JPH02306115A - Turbine type flowmeter - Google Patents

Turbine type flowmeter

Info

Publication number
JPH02306115A
JPH02306115A JP12600389A JP12600389A JPH02306115A JP H02306115 A JPH02306115 A JP H02306115A JP 12600389 A JP12600389 A JP 12600389A JP 12600389 A JP12600389 A JP 12600389A JP H02306115 A JPH02306115 A JP H02306115A
Authority
JP
Japan
Prior art keywords
bearing
impeller
rotating shaft
rotary shaft
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12600389A
Other languages
Japanese (ja)
Inventor
Kyoji Imamura
今村 恭二
Junichi Nagasawa
潤一 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP12600389A priority Critical patent/JPH02306115A/en
Publication of JPH02306115A publication Critical patent/JPH02306115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To adjust a gap between a bearing and a rotary shaft of an impeller to be a necessary one for rotating said impeller stably and smoothly by forming said bearing in the shape of a thin plate and holding said bearing in an axial direction of said rotary shaft in an elastically deformable manner. CONSTITUTION:The flow rate of a fluid running within a flow passage 2a is measured by magnetically detecting by use of a magnetic sensor 21 a magnet 22 of an impeller 11 rotating corresponding to the flow rate. Rods 5,9 of cones 3,7 upstream and downstream of the flow are fitted in central holes 4a,8a of supporting members 4,8, respectively, and therefore the position of the impeller in the axial direction can be adjusted by tightening nuts 6,10. Since pivot bearings 13,14 are elastically deformable like a leaf spring, even if end portions 12a,12b of a rotary shaft 12 are pressed against the bearing portions when a gap between the rotary shaft 12 and bearings 13,14 is adjusted, the bearings 13,14 themselves can deflect in the pressing direction within the range of their elasticity. Therefore, the rotary shaft 12 can be prevented from being broken.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はタービン式151 ifに係り、特に羽根車を
組付けてなる際の組付精瓜を保ちつつ組付調整作業が容
易となるよう構成したタービン式流吊計に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a turbine type 151 if, and in particular, it is configured to facilitate assembly and adjustment work while maintaining the integrity of the assembly when an impeller is assembled. Regarding turbine type flowmeter.

従来の技術 例えば、都市ガス等の被側流体の流量を測定するタービ
ン式111においては、上、下流側コーンに人造サファ
イア等の宝石よりなるピボット軸受を設け、ピボット軸
受の軸受部で羽根車の回転軸を回転0右に軸承するよう
に構成されたものが考えられている。又、上記のような
タービン式流吊計では流#3削測性能、rji差性能及
び耐久性を向上させるため、羽根車の回転軸を軸受部と
の間の□e低抵抗減らし回転軸を円滑且つ安定に軸承す
る必要がある。そこで、軸受部に開口する小孔をピボッ
ト軸受に設け、この小孔を介して軸受部に鍔fJ油を供
給することが考えられている。
Conventional technology For example, in a turbine type 111 that measures the flow rate of a fluid such as city gas, pivot bearings made of gemstones such as artificial sapphire are provided on the upper and downstream cones, and the bearing part of the pivot bearing is used to measure the flow rate of a fluid to be treated. A device configured so that the rotating shaft is supported on the right at zero rotation is considered. In addition, in order to improve the flow #3 cutting performance, rji difference performance, and durability of the turbine-type flowmeter as described above, the rotating shaft of the impeller is connected to the bearing part by reducing the resistance □e. It is necessary to support the bearing smoothly and stably. Therefore, it has been proposed to provide the pivot bearing with a small hole that opens into the bearing, and to supply the flange fJ oil to the bearing through this small hole.

そして、このような軸受の製造方法としては、例えば■
サフアイア等の宝石あるいはセラミックを木材にして軸
受部としての半球形状の凹部を研削、研摩した後、放電
加工あるいはレーザ加工nにより小孔を形成する方法、
あるいは■セラミック製のn通孔を有する管を素材にし
て半球形状の凹部を研削、研摩して軸受部を形成する方
法等が考えられる。
As a manufacturing method for such a bearing, for example, ■
A method of grinding and polishing a hemispherical concave part as a bearing part using gemstones such as sapphire or ceramics as wood, and then forming small holes by electric discharge machining or laser machining.
Alternatively, there may be a method in which a bearing portion is formed by grinding and polishing a hemispherical concave portion using a ceramic tube having n-holes as a material.

