JPH02305371A - Method of ignition timing learning control - Google Patents

Method of ignition timing learning control

Info

Publication number
JPH02305371A
JPH02305371A JP1125134A JP12513489A JPH02305371A JP H02305371 A JPH02305371 A JP H02305371A JP 1125134 A JP1125134 A JP 1125134A JP 12513489 A JP12513489 A JP 12513489A JP H02305371 A JPH02305371 A JP H02305371A
Authority
JP
Japan
Prior art keywords
learning
ignition timing
knocking
value
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1125134A
Other languages
Japanese (ja)
Other versions
JP2832299B2 (en
Inventor
Hiroya Ookumo
大雲 浩哉
Hideji Miyama
秀司 三山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP1125134A priority Critical patent/JP2832299B2/en
Priority to DE4015759A priority patent/DE4015759C2/en
Priority to GB9011101A priority patent/GB2232441A/en
Publication of JPH02305371A publication Critical patent/JPH02305371A/en
Application granted granted Critical
Publication of JP2832299B2 publication Critical patent/JP2832299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To set ignition timing in an optimum way when the ignition timing is determined by the summation of whole learning and partial learning, by suspending each learning in a high engine rotational region, and by compensating ignition timing according to the high rotational region compensation based on each learning value. CONSTITUTION:A control unit 30 discriminates a learning condition through a means 40 according to engine rotation, pressure of suction pipe and water temperature calculated by each means 31-33, and to a stated region discriminated by a means 37, and a learning value is updated by a means 41 according to the learning condition. Based on the number of knocking and spark angle detected by means 43, 44, a whole learning value is memorized by a means 42, and, a partial learning value being memorized by a means 45, learning compensation is calculated by a means 46 according to the learning values. When a high rotational region is judged by a means 53, the high rotational region compensation set by a means 52 is selected by a means 54.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用エンジンにおいて各運転状態で点火時
期を学習しながら最適値に設定して制御する点火時期学
習制御方法に関し、詳しくは、ノッキング検出不可能な
高回転数域での最適な補正量の推定方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ignition timing learning control method for controlling a vehicle engine by learning the ignition timing in each operating state and setting it to an optimal value. This paper relates to a method for estimating the optimal correction amount in a high rotational speed range where knocking cannot be detected.

〔従来の技術〕[Conventional technology]

一般に点火時期の学習制御は、ノッキングフィードバッ
ク制御と平行してノッキング発生の有無に応じ少しずつ
進角または遅角して補正量を学習しながら定め、点火時
期をノッキング限界に決定するようになっている。この
ため、ノッキングを正確に検出することが重要になるが
、このノッキングの検出は、エンジン本体側にノックセ
ンサを取付け、このノックセンサによる振動信号の中か
らノッキング周波数を選択して判断している。しかしな
がら、高回転数域では、吸・排気弁の着座音等の種々の
振動ノイズが増大し、このためノッキング周波数付近の
信号も判別が困難になる。
In general, ignition timing learning control is performed in parallel with knocking feedback control by gradually advancing or retarding the ignition timing depending on whether or not knocking occurs, while learning the amount of correction, and determining the ignition timing at the knocking limit. There is. For this reason, it is important to accurately detect knocking, which is determined by installing a knock sensor on the engine body and selecting the knocking frequency from the vibration signal from this knock sensor. . However, in a high rotational speed range, various vibration noises such as intake/exhaust valve seating noise increase, making it difficult to distinguish signals near the knocking frequency.

従って、高回転数域では、誤ったノッキングの検出によ
るフィードバックおよび学習を回避するため、フィード
バック制御や学習制御を中断したり、制御幅を縮小する
。そして点火時期は、種々のバラツキを考慮してもノッ
キングが生じないように安全サイド側に定めることが多
く、このため進角不足で出力、燃費の悪化を招いている
。このことから、上記ノッキング検出の不可能な高回転
数域では、点火時期の補正量をできるだけ適切に推定す
ることが望まれる。
Therefore, in a high rotation speed range, feedback control and learning control are interrupted or the control width is reduced in order to avoid feedback and learning due to erroneous detection of knocking. The ignition timing is often set on the safe side to prevent knocking even when various variations are taken into consideration, and as a result, the ignition timing is insufficiently advanced, leading to deterioration in output and fuel efficiency. For this reason, it is desirable to estimate the ignition timing correction amount as appropriately as possible in the high rotational speed region where knocking cannot be detected.

