gallium Network
WO2023131569A1 (en) Powdered lithium oxide, process for its preparation and its use
JPS5891018A (en) Manufacture of fine nitride powder
AU2022430223A1 (en) Powdered lithium oxide, process for its preparation and its use
JPH0261776B2 (en)
JPS62148324A (en) Production of titanium disulfide
JPH03109212A (en) Production of sulfide having chevrel phase
JPS5918111A (en) Preparation of solid solution carbide powder
JPH02153824A (en) Production of copper molybdenum sulfide