発明が解決しようとするa題 ところが、上記■、■の製造方法では比較的高価な宝石
、1ラミツク等を使用するため安価に製造することがで
きないといった課題や、ピボット軸受になる素材がナフ
ァイア嘗の宝Gあるいはセラミック等の高硬1αの素材
であるため、研削、研摩により半球状の四部(軸受部)
を形成するのに1問がかかるといった課題がある。
Problem A that the invention seeks to solve is that the manufacturing methods described in Items (1) and (2) above cannot be manufactured at a low cost because they use relatively expensive gemstones, such as diamonds, and the material used to make the pivot bearing is Naphire. Because it is made of high hardness 1α material such as Treasure G or ceramic, it can be ground and polished to create four hemispherical parts (bearing part).
There is a problem in that it takes one question to form a question.

さらに、上2タービン式流聞31において、HIIFI
精j立を高めるには微少流量から4流ωまで羽根車の回
転がスムーズであり、flつ回転軸が偏ることのないこ
とが必要である。従って、羽根中が微少流量でも回転し
、1つ^流量域でもスムーズに回転するためには、羽根
中の回転軸の端部とピボット軸受の軸受部との隙間が数
μl稈麿の微少な適正値となるように:I4整しなけれ
ばならない。即ら、羽根車を上流側コーンと下流側コー
ンとの間に組付ける際は、ピボット軸を保持する十Fl
y!側」−ンの位四を少しずつ軸方向にずらしながら回
転軸の端部とピボット軸受の軸受部との隙間を調整する
ことになる。ところが、ピボット軸受が宝石又はセラミ
ックといった高硬度の木材により形成されているため、
上記調整時ピボット軸受が回転軸の両端部に押圧される
と両端部が破t】又は変形しやすい。そのため、従来の
タービン式流聞泪では、上記調整作業が鱈しく、手間が
かかるばかりか、回転軸が破損すると羽根車の回転が安
定せず副側感度が低下し、又回転抵抗の増加により微少
流量を正&市に4測することができないといった課題が
生ずる。
Furthermore, in the upper two-turbine type 31, HIIFI
In order to improve accuracy, it is necessary that the impeller rotates smoothly from minute flow rates to 4 flows, and that the axis of rotation does not deviate. Therefore, in order for the blade to rotate even with a minute flow rate and to rotate smoothly even in the 1^^ flow rate range, the gap between the end of the rotating shaft in the blade and the bearing part of the pivot bearing must be as small as a few microliters. I4 must be adjusted to the correct value. That is, when assembling the impeller between the upstream cone and the downstream cone, the
Y! The clearance between the end of the rotary shaft and the bearing part of the pivot bearing is adjusted by shifting the position of the side bolt little by little in the axial direction. However, since the pivot bearing is made of highly hard wood such as jewelry or ceramic,
When the pivot bearing is pressed against both ends of the rotating shaft during the above adjustment, both ends are likely to break or deform. Therefore, in the conventional turbine-type flow control, not only is the above adjustment work tedious and time-consuming, but if the rotating shaft is damaged, the rotation of the impeller becomes unstable and the sub-side sensitivity decreases, and the rotational resistance increases. The problem arises that it is not possible to measure minute flow rates accurately and accurately.

そこで、本発明は上記課題を解決したタービン式流邑語
を提供することを目的とする。
Therefore, an object of the present invention is to provide a turbine-style language that solves the above problems.

課題を解決するための手段 本発明は、上記タービン式流量計において、軸受が薄板
状に形成されるとともに、羽根車の回転軸の軸方向に弾
性変形しつるよう保持されてなる。
Means for Solving the Problems The present invention provides the above turbine flowmeter in which the bearing is formed in a thin plate shape and is held so as to be elastically deformed in the axial direction of the rotating shaft of the impeller.

作用 羽根車を組付ける際、軸受が弾性変形して回転軸を破損
すること<r <、軸受と回転軸との隙間を羽根車が安
定かつスムーズに回転するのに必要な微少な隙間となる
、J、う容易に調整できる。
When assembling the working impeller, the bearing will elastically deform and damage the rotating shaft<r<, the gap between the bearing and the rotating shaft will be the minute gap necessary for the impeller to rotate stably and smoothly. , J, can be easily adjusted.

実施例 ii図に本発明になるタニどン式流matの一実施例を
示す。第1図中、タービン式流量計1の流石計本体2は
その軸心を上下方向へ一致さけて、ガス等の被測流体が
給送される配管途中に配設される。なお、流体は図中矢
印で示す如く、給送される。
Embodiment II Figure 2 shows an embodiment of the Tanidon style mat according to the present invention. In FIG. 1, a flowmeter body 2 of a turbine type flowmeter 1 is arranged in the middle of a pipe through which a fluid to be measured such as gas is fed, with its axes aligned in the vertical direction. Note that the fluid is fed as indicated by arrows in the figure.