そこで従来、上記点火時期の学習制御において、高回転
数域での点火時期推定に関しては、例えば特開昭61−
164076号公報の先行技術がある。ここで、点火時
期のフィードバック中に実際の点火時期と基本点火時期
との偏差に応じた補正値を記憶し、フィードバック停止
中はこの補正値より点火時期を決定することが示されて
いる。
Conventionally, in the learning control of the ignition timing, estimating the ignition timing in the high rotation speed range has been carried out, for example, in
There is a prior art in Japanese Patent No. 164076. Here, it is shown that a correction value corresponding to the deviation between the actual ignition timing and the basic ignition timing is stored during feedback of the ignition timing, and the ignition timing is determined from this correction value while the feedback is stopped.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記先行技術のものにあっては、フィードバ
ック中の補正値をフィードバック停止中もそのまま用い
ることで、補正値分道角できるが、この補正値の信頼性
が問題になる。即ち、運転状態、燃料オクタン価の変化
に対し、補正値は比較的大きく相違し、このうちのいず
れを使用するかで、エンジン出力、ノッキング発生に大
きく影響する。このため、補正値の選択等を明確にしな
い限り、不適切な補正値によりノッキング発生が多くな
る等の不都合を招く。
By the way, in the prior art described above, by using the correction value that is being fed back as is even while the feedback is stopped, the correction value can be divided, but the reliability of this correction value is a problem. That is, the correction values vary relatively greatly depending on changes in operating conditions and fuel octane number, and which one of them is used greatly affects engine output and occurrence of knocking. Therefore, unless the selection of the correction value is made clear, inappropriate correction values will cause inconveniences such as increased occurrence of knocking.

ここで、点火時期の学習制御として、すべての運転状態
に共通の全体学習を行い、次いで各運転状態毎に部分学
習を実行し、これら両者の学習値を加算して補正量を定
める方法がある。この方法では、全体学習値については
高回転数域でもそのまま使用でき、更に部分学習のうち
から適切な値を選択すれば、高回転数域の補正量を充分
適正に推定できて好ましい。
Here, as learning control for ignition timing, there is a method of performing overall learning common to all operating states, then performing partial learning for each operating state, and determining the correction amount by adding the learning values of both. . In this method, the overall learning value can be used as is even in the high rotational speed range, and if an appropriate value is selected from the partial learning, the correction amount in the high rotational speed range can be estimated sufficiently appropriately, which is preferable.

本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、全体学習と部分学習とによる学習制御
において、高回転数域の学習制御中断条件での点火時期
を最適に推定することが可能な点火時期学習制御方法を
提供することにある。
The present invention has been made in view of the above points, and its purpose is to optimally estimate the ignition timing under learning control interruption conditions in a high rotation speed range in learning control using overall learning and partial learning. The object of the present invention is to provide an ignition timing learning control method that enables the ignition timing learning control method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の点火時期学習制御方
法は、ノッキング発生の有無に応じ進・遅角しながら全
体学習値を設定する全体学習を実行し、次いで各運転状
態毎にノッキング発生の有無に応じ進・遅角して部分学
習値を設定する部分学習を実行し、これらの全体学習値
と部分学習値との和により点火時期を補正して決定する
方法において、エンジン高回転数域では、上記全体学習
および部分学習を中断し、上記全体学習値および部分学
習値に基づいて高回転数域補正量を算出し、高回転数域
の点火時期を高回転域補正量で補正して決定するもので
ある。
In order to achieve the above object, the ignition timing learning control method of the present invention executes overall learning in which the overall learning value is set while advancing or retarding the ignition timing depending on the presence or absence of knocking, and then, for each operating state, the ignition timing learning control method In this method, partial learning is executed to advance or retard the ignition timing depending on whether the ignition timing is present or not, and the ignition timing is corrected and determined based on the sum of these overall learning values and partial learning values. Now, interrupt the above overall learning and partial learning, calculate the high rotation speed range correction amount based on the above overall learning value and partial learning value, and correct the ignition timing in the high rotation speed range with the high rotation speed range correction amount. It is up to you to decide.

