JPH02305986A - Plural-electrode electrolytic cell - Google Patents

Plural-electrode electrolytic cell

Info

Publication number
JPH02305986A
JPH02305986A JP1128532A JP12853289A JPH02305986A JP H02305986 A JPH02305986 A JP H02305986A JP 1128532 A JP1128532 A JP 1128532A JP 12853289 A JP12853289 A JP 12853289A JP H02305986 A JPH02305986 A JP H02305986A
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolytic cell
electrolysis
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1128532A
Other languages
Japanese (ja)
Other versions
JP2832221B2 (en
Inventor
Yoshiyuki Makita
蒔田 善之
Hiromi Kubo
久保 博海
Shigeki Takekoshi
竹腰 滋喜
Yuji Kawakami
川上 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIOKA KOGYO KK
Original Assignee
KAMIOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIOKA KOGYO KK filed Critical KAMIOKA KOGYO KK
Priority to JP1128532A priority Critical patent/JP2832221B2/en
Publication of JPH02305986A publication Critical patent/JPH02305986A/en
Application granted granted Critical
Publication of JP2832221B2 publication Critical patent/JP2832221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To increase the surface of an electrode contributing to electrolysis and to make electrolysis efficient by arranging plural electrode structures each contg. a fibrous carbon cathode and an anode connected to the cathode so that both anodes are opposed to each other through an insulating part. CONSTITUTION:The electrode structure 6 in which a plate-shaped anode 4 consisting of Ti, etc., coated with lead dioxide, a noble metal oxide, and a plate-shaped cathode 5 of fibrous carbon are joined is laminated through a meshy insulator 7 except both left and right ends in a box-type electrolytic cell main body 1. Only the anode 4 is arranged on the left end in the main body 1, and a current is supplied to the anode and led to the outside of the cell from the cathode 5 at the right end through the structure 6. When a dil. metal soln. is supplied to the main body 1 from a liq. supply port 2, oxygen is generated on the anode 4 by the electrolysis of water in the soln., hydrogen is generated on the cathode 5, and the metal is deposited. In this case, since the surface area of the cathode is large and the metal is deposited on almost the entire surface, the current efficiency is increased, and the metal is continuously deposited for a long time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、廃液処理、金属回収、不純物分解又は除去、
食塩電解、水電解、有機電解等の各種電解反応に使用で
きる複極式電解槽に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to waste liquid treatment, metal recovery, impurity decomposition or removal,
This invention relates to a bipolar electrolytic cell that can be used for various electrolytic reactions such as salt electrolysis, water electrolysis, and organic electrolysis.

(従来技術とその問題点) 従来から食塩電解による苛性ソーダの生成や水電解によ
る酸素及び水素の発生等の通常の電解反応をはじめとし
て、めっき廃液の処理及び該廃液からの貴金属等の回収
のように広汎に電解が使用されている。例えば廃液処理
を電解以外の方法で行う場合は、該廃液が一般に粘度が
高く取り扱い難い廃有機物を含有するため、通常の処理
操作を行い難く前記廃有機物を分解できずそのまま廃棄
することが多くなっている。しかしながら、電解を使用
して該廃液処理を行う場合には、該廃液を電解槽に導(
のみで電極表面で前記有機物の分解が生じて、無害なガ
スや水等に分解することができる。
(Prior art and its problems) Conventionally, conventional electrolytic reactions such as generation of caustic soda by salt electrolysis and generation of oxygen and hydrogen by water electrolysis, treatment of plating waste liquid and recovery of precious metals etc. from the waste liquid have been used. Electrolysis is widely used in For example, when waste liquid treatment is performed by a method other than electrolysis, the waste liquid generally contains waste organic matter that is highly viscous and difficult to handle, making it difficult to perform normal treatment operations and often resulting in the waste organic matter being unable to be decomposed and being disposed of as is. ing. However, when treating the waste liquid using electrolysis, the waste liquid is not introduced into the electrolytic tank (
The decomposition of the organic matter occurs on the electrode surface by just using the electrode, and it can be decomposed into harmless gas, water, and the like.

有機反応を生じさせて有機化合物を他の化合物に変換さ
せる場合に使用される有機電解では、有機反応でほぼネ
可避的に生ずる副反応をほぼ完全に抑制し目的とする化
合物を高い収率及び選択率で得ることができる。更に前
述の食塩電解や水電解においても同様に高収率で目的物
質を得ることができる。
Organic electrolysis, which is used to generate organic reactions and convert organic compounds into other compounds, almost completely suppresses the side reactions that occur almost inevitably in organic reactions, and produces the desired compounds in high yields. and selectivity. Furthermore, the target substance can be similarly obtained in high yield in the aforementioned salt electrolysis and water electrolysis.

このように電解反応は一般の有機及び無機反応に比較し
て利点が多いため工業的に広く利用されているが、電解
による目的物質製造コストの大部分を占める電力コスト
を低減するために従来から種々の技術が提案されている
As described above, electrolytic reactions have many advantages compared to general organic and inorganic reactions, and are therefore widely used industrially. Various techniques have been proposed.

その−例として、電極として多孔質電極を使用方法があ
り、該方法によると、電極の表面積が大きくなり広い面
積で電解液と接触して電解反応速度が上昇することが知
られている。しかし例えば多孔質の炭素板を電極として
使用して電解を行うと、実際に電極反応が生ずるのは対
極側に面した平面部分のみで電解に寄与する面積の増加
には結びついていない。
For example, there is a method of using a porous electrode as an electrode, and it is known that this method increases the surface area of the electrode and contacts the electrolytic solution over a wide area, thereby increasing the rate of electrolytic reaction. However, when electrolysis is carried out using, for example, a porous carbon plate as an electrode, the electrode reaction actually occurs only on the flat surface facing the counter electrode, and the area contributing to electrolysis does not increase.