3は1−流側コーンで、流最計本体2の流路2a内に下
方よりトF人された支持部材4の中央孔4aにロッド5
を仲通し、f1ツド5のネジ部5aに螺合するナツト6
の締付けにより固定される。又、7は下流側コーンで、
流路2a内に−L方より挿入された支持部材8の中央孔
8aにロッド9を峰通し、0ツド9のネジ部9aに螺合
するナツト1゜により締付は固定される。
Reference numeral 3 denotes a cone on the flow side, and a rod 5 is inserted into the center hole 4a of the support member 4 inserted from below into the flow path 2a of the flow meter main body 2.
A nut 6 is screwed into the threaded portion 5a of the f1 screw 5.
It is fixed by tightening. Also, 7 is the downstream cone,
The rod 9 is passed through the center hole 8a of the support member 8 inserted from the -L direction into the flow path 2a, and tightened by a nut 1° screwed into the threaded portion 9a of the bolt 9.

上流側コーン3と下流側コーン7との聞には外周に複数
の羽111aを有りる羽根車11が介在している。12
は羽根中11の回転軸で、ハブ中央孔11bに挿通され
ている。尚、回転軸12の両端部12a、12bは円錐
形状に形成されている。
An impeller 11 having a plurality of blades 111a on its outer periphery is interposed between the upstream cone 3 and the downstream cone 7. 12
is a rotating shaft of the blade middle 11, which is inserted into the hub center hole 11b. Note that both ends 12a and 12b of the rotating shaft 12 are formed into a conical shape.

上流鋼コーン3及び下流鋼コーン7の羽根車11に相対
向する面の軸心には、所定深さの軸受孔3a、7’aが
形成されており、この軸受孔3a。
Bearing holes 3a and 7'a of a predetermined depth are formed at the axes of the surfaces of the upstream steel cone 3 and the downstream steel cone 7 that face the impeller 11, and the bearing holes 3a.

7aには羽根車11の回転軸12を軸承するピボット軸
受13.14及び潤滑油の油溜め部15゜するが設けで
ある。
7a is provided with a pivot bearing 13, 14 for bearing the rotating shaft 12 of the impeller 11, and a lubricating oil reservoir portion extending 15 degrees.

尚、ピボット軸受13と14及び油溜め部15とすると
は夫々同一構成であるので、上流側のピボット軸受13
及び油溜め部15について第2図を併せ参照して説明し
、下流側のピボット軸受14及q2[1IWIめ部する
の説明は省略する。
Note that the pivot bearings 13 and 14 and the oil reservoir 15 have the same configuration, so the upstream pivot bearing 13
The oil reservoir portion 15 will be explained with reference to FIG. 2, and the description of the downstream pivot bearing 14 and the oil reservoir portion 15 will be omitted.

第2図中、ピボット軸受13は後述するように例えばバ
ネ用ステンレス鋼の金属板により円板状に形成されてい
る。ピボット軸受13は回転軸12の端部12aが摺接
する軸受部13aと、その外側の鍔部13bとよりなる
。軸受部13aは半球形状の凹部であり、その!!1部
中央で回転軸12を軸承する。
In FIG. 2, the pivot bearing 13 is formed into a disk shape, for example, by a stainless steel metal plate for a spring, as will be described later. The pivot bearing 13 consists of a bearing part 13a on which the end part 12a of the rotating shaft 12 slides, and a flange part 13b outside the bearing part 13a. The bearing portion 13a is a hemispherical recess, and the! ! A rotating shaft 12 is supported at the center of one part.

ピボット軸受13は外周側の鍔部13bを軸受孔3aの
開[1部3bに設C)られた段部3Cに当接させ、開口
?j53bに1人された環状の押え部材17により押圧
保持されている。この押え部材17は軸受1113 b
より外側の鍔部13bに当接する。そのため、押え部材
17にJ、りその周縁部分を軸受孔3a内に保持された
ピボット軸受13は板バネ状に形成されるとともに、軸
り向に弾性変形しうるように保持されている。
The pivot bearing 13 is configured by bringing the outer periphery side flange 13b into contact with the step 3C provided in the opening of the bearing hole 3a [C provided in the first part 3b]. It is pressed and held by an annular holding member 17 provided at j53b. This holding member 17 is a bearing 1113 b
It comes into contact with the outer flange 13b. Therefore, the pivot bearing 13 whose peripheral edge portion is held in the bearing hole 3a by the presser member 17 is formed in the shape of a leaf spring and is held so as to be elastically deformable in the axial direction.

従って、ごポット軸受13は軸方向の押Fil jJが
nmしたとき、即ち回転軸12が当接したときにはその
抑圧方向に1比むことがさる。
Therefore, when the axial push Fil jJ reaches nm, that is, when the rotary shaft 12 comes into contact with the pot bearing 13, the force is increased by 1 in the suppression direction.