〔作   用〕[For production]

上記方法により、ノッキング検出可能な条件では、ノッ
キング発生の有無との関係で全体学習および部分学習が
実行され、両者の学習値により補正量を学習しながら定
めて点火時期がノッキング限界付近に最適に決定される
。そしてノッキング検出不可能なエンジン高回転数域で
は、学習制御が中断され、学習制御の全体学習値と部分
学習値から選出された値とを用いることで高回転数域補
正量が、ノッキングを抑えて進角した信頼性の高いもの
に推定され、この補正量により高回転数域の点火時期が
最適に決定されるようになる。
With the above method, under conditions where knocking can be detected, overall learning and partial learning are performed in relation to the presence or absence of knocking, and the correction amount is determined while learning based on the learning values of both, and the ignition timing is optimally set near the knocking limit. It is determined. In the high engine speed range where knocking cannot be detected, the learning control is interrupted, and by using the values selected from the overall learning value and the partial learning value of the learning control, the high speed range correction amount suppresses knocking. The ignition timing is estimated to be advanced and highly reliable, and the ignition timing in the high rotation speed range is optimally determined by this correction amount.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第2図において、本発明が適用されるエンジンの概略に
ついて述べる。符号Iはエンジン本体であり、燃焼室2
に連通する吸入ポート3には吸気弁4が、排気ポート5
には排気弁6が設けられ、更に燃焼室2に点火プラグ7
が取付けられている。
Referring to FIG. 2, an outline of an engine to which the present invention is applied will be described. The symbol I is the engine body, and the combustion chamber 2
An intake valve 4 is connected to the intake port 3 that communicates with the exhaust port 5.
An exhaust valve 6 is provided in the combustion chamber 2, and a spark plug 7 is provided in the combustion chamber 2.
is installed.

吸気系としてエアクリーナ8が、吸気管9.スロットル
弁10を有するスロットルボデーII、吸気マニホール
ド12を介して吸入ポート3に連通し、排気系として排
気ポート5が、排気管I3に連通している5スロツトル
弁10をバイパスしてアイドル制御弁14を有するバイ
パス通路15が設けられ、吸入ポート3の入口にはイン
ジェクタ16がマルチポイント式に取付けられている。
An air cleaner 8 serves as an intake system, and an intake pipe 9. A throttle body II having a throttle valve 10 communicates with the intake port 3 via an intake manifold 12, and an exhaust port 5 as an exhaust system communicates with an exhaust pipe I3. A bypass passage 15 is provided, and an injector 16 is mounted in a multi-point manner at the inlet of the suction port 3.

制御系としてクランク角センサ20.スロットル弁IO
下流の圧力センサ21を有し、これらセンサ信号が制御
ユニット30に入力してクランク角によりエンジン回転
数Neを、スロットル弁10下流の圧力によりエンジン
負荷としての吸入管圧力Pmを検出し、これらのエンジ
ン回転数Ne、吸入管圧力Pmにより基本燃料噴射量T
pを定める。また、水温センサ22の水温Tw、吸気温
センサ23の吸気温Ta、o2センサ24の信号等も制
御ユニット30に入力し、これらの信号により基本燃料
噴射量Tpに各種補正を加えて燃料噴射量Tiを算出し
、燃料噴射量TIに応じたパルス幅の燃料噴射信号番イ
ンジェクタ16に出力して、各運転状態に応じ燃料噴射
するようになっている。スロットル弁10の開度はスロ
ットル開度センサ25により検出されており、このスロ
ットル開度(あるいはアイドルスイッチ)でアイドリン
グと判定されるとアイドル制御弁14の開度を調整し、
エンジン回転数Neを所定のアイドル回転数にフィード
バック制御する。更に、点火系として上述のエンジン回
転数Ne、吸入管負圧Pmにより基本点火時期、進角限
界等を求め、エンジン本体1に取付けられたノックセン
サ26によるノッキング検出の有無により遅角または進
角の補正をし、最適点火時期IGTを学習して定める。
A crank angle sensor 20 is used as a control system. Throttle valve IO
It has a downstream pressure sensor 21, and these sensor signals are input to the control unit 30 to detect the engine rotational speed Ne from the crank angle and the intake pipe pressure Pm as an engine load from the pressure downstream of the throttle valve 10. Basic fuel injection amount T depending on engine speed Ne and intake pipe pressure Pm
Determine p. In addition, the water temperature Tw of the water temperature sensor 22, the intake air temperature Ta of the intake air temperature sensor 23, the signal of the O2 sensor 24, etc. are also input to the control unit 30, and based on these signals, various corrections are made to the basic fuel injection amount Tp to determine the fuel injection amount. Ti is calculated and a fuel injection signal number having a pulse width corresponding to the fuel injection amount TI is outputted to the injector 16 to inject fuel according to each operating state. The opening degree of the throttle valve 10 is detected by the throttle opening sensor 25, and when the throttle opening (or idle switch) determines that the engine is idling, the opening degree of the idle control valve 14 is adjusted.
The engine speed Ne is feedback-controlled to a predetermined idle speed. Furthermore, for the ignition system, the basic ignition timing, advance limit, etc. are determined based on the engine speed Ne and suction pipe negative pressure Pm mentioned above, and the retardation or advance is determined depending on whether or not knocking is detected by the knock sensor 26 attached to the engine body 1. , and learn and determine the optimal ignition timing IGT.