更に若干量の不純物金属を含有する金属溶液から該不純
物金属を除去して精製を行うには、従来は試薬゛を添加
して前記不純物金属を沈澱させて除去するようにしてい
るが、該精製に使用する試薬コストが高価になり、より
効率的で経済的な精製方法が要請され、該要請に応える
方法として電解技術が提案され、該電解においても上述
の通り電力コストの低減が要請されている。
Furthermore, in order to perform purification by removing impurity metals from a metal solution containing a small amount of impurity metals, conventionally, a reagent is added to precipitate and remove the impurity metals. As the cost of reagents used for purification has become expensive, a more efficient and economical purification method is required, and electrolysis technology has been proposed as a method to meet this demand, and as mentioned above, there is also a need to reduce electricity costs in electrolysis. There is.

(発明の目的) 本発明は、電解反応に寄与する電極表面の表面積を増加
させた電極を使用して効率良く電解反応を生じさせるこ
とのできる複極式電解槽を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a bipolar electrolytic cell that can efficiently cause an electrolytic reaction by using an electrode with an increased surface area of the electrode surface that contributes to the electrolytic reaction. .

(問題点を解決するための手段) 本発明は、第1に繊維状炭素陰極及び該陰極に接続され
た陽極を含んで成る複数の電極構造体を絶縁部を介して
陽陰両極が対向するように配置したことを特徴とする複
極式電解槽であり、第2に該第1の発明の電解槽を横方
向に配置しかつ電極構造体を電解液の進行方向に対して
垂直に隙間なく配置させ、該電解液を強制的に前記電極
構造体を通過させ電解を行わせることを特徴とする複極
式電解槽であり、第3に隔膜を介して陽極室及び陰極室
に区画された単位電解槽を積層して成る複極式電解槽に
おいて、集電体に接続された繊維状炭素を陰極とするこ
とを特徴とする複極式電解槽である。
(Means for Solving the Problems) The present invention first provides a plurality of electrode structures each including a fibrous carbon cathode and an anode connected to the cathode, with the positive and negative electrodes facing each other through an insulating part. A bipolar electrolytic cell is characterized in that the electrolytic cell of the first invention is arranged in a horizontal direction, and the electrode structure is arranged in a gap perpendicular to the direction of movement of the electrolytic solution. It is a bipolar electrolytic cell characterized in that the electrolytic solution is forced to pass through the electrode structure to perform electrolysis; The present invention is a bipolar electrolytic cell formed by stacking unit electrolytic cells, characterized in that a fibrous carbon connected to a current collector serves as a cathode.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる複極式電解槽は、廃液処理、金属回収、
溶液中の不純物除去、シアン等の分解、食塩電解、水電
解、有機電解等の各種電解反応に使用することができる
The bipolar electrolytic cell according to the present invention can be used for waste liquid treatment, metal recovery,
It can be used for various electrolytic reactions such as removing impurities in solutions, decomposing cyanide, etc., salt electrolysis, water electrolysis, and organic electrolysis.

本発明は、陰極として繊維状炭素陰極を使用する。該繊
維状炭素陰極はそのまま使用しても、ピッチや樹脂を使
用して板状等に成形して使用してもよいが、最終的に繊
維が陰極物質として残存する必要がある。前述した通り
、多孔質炭素板等の通常の多孔質体を電極として電解を
行うと、電極自体は高表面積を有しても電極として有効
に機能する部分は対極に対向する面のみで実際には電解
面積の増加には繋がらない。
The present invention uses a fibrous carbon cathode as the cathode. The fibrous carbon cathode may be used as it is or may be formed into a plate shape using pitch or resin, but the fibers must ultimately remain as a cathode material. As mentioned above, when electrolysis is carried out using a normal porous material such as a porous carbon plate as an electrode, even though the electrode itself has a high surface area, the only part that effectively functions as an electrode is the one facing the counter electrode. does not lead to an increase in the electrolytic area.

これに対し繊維状炭素陰極を使用する本発明に係わる電
解槽では、理由は明確ではないが、繊維状炭素陰極の各
繊維のそれぞれのほぼ全面が電極反応を行い、その有効
電極面積の増加量は多大なものとなる。該効果は、繊維
状炭素の長さが十分に長く陰極内における電位勾配がな
く該陰極のどの部分でも電位が等しいため、電解反応が
前記陰極のどの部分でも生じ該陰極のほぼ全面が電極と
して機能するためと推測することができる。
On the other hand, in the electrolytic cell according to the present invention using a fibrous carbon cathode, although the reason is not clear, almost the entire surface of each fiber of the fibrous carbon cathode undergoes an electrode reaction, resulting in an increase in the effective electrode area. becomes enormous. This effect is due to the fact that the length of the fibrous carbon is long enough so that there is no potential gradient within the cathode and the potential is the same in every part of the cathode, so electrolytic reactions occur in any part of the cathode and almost the entire surface of the cathode acts as an electrode. It can be assumed that this is because it functions.