又、ピボット軸受13には軸方向に沿うよう形成され軸
受tj513aと油溜め部15とを連通する連通孔13
cが2個所に穿設されている。この連通孔13cは孔径
が極めて微小な小孔であり、一端が回転軸12の端部1
2aが摺接する軸受部13aの凹部中央よりで開口し、
他端が油溜め部15に開口する。
Further, the pivot bearing 13 has a communication hole 13 formed along the axial direction and communicating the bearing tj513a and the oil reservoir part 15.
C is drilled in two places. This communication hole 13c is a small hole with an extremely small hole diameter, and one end is connected to the end 1 of the rotating shaft 12.
It opens at the center of the recess of the bearing part 13a that the bearing part 2a slides into,
The other end opens into the oil reservoir section 15.

上記ピボット軸13はプレス加1−技術により容易に作
り出りことかできる。その製造工程を第3図、第4図に
示す。即ち、第3図(A)、(B)に示す如く、まず、
薄板状の金属板(例えばバネ用ステンレス鋼鉄)を打ち
汰いて円板13′を得る。次いで、円板13′の中央近
傍に2個の小孔13C′を穿設する。この小孔13C′
は前述の連通孔13cを形成するものであり、例えばエ
ツチング加工等により穿設される。
The pivot shaft 13 can be easily produced by pressing technology. The manufacturing process is shown in FIGS. 3 and 4. That is, as shown in FIGS. 3(A) and (B), first,
A disk 13' is obtained by punching a thin metal plate (for example, stainless steel for a spring). Next, two small holes 13C' are bored near the center of the disc 13'. This small hole 13C'
The above-mentioned communication hole 13c is formed by, for example, etching.

このエツチング加工によれば、例えば0.05゜の厚さ
を有する円板13′に直径0.05J11の小孔13C
′を穿設するのが有効である。尚、小孔13C′の加工
方法としては、上記以外に−b、放電加二[、レーザー
加工、プレス加工等の方法もある。
According to this etching process, for example, a small hole 13C with a diameter of 0.05J11 is formed in a disk 13' having a thickness of 0.05°.
′ is effective. In addition to the above methods, methods for forming the small holes 13C' include methods such as -b, electric discharge machining, laser machining, and press machining.

次に、第4図(A)、(B)に示す如く、円板13′の
中央部を半球状に絞り加工して軸受13が完成する。従
って、ピボット軸受13は宝石又はセラミックス等によ
り製造される場合よりも、少ない工程数で容易に、しか
ら安価に製作される。
Next, as shown in FIGS. 4A and 4B, the center portion of the disc 13' is drawn into a hemispherical shape to complete the bearing 13. Therefore, the pivot bearing 13 can be easily manufactured with fewer steps and at a lower cost than when it is manufactured from jewelry, ceramics, or the like.

又、軸受孔3aの奥部に′は蓄油体18が嵌入しており
、蓄油体18とピボット軸受13との間には潤滑油が貯
溜される油溜め室19が形成される。
Further, an oil storage body 18 is fitted into the inner part of the bearing hole 3a, and an oil reservoir chamber 19 in which lubricating oil is stored is formed between the oil storage body 18 and the pivot bearing 13.

即ち、油溜め部15は上記蓄油体18と、油溜め室19
とよりなる。
That is, the oil reservoir portion 15 is connected to the oil storage body 18 and the oil reservoir chamber 19.
It becomes more.

蓄油体18は、ピボット軸受13の連通孔13cよりも
大径な複数の中空部18aを右してJ3す、この中空部
18a内には潤滑油が充填されている。
The oil storage body 18 has a plurality of hollow portions 18a having a diameter larger than the communication hole 13c of the pivot bearing 13, and the hollow portions 18a are filled with lubricating oil.

ここで、回転軸12の端部12aが軸受部13aに接す
ると、油溜め室19及び中空部18a内に満たされた!
?Iff)油は、連通孔13c内の毛管現象によりピボ
ットイー受13の軸受部13aに少ωずつ供給される。
Here, when the end portion 12a of the rotating shaft 12 comes into contact with the bearing portion 13a, the oil reservoir chamber 19 and the hollow portion 18a are filled!
? If) Oil is supplied little by little to the bearing portion 13a of the pivot E receiver 13 due to capillary action within the communication hole 13c.

11ち、第2図に示すように、軸受部13a。11. As shown in FIG. 2, a bearing portion 13a.