そして最適点火時期IGTに応じた点火信号を、イグナ
イタ271点火コイル28゜ディストリビュータ29を
介して点火プラグ7に出力し、ピストン上死点前の所定
のクランク角で着火燃焼するようになっている。
Then, an ignition signal corresponding to the optimum ignition timing IGT is output to the ignition plug 7 via the igniter 271, ignition coil 28° distributor 29, and ignition and combustion occur at a predetermined crank angle before the piston top dead center.

第1図において、上述の点火系の点火時期学習制御系に
ついて述べる。
Referring to FIG. 1, the ignition timing learning control system for the above-mentioned ignition system will be described.

先ず、点火時期設定制御系について述べると、クランク
角センサ20.圧力センサ21.水温センサ22および
ノックセンサ26の信号は、制御ユニット30のエンジ
ン回転数算出手段31.吸入管圧力算出 ′手段32.
水温算出手段33.ノッキング判定手段34に入力し、
エンジン回転数Ne、吸入管圧力Pm。
First, the ignition timing setting control system will be described.The crank angle sensor 20. Pressure sensor 21. The signals from the water temperature sensor 22 and the knock sensor 26 are transmitted to the engine rotation speed calculation means 31 of the control unit 30. Suction pipe pressure calculation 'Means 32.
Water temperature calculation means 33. input into the knocking determination means 34,
Engine speed Ne, suction pipe pressure Pm.

水温Tw、ノッキング発生の有無を得る。エンジン回転
数Ne、吸入管圧力Pmは基本点火時期検索手段35.
進角限界検索手段36に入力し、各運転状態に応じた基
本点火時期IGBと進角限界MBT(基本点火時期IG
Bに対する進角量で設定)とを基本点火時期マツプおよ
び進角限界マツプを用いて検索する。
Obtain the water temperature Tw and the presence or absence of knocking. The engine speed Ne and intake pipe pressure Pm are determined by the basic ignition timing search means 35.
The basic ignition timing IGB and the basic ignition timing IGBT (basic ignition timing IGBT) are input to the advance limit search means 36 and
(set by the advance angle amount for B) is searched using the basic ignition timing map and the advance angle limit map.

この2つのマツプは例えば第4図のような特性に基づい
て設定されており、進角限界MBTは、エンジン回転数
Neの上昇に応じ小さくなる。レギュラーガソリンのノ
ッキング限界に対応する基本点火時期IGBは、エンジ
ン回転数Neの上昇に応じ進角側に設定され、オクタン
価が高くなるに応じてノッキング限界は進角側に平行移
動した特性になる。また、進角限界MBT、基本点火時
期IGBは、吸入管圧力Pm等のエンジン負荷に対して
も同様な特性を有しており、これらのエンジン回転数N
e、吸入管圧力Pn+のパラメータにより各運転状態に
応じた進角限界MBT、基本点火時期IGBがマツプ検
索される。
These two maps are set based on, for example, the characteristics shown in FIG. 4, and the advance limit MBT becomes smaller as the engine speed Ne increases. The basic ignition timing IGB corresponding to the knocking limit of regular gasoline is set to the advanced side as the engine speed Ne increases, and the knocking limit shifts in parallel to the advanced side as the octane number increases. In addition, the advance limit MBT and the basic ignition timing IGB have similar characteristics with respect to engine loads such as intake pipe pressure Pm, and these engine speed N
Advance angle limit MBT and basic ignition timing IGB corresponding to each operating state are searched on a map using the parameters e and suction pipe pressure Pn+.