従ってその陰極電流密度は極小となり、これにより電流
効率が飛躍的に向上する。例えば廃液中の貴金属を電解
により電極上に電析させて回収する場合、該貴金属濃度
がlO〜1000mg/ It程度でありこれをIB/
j!以下にする際に従来の板状炭素電極を使用するとそ
の電流効率は1〜10%程度であるのに対し、本発明に
係わる繊維状炭素陰極を使用する複極式電解槽では、l
O〜30%程度に上昇する。
Therefore, the cathode current density becomes extremely small, thereby dramatically improving current efficiency. For example, when precious metals in waste liquid are recovered by electrolytically depositing them on electrodes, the concentration of the precious metals is about 10 to 1000 mg/It, and this is IB/It.
j! If a conventional plate-shaped carbon electrode is used in the following cases, the current efficiency is about 1 to 10%, whereas in the bipolar electrolytic cell using the fibrous carbon cathode according to the present invention, the current efficiency is about 1 to 10%.
It increases to about 0 to 30%.

本発明に使用する繊維状炭素は市販のものを使用すれば
よく、板状、フェルト状等の成形したものあるいは綿状
のものをそのまま使用することができる。
The fibrous carbon used in the present invention may be commercially available, and may be molded into a plate shape, felt shape, or the like, or a cotton-like carbon material may be used as is.

該繊維状炭素自体には電解電圧低減機能はないため、電
圧を減少させることにより消費電力の低減を図るために
は、パラジウム、ルテニウム、白金等の貴金属触媒を前
記繊維状炭素上に担持させる必要がある。これにより電
解電圧を低減させて電解反応を促進するとともに、前記
繊維状炭素陰極の寿命を延ばすことが可能になる。
Since the fibrous carbon itself does not have an electrolysis voltage reduction function, in order to reduce power consumption by reducing the voltage, it is necessary to support a noble metal catalyst such as palladium, ruthenium, or platinum on the fibrous carbon. There is. This makes it possible to reduce the electrolytic voltage and promote the electrolytic reaction, as well as to extend the life of the fibrous carbon cathode.

本発明に係わる電解槽に使用する陽極は特に限定されず
、貴金属酸化物電極、二酸化鉛電極、炭素電極等を用途
に応じて選択し、該陽極を前記陰極と接合するか、ある
いは一体成形された繊維状炭素のみを電極として使用し
、通電することにより分権させて陰陽両極として機能さ
せることができる0本発明ではこの後者の態様も陰陽両
極が電気的に接続されているという。
The anode used in the electrolytic cell according to the present invention is not particularly limited, and a noble metal oxide electrode, a lead dioxide electrode, a carbon electrode, etc. may be selected depending on the application, and the anode may be joined to the cathode or integrally formed. By using only fibrous carbon as an electrode, it can be decentralized by applying electricity to function as both negative and negative poles.In the present invention, this latter aspect is also said to have the negative and negative poles electrically connected.

該繊維状炭素陰極を複極タイプに接続して複極式電極槽
を構成するが、その接続構造は特に限定されない。例え
ば廃液処理、金属回収あるいは溶液中の不純物金属除去
等の電解では、陽極室と陰極室に区画する必要はないた
め隔壁が下歯になり、電解が生ずる対向する両極間の短
絡防止を確実に行うことのできる構造とすれば+()で
ある、なお両極室を区画しない構造において陽極反応と
して酸素が発生する場合にはこの酸素による繊維状炭素
の酸化を防止するため該繊維状炭素陰極に二酸化鉛、酸
化イリジウム、酸化白金等の補助材料を密着させること
が望ましく、陽極反応が塩素発生である場合には繊維状
炭素陰極単味での使用が可能である。なお、このタイプ
の複極式電解槽では、電極を縦方向に配置する縦型構造
だけでなく、電極を横方向に配置する横型構造も可能で
ある。後者の横型構造は、特に電解槽の電解液進行方向
の垂直方向全体に隙間なく電極を位置させ前記電解液を
前記電極内を強制的に通過させて電解を行わせる際に好
都合である。
The fibrous carbon cathodes are connected in a bipolar type to constitute a bipolar electrode cell, but the connection structure is not particularly limited. For example, in electrolysis for waste liquid treatment, metal recovery, or removal of impurity metals in solutions, there is no need to divide the anode and cathode chambers, so the partition wall becomes a lower tooth, ensuring the prevention of short circuits between the opposing electrodes where electrolysis occurs. The structure in which this can be carried out is +().In addition, if oxygen is generated as an anode reaction in a structure in which the bipolar chambers are not partitioned, in order to prevent the oxidation of the fibrous carbon by this oxygen, the fibrous carbon cathode is It is desirable to have an auxiliary material such as lead dioxide, iridium oxide, or platinum oxide in close contact with the cathode, and if the anode reaction is to generate chlorine, it is possible to use the fibrous carbon cathode alone. In this type of bipolar electrolytic cell, not only a vertical structure in which the electrodes are arranged vertically, but also a horizontal structure in which the electrodes are arranged in the horizontal direction are possible. The latter horizontal structure is particularly advantageous when electrolysis is performed by positioning the electrodes without gaps in the entire direction perpendicular to the direction in which the electrolytic solution travels in the electrolytic cell and forcing the electrolytic solution to pass through the electrodes.

又食塩電解等の電解反応では、陽極室と陰極室を区画し
て陽極生成物と陰極生成物を分離する必要がある。その
ためには従来通り食塩電解等ではイオン交換膜である隔
膜により、又水電解等では素焼板等のイオン交換機能を
有しない隔膜により両極室を区画することが好ましい。
Furthermore, in electrolytic reactions such as salt electrolysis, it is necessary to separate the anode and cathode products by partitioning the anode chamber and the cathode chamber. To this end, it is preferable to partition the bipolar chambers by a diaphragm which is an ion exchange membrane in salt electrolysis and the like, and by a diaphragm which does not have an ion exchange function such as a clay plate in water electrolysis, etc., as usual.