14aの中央部にはわ滑油の表面張力と、中空部18a
の開放端の表面張ノ」及び中空部18 aの間口端の水
頭と釣り合う大きざの潤滑油のメニスカス20が形成さ
れる。そのため、回転軸12のピボット軸受13.”I
nに対する摺接tttb″Lが極めて小さくなり、羽根
車11は流h1に応じて円滑かつ安定に回転する。又、
回転軸12の端部12a。
The surface tension of the wax oil in the center of 14a and the hollow part 18a
A meniscus 20 of lubricating oil is formed with a size that balances the surface tension at the open end of the hollow portion 18a and the water head at the front end of the hollow portion 18a. Therefore, the pivot bearing 13 of the rotating shaft 12. “I
The sliding contact tttb''L with respect to n becomes extremely small, and the impeller 11 rotates smoothly and stably in accordance with the flow h1.
End portion 12a of rotating shaft 12.

12b及び軸受部13a、14aの摩耗が減少し、耐久
性が向上する。
12b and bearing parts 13a and 14a is reduced, and durability is improved.

尚、軸受部13a、14aの潤滑油が揮発して減少して
も、弯小な連通孔13c、14Gの毛管現象により潤滑
油が適固ずつ供給されるため、潤消辿のメニスカス20
は常に連通孔13c、14cの内径と中空部18aの内
径とによって定まる所定の大きさを保つ。従?て、軸受
部13at−1lフ滑不犀が生ずることがなく、又rr
JW1油が過剰に供給されることもない。
Even if the lubricating oil in the bearings 13a and 14a evaporates and decreases, the lubricating oil is supplied in an appropriate amount due to the capillary action of the small curved communication holes 13c and 14G, so that the meniscus 20 of the lubrication trace
always maintains a predetermined size determined by the inner diameters of the communicating holes 13c and 14c and the inner diameter of the hollow portion 18a. Follow? Therefore, no slippage occurs on the bearing parts 13at-1l, and rr
JW1 oil is not supplied in excess.

再び第1図に戻って説明するに、21はピックアップと
しての磁気センサで、上流側コーン3に埋設されている
。22はマグネットで、磁気センサ21に対向するよう
ロータハブ11cに取r;Iけられている。したがって
、流路2a内を流れる流体の流量は、磁気センサ21に
より流出に応じて回転する羽根車11のマグネット22
を磁気的に検出することにより計測される。
Referring again to FIG. 1, a magnetic sensor 21 serving as a pickup is embedded in the upstream cone 3. A magnet 22 is attached to the rotor hub 11c so as to face the magnetic sensor 21. Therefore, the flow rate of the fluid flowing in the flow path 2a is determined by the magnetic sensor 21, which is detected by the magnet 22 of the impeller 11, which rotates in accordance with the outflow.
It is measured by detecting magnetically.

ここで、上記構成になるタービン式流量計1の組付工程
につき説明する。
Here, the assembly process of the turbine flowmeter 1 having the above configuration will be explained.

第1図に示す如く、タービン式流量計1は上記の如く羽
根中11を上流側」−ン3と、下流側−’J−ン7との
間で回転目(rに支承してなる。そして羽根車11が紺
付けられる際は、まず上流側コーン3が支持部材4を介
して流路2a内に流量計本体2の下方より組(JIJら
れる。支持部材4μ流路2a内の段部2bに嵌合保持さ
れる。次に1回転軸12を有する羽根車11が十りから
流路2a内に挿入される。その際、回転軸12の下りの
端部12aはピボット軸13の軸受部13aに当接する
As shown in FIG. 1, the turbine-type flowmeter 1 has the blade 11 supported in a rotation direction (r) between the upstream side 3 and the downstream side 7 as described above. When the impeller 11 is attached, first the upstream cone 3 is assembled (JIJ) from below the flow meter main body 2 into the flow path 2a via the support member 4. Next, the impeller 11 having one rotation shaft 12 is inserted into the flow path 2a from the end. It comes into contact with the portion 13a.

その後、下流側」−ン7が支ト1部448とともに流路
2aに挿入され、支持部材8は流路2の段部2Cに嵌合
し保持される。尚、羽根車11の羽根11aの先端が流
路2aの内壁に接触しないように、羽根車11と流路2
aとの間にはクリアランスが設けられている。そのため
、羽根車11を組付ける際は、羽根車11自体が上2ク
リアランスの分だtJaRff12a内で傾くことがあ
る。
Thereafter, the downstream side tube 7 is inserted into the flow path 2a together with the support member 1 448, and the support member 8 is fitted into and held by the stepped portion 2C of the flow path 2. Note that the impeller 11 and the flow path 2 are connected so that the tips of the blades 11a of the impeller 11 do not come into contact with the inner wall of the flow path 2a.
A clearance is provided between a and a. Therefore, when assembling the impeller 11, the impeller 11 itself may tilt within the upper two clearances tJaRff12a.