上記進角限界MBTと後述する学習補正量IGL(基本
点火時期IGBに対する進角量で設定)とは領域判別手
段37に入力し、第4図のように両者を比較し、点火時
期として進角限界MBTが取れる領域Da(MBT≦I
GL)、進角限界MBTが取れない領域Db(MB T
 > I G L)を判断し、この判断結果が点火時期
算出手段38に入力する。
The advance limit MBT and the learned correction amount IGL (set by the advance amount with respect to the basic ignition timing IGB), which will be described later, are input to the region determining means 37, and the two are compared as shown in FIG. Area Da where the limit MBT can be obtained (MBT≦I
GL), area Db (MB T
>IGL), and the result of this determination is input to the ignition timing calculation means 38.

点火時期算出手段38には進角限界MBT、基本点火時
期IGB、学習補正量IGL、および後述するノッキン
グフィードバック補正量AKが入力しており、点火時期
IGTを以下のように算出して決定する。
The advance limit MBT, basic ignition timing IGB, learning correction amount IGL, and knocking feedback correction amount AK, which will be described later, are input to the ignition timing calculation means 38, and the ignition timing IGT is calculated and determined as follows.

I GT= I GB+ I GL+AKここで、MB
T≦IGLの進角限界MBTが取れる領域では、進角限
界MBTの値を尋のまま用いることで最適点火時期に設
定し得るのであり、このためMBT≦IGLの領域では
、IGLの代わりにMBTを代用して点火時期IGTを
算出する。
I GT= I GB+ I GL+AKHere, MB
In the region where the advance angle limit MBT is T≦IGL, the optimum ignition timing can be set by using the value of the advance limit MBT as is. Therefore, in the region where MBT≦IGL, MBT is set instead of IGL. Ignition timing IGT is calculated by substituting .

こうして算出された点火時期IGTの値とクランク角セ
ンサ20のクランク角信号とはイグナイタ駆動手段39
に入力し、点火時期IGTに応じたクランク角で点火信
号を出力するようになっている。
The value of the ignition timing IGT thus calculated and the crank angle signal of the crank angle sensor 20 are the igniter drive means 39
is input, and an ignition signal is output at a crank angle corresponding to the ignition timing IGT.

次いで、点火時期学習値更新制御系について述べると、
上述のニシジン回転数Ne、吸入管圧力Pi、水温Tw
および領域判別手段37の領域判断結果が入力する学習
条件判別手段40を有する。ここで、現在の運転状態が
エンジン回転数Ne、吸入管圧力Pm、水温Twにより
暖機後でノッキング検出を高い精度で行い得る運転状態
(低負荷側。
Next, the ignition timing learning value update control system will be described.
The above-mentioned rotational speed Ne, suction pipe pressure Pi, water temperature Tw
and a learning condition determining means 40 into which the region determination result of the region determining means 37 is input. Here, the current operating state is an operating state (low load side) in which knocking can be detected with high accuracy after warm-up based on the engine speed Ne, suction pipe pressure Pm, and water temperature Tw.

極低回転数側、高回転数側を除く)にあり、更にMBT
> I GLの進角限界MBTが取れない領域Dbの場
合に学習条件の成立を判定するのであり、この判定結果
が学習値更新手段41に入力する。
(excluding extremely low rotation speed side and high rotation speed side), and MBT
>I It is determined that the learning condition is satisfied in the case of the region Db where the advance angle limit MBT of GL cannot be obtained, and this determination result is input to the learning value updating means 41.