このタイプの電解槽では前記隔膜が存在するため陽極で
発生するガスが陰極に接触しないため前記補助材料の使
用は不要である。更にこの隔膜型電解槽では、前記繊維
状炭素陰極を陰極室全体に充填することが可能であり、
これにより該陰極が前記隔膜に接触していわゆるゼロギ
ャップタイプの電解が可能になり、電解電圧低減にも寄
与することができるとともに、より以上の電解面積の増
加を図ることができる。
In this type of electrolytic cell, the presence of the diaphragm prevents the gas generated at the anode from coming into contact with the cathode, so there is no need to use the auxiliary material. Furthermore, in this diaphragm type electrolytic cell, it is possible to fill the entire cathode chamber with the fibrous carbon cathode,
As a result, the cathode comes into contact with the diaphragm to enable so-called zero-gap type electrolysis, which can contribute to reducing the electrolysis voltage and further increase the electrolysis area.

次に添付図面に基づいて本発明に係わる複極式電解槽の
好ましい実施例を例示するが、本発明はこれらの電解槽
に限定されるものではない。
Next, preferred embodiments of the bipolar electrolytic cell according to the present invention will be illustrated based on the accompanying drawings, but the present invention is not limited to these electrolytic cells.

第1図は、本発明の複極式電解槽の一実施例を示す縦断
面図であり、廃液処理や金属回収等に使用して有効な電
解槽を示すものである。
FIG. 1 is a longitudinal sectional view showing an embodiment of a bipolar electrolytic cell according to the present invention, and shows an electrolytic cell that is effective for use in waste liquid treatment, metal recovery, etc.

lは、左右に給液口2と廃液口3を有する箱型の電解槽
本体で、該電解槽本体l内部には、二酸化鉛や貴金属酸
化物被覆チタン等の板状陽極4と前述の繊維状炭素を板
状に成形した陰極5とを接合させた電極構造体6が左右
両端を除いてメツシュ状の絶縁体7を介して積層されて
いる。前記本体!内の左端には、前記陽極4のみが配置
され、該陽極4に電流が供給され、前記複数の電極構造
体6を通って右端の陰極5から槽外へ導かれる。
1 is a box-shaped electrolytic cell main body having a liquid supply port 2 and a waste liquid port 3 on the left and right sides, and inside the electrolytic cell main body l, a plate-shaped anode 4 made of lead dioxide or noble metal oxide-coated titanium, etc., and the aforementioned fibers are placed inside the electrolytic cell main body l. An electrode structure 6, which is joined to a cathode 5 made of carbon shaped like a plate, is laminated with mesh-like insulators 7 interposed therebetween except at both left and right ends. Said main body! Only the anode 4 is disposed at the left end of the chamber, and a current is supplied to the anode 4 and led out of the tank from the cathode 5 at the right end through the plurality of electrode structures 6.

該電解槽本体1に前記給液口2から例えば希釈金属溶液
を供給すると、陽極4上では溶液中の水の電解による酸
素発生が生じ、一方陰極上では水電解による水素発生と
、溶液中の金属例えばパラジウムイオンの還元による金
属パラジウムの析出が起こる。
When, for example, a diluted metal solution is supplied to the electrolytic cell body 1 from the liquid supply port 2, oxygen is generated on the anode 4 due to the electrolysis of water in the solution, while on the cathode, hydrogen is generated due to water electrolysis and hydrogen is generated on the cathode. Precipitation of metallic palladium occurs by reduction of the metal, for example palladium ions.

この場合陰極1表面積が大きくかつそのほぼ全面に金属
析出が生ずるため、電流効率が増大し、しかも長時間に
亘り金属析出を継続することができる。
In this case, since the surface area of the cathode 1 is large and metal deposition occurs over almost the entire surface, current efficiency increases and metal deposition can be continued for a long time.

第2図は、本発明に係わる複極式電解槽の第2実施例を
示す縦断面図であり、食塩電解、水電解あるいは有機電
解等の電解槽を陽極室と陰極室に区画して行う電解に使
用することができる。
FIG. 2 is a longitudinal sectional view showing a second embodiment of the bipolar electrolytic cell according to the present invention, in which an electrolytic cell for salt electrolysis, water electrolysis, organic electrolysis, etc. is divided into an anode chamber and a cathode chamber. Can be used for electrolysis.

1)は、内部がイオン交換膜等の隔膜12により陽極室
13と陰極室14に区画された単位電解室で、該単位電
解室1)が左右方向に積層されて電解槽本体15が構成
されている。前記陽極室13には二酸化鉛や貴金属被覆
チタン等の陽極16が、又前記陰極室14には繊維状炭
素を板状に成形した陰極17が集電体18を介して配置
されている。各陽極室13の下面には電解液供給及び排
出用の導管19を介して陽極室用マニホールド20が接
続され、かつ各陰極室14の上面には電解液供給及び排
出用の導管21を介して陰極室用マニホールド22が接
続されている。
1) is a unit electrolytic chamber whose interior is divided into an anode chamber 13 and a cathode chamber 14 by a diaphragm 12 such as an ion exchange membrane, and the unit electrolytic chambers 1) are stacked in the left-right direction to form an electrolytic cell main body 15. ing. An anode 16 made of lead dioxide or titanium coated with a noble metal is disposed in the anode chamber 13, and a cathode 17 made of fibrous carbon formed into a plate shape is disposed in the cathode chamber 14 via a current collector 18. An anode chamber manifold 20 is connected to the bottom surface of each anode chamber 13 via a conduit 19 for supplying and discharging an electrolyte, and an anode chamber manifold 20 is connected to the top surface of each cathode chamber 14 via a conduit 21 for supplying and discharging an electrolyte. A cathode chamber manifold 22 is connected.