しかしながら、上記組付部回転軸12の下方の端部12
bは環状に形成された押え部材17のL1通孔17a内
に嵌入するため、貫通孔17Hの内壁にカイトされて確
実にピボット軸受14の軸受部14に当接する。
However, the lower end 12 of the assembly rotation shaft 12
Since b is fitted into the L1 through hole 17a of the annularly formed presser member 17, it is fitted onto the inner wall of the through hole 17H and reliably abuts against the bearing portion 14 of the pivot bearing 14.

又、上記タービン式流量計1においては羽根車11が微
少流量域でも回転し、且つ高流量域でも偏よることなく
スムーズに回転するには、回転軸12a、12bと軸受
部13a、14aとの隙間が極めて重要である。この間
隔は4〜6μ−程度の適正範囲にする必要がある。しか
るに、この組付精度を得るには、回転軸12の全長の加
工精度。
In addition, in the turbine flowmeter 1, in order for the impeller 11 to rotate even in a small flow rate range and to rotate smoothly without deviation even in a high flow rate range, the rotation shafts 12a, 12b and the bearing parts 13a, 14a must be connected to each other. Clearance is extremely important. This interval needs to be in a proper range of about 4 to 6 microns. However, in order to obtain this assembly accuracy, the entire length of the rotating shaft 12 must be processed accurately.

ピボット軸受13.14の位置即ち上、下流側コーン3
.7の位n及び軸受部13a、14aの球面加工精度等
をサブミグ0ン以下に管理する必要があるが、実際には
これら各部の寸払粕度を高精度に保つことは困難である
Pivot bearing 13.14 position, i.e. upper, downstream cone 3
.. Although it is necessary to control the spherical machining accuracy of the 7's n and the bearing parts 13a and 14a to sub-migration 0 or less, it is actually difficult to maintain high accuracy in the grain removal of these parts.

そこで、組付■稈においては、流路2aに空気をテスト
用のガスとして流しながら上、下流側コーン3,7の位
置を調整する。即ち、上、下流側コーン3,7のOラド
5.9は夫々支持部材4゜8の中央孔4a、8aに嵌合
しているのでナツト6.10の締付は具合により軸方向
の位置が調整される。
Therefore, in the assembly (1), the positions of the upper and downstream cones 3 and 7 are adjusted while flowing air as a test gas through the flow path 2a. That is, since the O-rads 5.9 of the upper and downstream cones 3 and 7 are fitted into the central holes 4a and 8a of the support member 4°8, respectively, the nuts 6.10 can be tightened depending on the axial position. is adjusted.

ここで、ピボット軸受13.14が従来のように宝石又
はセラミックにより形成されている場合、上記調整時に
回転軸12と軸受部13a、14bとの隙間が適正以下
に調整されると、回転軸12の両端部12a、12bが
軸受部13a、14aに押圧される。
Here, if the pivot bearings 13, 14 are made of gemstones or ceramics as in the past, if the clearance between the rotating shaft 12 and the bearing parts 13a, 14b is adjusted below the appropriate level during the above adjustment, the rotating shaft 13. Both ends 12a, 12b of are pressed against bearings 13a, 14a.

この場合、従来の軸受では硬度が高く、しかも押J]−
力が強いため、回転軸12の両端は破1(4シやすかっ
た。
In this case, conventional bearings have high hardness, and
Due to the strong force, both ends of the rotating shaft 12 were easily damaged.

しかしながら、本発明ではピボット軸受13゜14が板
バネの如く弾性変形できるので、回転軸12とピボット
軸受13.14との隙間を調整する際、回転軸12の両
JWrA12a、 12bが軸受部13a、14aに押
圧されてもピボット軸受13.14自体がその弾性範囲
内で叩圧り向に撓むことができ、これにより回転軸12
の破開は防止される。尚、上記調整作業は流路2a内に
空気を流しているため、回転軸12がピボット軸受13
.14に当接した際は羽根車11が回転しなくなるので
、回転軸12の両端部12a、12bが軸受部13a、
14aに当接したことは容易に判断される。
However, in the present invention, since the pivot bearings 13 and 14 can be elastically deformed like leaf springs, when adjusting the gap between the rotating shaft 12 and the pivot bearings 13 and 14, both JWrA 12a and 12b of the rotating shaft 12 are Even when pressed by the pivot bearing 14a, the pivot bearing 13.14 itself can flex in the direction of the impact within its elastic range, and as a result, the rotation shaft 12
rupture is prevented. In addition, since the above adjustment work involves flowing air into the flow path 2a, the rotating shaft 12 is connected to the pivot bearing 13.
.. 14, the impeller 11 stops rotating, so both ends 12a, 12b of the rotating shaft 12 are connected to the bearing portion 13a,
It is easily determined that the contact point 14a has come into contact with the contact point 14a.