該電解槽本体15に前記陽極室用マニホールド20を通
して濃厚食塩水溶液を、又前記陰極室用マニホールド2
2を通して希釈苛性ソーダ水溶液を供給すると、陽極室
13では食塩中の塩素イオンの酸化による塩素ガス発生
が生じ、又陰極室14では水の電解による水素発生と前
記隔膜12を通して陽極室13から陰極室14へ浸透し
たナトリウムイオンが水酸イオンと結合して苛性ソーダ
が発生する。
A concentrated saline solution is passed through the anode chamber manifold 20 into the electrolytic cell body 15, and the cathode chamber manifold 2
When diluted caustic soda aqueous solution is supplied through 2, chlorine gas is generated in the anode chamber 13 by oxidation of chlorine ions in the salt, and hydrogen is generated in the cathode chamber 14 by electrolysis of water, and the gas is transferred from the anode chamber 13 to the cathode chamber 14 through the diaphragm 12. Sodium ions that have penetrated combine with hydroxide ions to generate caustic soda.

この場合も同様に陰極表面積が大きくかつそのほぼ全面
で電解が生ずるため、電流効率が増大する。
In this case as well, the cathode surface area is large and electrolysis occurs over almost the entire surface, so that the current efficiency increases.

第3図は、第1図の電解槽の変形例を示す縦断面図であ
り、電極構造体内を強制的に電解液を通過させて電解を
促進するタイプの電解槽として使用することができる。
FIG. 3 is a longitudinal cross-sectional view showing a modification of the electrolytic cell shown in FIG. 1, which can be used as an electrolytic cell of a type that promotes electrolysis by forcing an electrolytic solution to pass through the electrode structure.

31は、下面中央の給液口32、右上側面の取出口33
及び上面中央のガス排出口34を有する箱型の電解槽本
体で、該電解槽本体31内部には、上下両端を除いて、
二酸化鉛や貴金属酸化物被覆チタン等の板状陽極35と
繊維状炭素を板状に成形した陰極36とを接合させた電
極構造体37がメツシュ状の絶縁体38を介して積層さ
れかつ該電極構造体37の周縁部は前記電解槽本体31
の内壁に隙間なく密着している。該本体31内の上端に
は前記陽極35のみが配置され、該陽極35に電流が供
給され、前記複数の電極構造体37を通って下端の陰極
36から槽外へ導かれる。該電解槽本体31に前記給液
口32から例えば銅とカドミウムを不純物として含有す
る亜鉛水溶液を加えると、該溶液が前記陰極36中を強
制的に通過させられる際に該溶液中のイオン化傾向の低
い銅及びカドミウムがほぼ選択的に前記陰極36上に析
出して亜鉛のみを含有する溶液が前記取出口33で得る
ことができる。この場合も同様に陰極表面積が大きくか
つそのほぼ全面が金属析出に有効に使用できるため、電
流効率が増大ししかも長時間に亘り金属析出を継続でき
、更に前記陰極36が隙間なく電解液の進行方向に垂直
に位置しているため、前記電解液が必ず前記各陰極36
と接触し析出効率の向上を図ることができる。、(実施
例) 次に本発明の複極式電解槽を使用する電解反応の実施例
を記載するが、該実施例は本発明を限定するものではな
い。
31 is a liquid supply port 32 in the center of the bottom surface, and an outlet 33 in the upper right side surface.
It is a box-shaped electrolytic cell main body having a gas outlet 34 in the center of the top surface, and inside the electrolytic cell main body 31, except for the upper and lower ends,
An electrode structure 37 in which a plate-shaped anode 35 made of lead dioxide or titanium coated with a noble metal oxide, etc. and a cathode 36 made of fibrous carbon formed into a plate shape are laminated with a mesh-shaped insulator 38 in between, and the electrode The periphery of the structure 37 is connected to the electrolytic cell body 31.
It adheres tightly to the inner wall of the Only the anode 35 is disposed at the upper end of the main body 31, and a current is supplied to the anode 35 and led out of the tank from the cathode 36 at the lower end through the plurality of electrode structures 37. When an aqueous zinc solution containing, for example, copper and cadmium as impurities is added to the electrolytic cell main body 31 from the liquid supply port 32, when the solution is forced to pass through the cathode 36, the ionization tendency in the solution is reduced. Low amounts of copper and cadmium are almost selectively deposited on the cathode 36, so that a solution containing only zinc can be obtained at the outlet 33. In this case as well, since the cathode surface area is large and almost the entire surface can be effectively used for metal deposition, the current efficiency is increased and metal deposition can be continued for a long time. Since the electrolyte is located perpendicular to the direction, the electrolyte always reaches each cathode 36.
The precipitation efficiency can be improved by contacting with (Example) Next, an example of an electrolytic reaction using the bipolar electrolytic cell of the present invention will be described, but the present invention is not limited to this example.

大狙阻上 第1図に示す複極式電解槽に類似する電解槽を使用して
溶液中のパラジウム金属9凹収を行った。
An electrolytic cell similar to the bipolar electrolytic cell shown in FIG. 1 was used to collect palladium metal in solution.

電解槽本体は直径(内径)5cm、厚さ1Ocs+の塩
化ビニル製円筒体とし、電極構造体は陽極と陰極を別個
に設置せずに、直径5cm厚さ5mmの繊維状炭素(日
本カーボン株式会社製「カーボロン−Pフェルト」、嵩
比重約0.1g/cIiI)を使用し、該電極構造体を
塩化ビニル製メツシュから成る絶縁体を介して積層した
The electrolytic cell body is a cylinder made of vinyl chloride with a diameter (inner diameter) of 5 cm and a thickness of 1Ocs+, and the electrode structure is made of fibrous carbon with a diameter of 5 cm and a thickness of 5 mm (Nippon Carbon Co., Ltd.) without installing the anode and cathode separately. The electrode structure was laminated using an insulator made of a polyvinyl chloride mesh using "Carboron-P Felt" (Bulk Specific Gravity: about 0.1 g/cIiI), manufactured by Co., Ltd.

塩化パラジウム2.0gを希塩酸5.0βに溶解してサ
ンプル溶液を調製し、前記電解槽の給液口から前記サン
プル溶液を供給し、室温、3A、12Vの条件で電解を
行い、廃液口から取り出される前記サンプル溶液を再度
前記給液口に循環させて30分間通電を継続させた。
A sample solution was prepared by dissolving 2.0 g of palladium chloride in 5.0β diluted hydrochloric acid, and the sample solution was supplied from the liquid supply port of the electrolytic cell, electrolysis was performed under the conditions of room temperature, 3 A, and 12 V, and then the sample solution was dissolved from the waste liquid port. The sample solution taken out was again circulated through the liquid supply port, and electricity was continued for 30 minutes.

通電停止後、電解液中のパラジウム濃度を測定したとこ
ろ1cmg1)以下となっており、電流効率は約20%
であった。又ルーぺにより前記繊維状炭素電極を観察し
たところ、陰極として機能する側のほぼその全面が金属
光沢を有する物質で被覆されていた。
After the electricity was stopped, the palladium concentration in the electrolyte was measured and found to be less than 1cmg1), and the current efficiency was approximately 20%.
Met. When the fibrous carbon electrode was observed through a magnifying glass, it was found that almost the entire surface of the electrode functioning as a cathode was coated with a substance having metallic luster.

此tu生1 陰極として多孔質板状炭素電極(東洋カーボン株式会社
製)を使用したこと以外は実施例1と同様の条件でサン
プル溶液を電解し、通電停止後、電解液中のパラジウム
濃度を測定したところ、180mg7Nであり、電流効
率は5%であった。又ルーパにより前記板状陰極を観察
したところ、陰極として機能する面のみが金属光沢を有
する物質で被覆されていた。
The sample solution was electrolyzed under the same conditions as in Example 1, except that a porous plate carbon electrode (manufactured by Toyo Carbon Co., Ltd.) was used as the cathode, and after the current supply was stopped, the palladium concentration in the electrolyte was When measured, it was 180 mg7N, and the current efficiency was 5%. Further, when the plate-shaped cathode was observed using a looper, only the surface functioning as a cathode was coated with a substance having metallic luster.

大止皿1 第2図に示す複極式電解槽を使用して食塩水溶液の電解
による苛性ソーダの製造を行った。
Large stop plate 1 Caustic soda was produced by electrolysis of a saline solution using a bipolar electrolytic cell shown in FIG.

陽極液として250g/#の濃厚食塩水溶液を、又陰極
液として140 g / 1の希釈苛性ソーダ水溶液を
使用した。陽極としては5cn+X 5cmX 1.5
mmの寸法安定性陽極を、又陰極としては同形状で金属
パラジウムを担持させた繊維状炭素陰極(日本カーボン
株式会社製「カーボロン−Pフェルト」)を使用し、該
両極をナフィオン(登録商標)710で区画した陽極室
及び陰極室に収容し、陰極集電体として炭素板を使用し
た。両マニホールドから前記陽極液及び陰極液を供給し
ながら、50℃、5A、13.6Vの条件で電解を行い
、前記マニホールドから取り出される両極液再度循環さ
せて2.25時間通電を継続させた。
A 250 g/# concentrated saline solution was used as the anolyte, and a 140 g/1 diluted caustic soda aqueous solution was used as the catholyte. As an anode, 5cn+X 5cmX 1.5
A dimensionally stable anode of 1.0 mm is used, and a fibrous carbon cathode with the same shape and carrying metal palladium ("Carboron-P Felt" manufactured by Nippon Carbon Co., Ltd.) is used as the cathode, and both electrodes are made of Nafion (registered trademark). It was housed in an anode chamber and a cathode chamber divided by 710, and a carbon plate was used as a cathode current collector. While supplying the anolyte and catholyte from both manifolds, electrolysis was carried out under the conditions of 50° C., 5A, and 13.6V, and the anolyte and catholyte taken out from the manifold were circulated again and the current was continued for 2.25 hours.

通電停止後、前記陰極液の苛性ソーダ濃度を測定したと
ころ205r/lであり、電流効率は97%であった。
After the current supply was stopped, the caustic soda concentration in the catholyte was measured and found to be 205 r/l, and the current efficiency was 97%.

(発明の効果) 本発明は、成形後に繊維状に維持されている炭素を陰極
として使用する基極式電解槽である。
(Effects of the Invention) The present invention is a base electrode type electrolytic cell that uses carbon maintained in a fibrous form after molding as a cathode.