従って、羽根1i11の回転が止った後は、土。Therefore, after the rotation of the blades 1i11 stops, it becomes soil.

上流側コーン3.7のいずれか一方を離間方向にずらし
て、羽根車11がスムーズに回転する位置まで再調整す
れば良い。
What is necessary is to shift either one of the upstream cones 3.7 in the separating direction and readjust it to a position where the impeller 11 rotates smoothly.

これにより、回転@12の両端部12a、12bと軸受
部13a、14aとの隙間が最小限に調整され、羽根車
11は微少流量域から高流量域までスムーズに4転する
ことができる。
As a result, the gaps between the opposite ends 12a, 12b of the rotation @12 and the bearing parts 13a, 14a are adjusted to the minimum, and the impeller 11 can smoothly rotate four times from a small flow rate range to a high flow rate range.

従って、従来の宝石又はセラミック製の軸受を使用する
場合よりも、調整作業が容易であり、紺IJ作業工程を
より短時間で行なうことができる。
Therefore, the adjustment work is easier and the navy blue IJ work process can be completed in a shorter time than when using conventional jewel or ceramic bearings.

尚、上記実施例ではピボット軸受の素材としてバネ用ス
テンレス鋼を用いたが、これに限らず、羽根車の回転軸
を支承するのに必要な弾性及び強度を看していれば他の
金属板を用いても良い。
In the above embodiment, spring stainless steel was used as the material for the pivot bearing, but the material is not limited to this, and other metal plates may be used as long as they have the elasticity and strength necessary to support the rotation shaft of the impeller. You may also use

発明の効果 上述の如く、本発明になるタービン式流!t) BHに
よれば、ピボット軸受が軸方向に弾性変形可能なため、
組付1程においては回転軸の端部が軸受部に当接した際
破M4することを防11゛でき、しから回転軸の両端部
とピボット軸受の軸受部との隙間を羽根中が微少流量域
から高流量域まで安全■1つスムーズに回転するのに必
要な最小限の適任碩に容易に調整することができる。従
って、ii’l測感度全感度さμ、流量計測を1[確に
t−iなえるとともに、組(4’ I秤部の調整1侍間
の短縮化に五り相イ・1能率を高めることもできる。ざ
らに、ピボット軸受は薄板状の金属板により容易に製作
することが川面なため、従来のピボット軸受よりも手間
がかからず容易に加工でき、製造コストを安価にでさ゛
る秀の特長をhする。
Effects of the Invention As mentioned above, the turbine flow according to the present invention! t) According to BH, since the pivot bearing is elastically deformable in the axial direction,
During the first stage of assembly, it is possible to prevent M4 damage when the end of the rotating shaft comes into contact with the bearing, and the gap between both ends of the rotating shaft and the bearing of the pivot bearing can be minimized within the blade. From the flow rate range to the high flow rate range, it can be easily adjusted to the minimum suitable level required for safe and smooth rotation. Therefore, ii'l measurement sensitivity total sensitivity μ, flow rate measurement 1[ti Furthermore, since pivot bearings can be easily manufactured from thin metal plates, they can be processed more easily and with less effort than conventional pivot bearings, making them an excellent product that reduces manufacturing costs. Highlight the features of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になるタービン式流ttV+の一実t^
例の縦断面図、第2図tよ本立11の要部を説+11J
するための縦断面図、第3図(A>、(8)及び第4図
(A>、(B)は夫々ピボット軸受を製作する際の工程
を説明するための工程図である。 1・・・タービン式流fE1 it、2・−・流n;計
木休体2a・・・流路、3・・・上流側コーン、7・・
・下流側コーン、11・・・羽根車、12・・・回転軸
、13.14・・−ピボット軸受、13a、l4a−・
・軸受部、13b。 14b・・・鍔部、13G、14G・・・小孔、15゜
する・・・油溜部、17・・・押え部材、18・・・浩
油体、19・・・油溜め窄。 特許出願人  ト キ 」 株式会社 同      弁理士  松  浦  兼  tr  
、 ’、’、  ”、’。 ′m1.i−ニリ 第1図 1 タービン式流量計 第2図 回転軸
Figure 1 shows one example of the turbine type flow ttV+ according to the present invention t^
Example longitudinal sectional view, Figure 2 t shows the main parts of main stand 11 +11J
3 (A>, (8)) and FIG. 4 (A>, (B)) are process diagrams for explaining the steps in manufacturing the pivot bearing. 1.・・Turbine type flow fE1 it, 2・・・Flow n; Planning tree rest body 2a・・Flow path, 3・・Upstream cone, 7・・・
・Downstream cone, 11... Impeller, 12... Rotating shaft, 13.14...-Pivot bearing, 13a, l4a--
- Bearing part, 13b. 14b... Flange portion, 13G, 14G... Small hole, 15° angle... Oil sump portion, 17... Holding member, 18... Hollow oil body, 19... Oil sump narrow. Patent Applicant Toki” Patent Attorney Kanetr Matsuura
, ', ', ``, '. 'm1.i-Niri Fig. 1 Turbine flow meter Fig. 2 Rotating shaft