該繊維状炭素陰極は、対極に面する部分のみが電極作用
を発現する従来の炭素電極等の多孔質電極と異なり、繊
維状炭素の長さが十分に長く陰極内における電位勾配が
なく該陰極のどの部分でも電位が等しいため、電解反応
が前記陰極のどの部分でも生じ該陰極のほぼ全面が電極
として機能し電流密度の低減をはじめとする電解条件を
有利にすることができるものと推測することができる。
Unlike porous electrodes such as conventional carbon electrodes in which only the part facing the counter electrode exhibits electrode action, the fibrous carbon cathode has a sufficiently long length of fibrous carbon and there is no potential gradient within the cathode. Since the potential is the same in all parts of the cathode, it is assumed that electrolytic reactions occur in any part of the cathode, and almost the entire surface of the cathode functions as an electrode, making the electrolytic conditions more favorable, including reducing the current density. be able to.

このような特性を有する繊維状炭素陰極を使用する本発
明の複極式電解槽の構造は、陽極室と陰極室を区画しな
いタイプと両極室を隔膜により区画するタイプに大別で
き、前者は更に電極を電解液の進行方向に垂直に隙間な
く位置させるタイプと隙間を生じさせてもよいタイプに
分けることができる。
The structure of the bipolar electrolytic cell of the present invention that uses a fibrous carbon cathode having such characteristics can be roughly divided into a type in which the anode chamber and cathode chamber are not separated and a type in which the bipolar chamber is separated by a diaphragm. Furthermore, the electrodes can be divided into types in which the electrodes are positioned perpendicularly to the direction of movement of the electrolytic solution with no gaps, and types in which the electrodes may be positioned with gaps.

いずれのタイプの電解槽でも前記繊維状炭素陰極による
陰極の有効電解面積の飛躍的な増加が生じ、電流効率の
増加を図ることができる。又該陰極上に貴金属触媒を担
持させると電解電圧の低減が可能になり、電流効率及び
電解電圧の両面から消費電力の低減を実現することがで
きる。□前述のどのタイプの複極式電解槽でも上記した
利点が生ずるが、無隔膜タイプの電解槽は陽極液と陰極
液が混合されたり、陽極で酸化された物質が再度陰極で
還元されて元の物質に戻るといったことがある反面、電
解槽の構造が簡単であり、特に電解反応で酸化又は還元
された物質が電極上に析出しより以上′の反応に関与し
ないタイプや電解により不要な物質が分解されて電解に
よって元に戻ることのない反応例えば不純物金属の電析
による除去、廃液処理あるいはシアン分解等に使用する
と有利である。
In any type of electrolytic cell, the fibrous carbon cathode dramatically increases the effective electrolytic area of the cathode, making it possible to increase current efficiency. Further, by supporting a noble metal catalyst on the cathode, it is possible to reduce the electrolysis voltage, and it is possible to realize a reduction in power consumption in terms of both current efficiency and electrolysis voltage. □Although any of the above-mentioned types of bipolar electrolytic cells have the above-mentioned advantages, in non-diaphragm type electrolytic cells, the anolyte and catholyte are mixed, and the substances oxidized at the anode are reduced again at the cathode, resulting in the On the other hand, the structure of the electrolytic cell is simple, and in particular, substances that have been oxidized or reduced by the electrolytic reaction are precipitated on the electrodes. It is advantageous to use it in reactions in which impurity metals are decomposed and cannot be restored by electrolysis, such as removal of impurity metals by electrodeposition, waste liquid treatment, or cyanide decomposition.

更に該無隔膜タイプの電解槽で、少なくともその陰極を
電解液の進行方向に対して垂直に隙間なく配置させ、該
電解液を強制的に前記電極構造体を通過させ電解を行わ
せると、電解)夜が確実に陰極と接触して所定の電解反
応を促進することができる。
Furthermore, in the non-diaphragm type electrolytic cell, if at least the cathode is disposed vertically with no gap to the direction of movement of the electrolytic solution and the electrolytic solution is forced to pass through the electrode structure to perform electrolysis, the electrolysis can be carried out. ) The night can reliably contact the cathode and promote the predetermined electrolytic reaction.

一方隔膜を使用して陽極室と陰極室に区画する隔膜タイ
プの電解槽は、隔膜を使用するため構造がやや複雑にな
る反面、電解生成物が溶液状態で得られる食塩電解等全
ての電解に使用することができる。
On the other hand, diaphragm-type electrolytic cells that use a diaphragm to divide into an anode chamber and a cathode chamber have a slightly more complicated structure because they use a diaphragm. can be used.

該隔膜タイプの電解槽で前記繊維状炭素陰極を陰極室全
体に充填した構造を採用すると、前記無隔膜タイプの電
解槽において陰極を電解液の進行方向に対して垂直に隙
間なく配置させる構成と同様の効果、つまり電解液が確
実に陰極に接触して所定の電解反応の促進する効果が生
ずるだけでなく、該陰極と前記隔膜が接触するゼロギャ
ップタイプの電解が可能になり、より以上の電力低減を
図ることができる。
When the diaphragm-type electrolytic cell adopts a structure in which the entire cathode chamber is filled with the fibrous carbon cathode, the cathode can be disposed vertically to the direction of movement of the electrolyte without gaps in the non-diaphragm-type electrolytic cell. Not only does the same effect, that is, the effect of promoting a predetermined electrolytic reaction by ensuring that the electrolyte comes into contact with the cathode, but also zero-gap type electrolysis in which the cathode and the diaphragm come into contact becomes possible, and even more Power can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる複極式電解槽の第1実施例を
示す縦断面図、第2図は、同じく第2実施例を示す縦断
面図、第3図は、同じく第3実施例を示す縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of a bipolar electrolytic cell according to the present invention, FIG. 2 is a vertical cross-sectional view showing the second embodiment, and FIG. It is a longitudinal cross-sectional view showing an example.

Claims (4)

【特許請求の範囲】[Claims] (1)繊維状炭素陰極及び該陰極に接続された陽極を含
んで成る複数の電極構造体を絶縁部を介して陽陰両極が
対向するように配置したことを特徴とする複極式電解槽
(1) A bipolar electrolytic cell characterized in that a plurality of electrode structures each including a fibrous carbon cathode and an anode connected to the cathode are arranged such that the positive and negative electrodes face each other with an insulating part interposed therebetween. .
(2)繊維状炭素陰極及び該陰極に接続された陽極を含
んで成る横方向をなす複数の電極構造体を絶縁部を介し
て陽陰両極が対向するように配置しかつ該電極構造体を
電解液の進行方向に対して垂直に隙間なく配置させ、該
電解液を強制的に前記電極構造体を通過させ電解を行わ
せることを特徴とする複極式電解槽。
(2) A plurality of horizontal electrode structures each including a fibrous carbon cathode and an anode connected to the cathode are arranged so that the positive and negative electrodes face each other with an insulating part interposed therebetween, and the electrode structures are 1. A bipolar electrolytic cell, characterized in that the electrolytic solution is disposed vertically with no gaps in the direction of movement of the electrolytic solution, and the electrolytic solution is forced to pass through the electrode structure to perform electrolysis.
(3)隔膜を介して陽極室及び陰極室に区画された単位
電解槽を積層して成る複極式電解槽において、集電体に
接続された繊維状炭素を陰極とすることを特徴とする複
極式電解槽。
(3) A bipolar electrolytic cell formed by stacking unit electrolytic cells divided into an anode chamber and a cathode chamber via a diaphragm, characterized in that a fibrous carbon connected to a current collector serves as a cathode. Bipolar electrolytic cell.
(4)繊維状炭素を陰極室全体に充填した請求項(3)
に記載の複極式電解槽。
(4) Claim (3) in which the entire cathode chamber is filled with fibrous carbon.
The bipolar electrolytic cell described in .
JP1128532A 1989-05-22 1989-05-22 Bipolar electrolytic cell Expired - Lifetime JP2832221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1128532A JP2832221B2 (en) 1989-05-22 1989-05-22 Bipolar electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128532A JP2832221B2 (en) 1989-05-22 1989-05-22 Bipolar electrolytic cell

Publications (2)

Publication Number Publication Date
JPH02305986A true JPH02305986A (en) 1990-12-19
JP2832221B2 JP2832221B2 (en) 1998-12-09

Family

ID=14987081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128532A Expired - Lifetime JP2832221B2 (en) 1989-05-22 1989-05-22 Bipolar electrolytic cell

Country Status (1)

Country Link
JP (1) JP2832221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021877A (en) * 2013-07-22 2015-02-02 矢内 誠 Radioactive material removal device and method for solidifying radioactive contaminated water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176177A (en) * 1974-08-07 1976-07-01 Suriihandoretsudo Ando Eitosau
JPS5232865A (en) * 1975-09-09 1977-03-12 Nippon Eternit Pipe Equipment for automatic feeding of wire rod
JPS52147744U (en) * 1976-05-01 1977-11-09
JPS639591A (en) * 1986-06-30 1988-01-16 リヒト産業株式会社 File container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176177A (en) * 1974-08-07 1976-07-01 Suriihandoretsudo Ando Eitosau
JPS5232865A (en) * 1975-09-09 1977-03-12 Nippon Eternit Pipe Equipment for automatic feeding of wire rod
JPS52147744U (en) * 1976-05-01 1977-11-09
JPS639591A (en) * 1986-06-30 1988-01-16 リヒト産業株式会社 File container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021877A (en) * 2013-07-22 2015-02-02 矢内 誠 Radioactive material removal device and method for solidifying radioactive contaminated water

Also Published As

Publication number Publication date
JP2832221B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US9199867B2 (en) Removal of metals from water
JPS63137191A (en) Electrolytic cell for electrolytic precipitation of metal
US4584080A (en) Bipolar electrolysis apparatus with gas diffusion cathode
CN1965107A (en) Method for producing peroxodisulfates in aqueous solution
US4139449A (en) Electrolytic cell for producing alkali metal hypochlorites
KR101147491B1 (en) Electrolysis apparatus
EP0199957A1 (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
CN1130475C (en) Ion exchange membrane electrolyzer
JPH02305986A (en) Plural-electrode electrolytic cell
CA1257560A (en) Electrochemical removal of hypochlorites from chlorate cell liquors
CN1069705C (en) Electrolytic cell
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
KR20220068566A (en) Hydrogen generation apparatus using aqueous ammonia
JPH10140383A (en) Electrode feeder, its production and electrolytic cell for producing hydrogen peroxide
JP5344278B2 (en) Indium metal production method and apparatus
JPH02305987A (en) Single-electrode electrolytic cell and electrolytic method using the cell
CN1280212A (en) Method and apparatus for protecting alkali metal chloride electrolytic cell
CN1017266B (en) Selective removal of chlorine from solutions of chlorine dioxide and chlorine
JPH032959B2 (en)
EP0188320A1 (en) Electrolytic cell for sea water
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
JP3875808B2 (en) Electrode for producing hydrogen peroxide and method for producing the same
US6165333A (en) Cathode assembly and method of reactivation
JPH02310387A (en) Single-electrode electrolytic cell and method for electrolysis using the cell
JP3236693B2 (en) Electrolyzer using gas electrode and electrolysis method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11