Claims (1)

【特許請求の範囲】[Claims] 被測流体の流量に応じて回転する羽根車と、該羽根車と
ともに回転する回転軸と、該回転軸の端部を一側に摺接
させて前記回転軸を軸承する軸受とを有してなるタービ
ン式流量計において、前記軸受は、薄板状に形成される
とともに、前記回転軸の軸方向に弾性変形可能に保持さ
れてなることを特徴とするタービン式流量計。
It has an impeller that rotates according to the flow rate of the fluid to be measured, a rotating shaft that rotates together with the impeller, and a bearing that supports the rotating shaft by sliding an end of the rotating shaft on one side. A turbine flowmeter characterized in that the bearing is formed in a thin plate shape and is held so as to be elastically deformable in the axial direction of the rotating shaft.
JP12600389A 1989-05-19 1989-05-19 Turbine type flowmeter Pending JPH02306115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12600389A JPH02306115A (en) 1989-05-19 1989-05-19 Turbine type flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12600389A JPH02306115A (en) 1989-05-19 1989-05-19 Turbine type flowmeter

Publications (1)

Publication Number Publication Date
JPH02306115A true JPH02306115A (en) 1990-12-19

Family

ID=14924323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12600389A Pending JPH02306115A (en) 1989-05-19 1989-05-19 Turbine type flowmeter

Country Status (1)

Country Link
JP (1) JPH02306115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422576B1 (en) * 2001-10-09 2004-03-11 한국과학기술연구원 High accuracy turbine flowmeter using magnetic bearing
JP2006047164A (en) * 2004-08-06 2006-02-16 Kiyota Seisakusho:Kk Clip member
WO2012050256A1 (en) * 2010-10-12 2012-04-19 ㈜하이트롤 Wafer-type venturi cone meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422576B1 (en) * 2001-10-09 2004-03-11 한국과학기술연구원 High accuracy turbine flowmeter using magnetic bearing
JP2006047164A (en) * 2004-08-06 2006-02-16 Kiyota Seisakusho:Kk Clip member
WO2012050256A1 (en) * 2010-10-12 2012-04-19 ㈜하이트롤 Wafer-type venturi cone meter
GB2499536A (en) * 2010-10-12 2013-08-21 Hitrol Co Ltd Wafer-type venturi cone meter
AU2010362293B2 (en) * 2010-10-12 2015-01-29 Hitrol Co., Ltd. Wafer-type venturi cone meter
GB2499536B (en) * 2010-10-12 2018-03-14 Hitrol Co Ltd Wafer-type venturi cone meter

Similar Documents

Publication Publication Date Title
CN102738942B (en) Motor and disk drive device
US4528864A (en) Universal joint flexure hinge suspension system and method for manufacturing this system
JP3043294B2 (en) Conical fluid bearing, head drum having the same, and spindle motor
EP3327243A1 (en) Superhard bearing elements and bearing apparatuses including same
JPH0641779B2 (en) Equipment for balancing rotating parts
JPS62220716A (en) Gas bearing and manufacture thereof
JPH02306115A (en) Turbine type flowmeter
US5783753A (en) Vane anemometer having a modular impeller assembly
US6530143B1 (en) Apparatus for setting gaps in hydrodynamic bearing
JP2004132705A (en) Inspection method and inspecting apparatus of fluid bearing
US4380108A (en) Universal joint flexure hinge suspension system, and method for manufacturing this system
US6290397B1 (en) Ooze flow bearing
JP2005342878A (en) Grinding wheel spindle using air bearing
JPH051783Y2 (en)
Dörgeloh et al. Microfluidic balancing concepts for ultraprecision high speed applications
US3127761A (en) Bearing radial load torque test instrument
JPH04204326A (en) Turbine type flow meter
FR2650352A1 (en)
US2219406A (en) Fluid gauge nozzle
Salem et al. An experimental investigation into the performance of externally pressurized rectangular air bearings
FR2461928A1 (en) Flowmeter for severed temp. and pressure conditions - uses rotation of turbine shaft mounted via cages of roller bearings
US11635108B2 (en) Flex pad bearing pad configuration
JPH08318405A (en) Highly accurate revolution center
JPS62215826A (en) Manufacture of rotary shaft for turbine type flowmeter
Smoot et al. Calibration and maintenance of vertical-axis type current meters