学習値更新手段41には、エンジン回転数Neおよび吸
入管圧力Pmの運転状態、ノッキング判定手段34のノ
ッキングの有無の信号が入力しており、学習条件成立の
判定結果により全体学習あるいは部分学習を選択的に実
行する。先ず、エンジン始動時等には全体学習が行われ
、全体学習値記憶手 11一 段42から全体学習値ATを読出し、ノッキングの有無
により学習値ATを更新し、学習値ATを燃料のオクタ
ン価に対応したノッキング限界に近似させる。即ち、ノ
ッキングの無い場合は、一定時間毎に一定の割合で全体
学習値ATを進角側に更新し、ノッキング発生の場合は
、ノッキング発生毎に一定の割合で全体学習値ATを遅
角側に更新する。そしてこの場合のノッキング回数、全
体学習値ATの進角量をノッキング回数検出手段43゜
進角量検出手段44で検出し、ノッキング回数が設定値
αに達したり、または全体学習値ATが所定の最大進角
量AMに達した場合はノッキング限界に近似したと判断
し、このときの全体学習値ATを記憶して全体学習を終
了する。
The learning value updating means 41 receives the operating status of the engine speed Ne and the suction pipe pressure Pm, and a signal indicating the presence or absence of knocking from the knocking determination means 34, and performs overall learning or partial learning depending on the determination result that the learning conditions are satisfied. Execute selectively. First, when starting the engine, overall learning is performed, and the overall learning value AT is read out from the overall learning value storage device 11 and stage 42, and the learning value AT is updated depending on the presence or absence of knocking, and the learning value AT corresponds to the octane number of the fuel. approximate the knocking limit. In other words, if there is no knocking, the overall learned value AT is updated to the advanced angle side at a fixed rate at regular intervals, and if knocking occurs, the overall learned value AT is updated to the retarded angle side at a fixed rate every time knocking occurs. Update to. Then, the number of knockings and the amount of advance of the overall learned value AT in this case are detected by the number of knocking detection means 43 and the amount of advance angle detection means 44. When the maximum advance amount AM is reached, it is determined that the knocking limit has been approximated, the overall learning value AT at this time is stored, and the overall learning is completed.

また、上述の全体学習に対し、部分学習として各運転状
態毎に細かくアドレスを備えた部分学習値記憶手段45
を有し、学習値更新手段41は上述の全体学習終了後に
部分学習値記憶手段45から部分学習値APを読出す。
In addition to the above-mentioned overall learning, as partial learning, a partial learning value storage means 45 is provided with detailed addresses for each driving state.
The learning value updating means 41 reads the partial learning value AP from the partial learning value storage means 45 after the above-mentioned overall learning is completed.

そして各運転状態毎に部分学習値APに対しても上述と
同様にノッキングの−]2− 有無との関係で、この部分学習値APを進角または遅角
側に更新しながら点火時期を精度よくノッキング限界付
近に設定する。そしてこれらの全体学習値ATと部分学
習値APとは、学習補正量算出手段46に入力して学習
補正量IGLを、I  GL−AT+AP により算出するのであり、学習補正量IGLが既に述べ
た点火時期設定制御系に用いられるようになっている。
Then, for each operating state, the ignition timing is adjusted accurately for the partial learned value AP while updating the partial learned value AP to the advance or retard side in relation to the presence or absence of knocking in the same way as described above. It is often set near the knocking limit. These overall learning value AT and partial learning value AP are input to the learning correction amount calculation means 46 to calculate the learning correction amount IGL by IGL-AT+AP. It is now used in timing control systems.

次いて、ノッキングフィードバック制御系について述べ
ると、ノッキング判定手段34のノッキング有無の信号
が入力するノッキングフィードバック補正量設定手段4
7を有する。このノッキングフィードバック補正量設定
手段47は、ノッキング発生時にのみ遅角側補正量AK
を設定するものであり、ノッキング発生時に学習制御の
1回の遅角量γに対し、その数倍の大きい遅角量γFを
定め、ノッキング回避後は学習制御の進角量aと略同−
の進角量apを定め、これらの遅角量γF、進角量a、
によりノッキングフィードバック補正量A−13= Kを点火時期算出手段38に出力する。また、ノッキン
グフィードバック制御中の学習制御との相互干渉を防ぎ
、学習補正量IGLのバラツキを防ぐため、ノッキング
フィードバック補正量設定手段47のノッキングフィー
ドバック補正量AKが入力する進角禁止手段48を有し
、ノッキングフィードバック補正量AK=0となる迄の
学習値更新手段41での学習補正量IGLの進角を禁止
するようになっている。
Next, regarding the knocking feedback control system, the knocking feedback correction amount setting means 4 receives the knocking presence/absence signal from the knocking determination means 34.
It has 7. This knocking feedback correction amount setting means 47 sets the retard side correction amount AK only when knocking occurs.
When knocking occurs, a retard amount γF that is several times larger than one retard amount γ of the learning control is determined, and after knocking is avoided, it is approximately the same as the advance amount a of the learning control.
The advance angle amount ap is determined, and these retardation amount γF, advance angle amount a,
Accordingly, the knocking feedback correction amount A-13=K is output to the ignition timing calculation means 38. In addition, in order to prevent mutual interference with learning control during knocking feedback control and to prevent variations in learning correction amount IGL, advance angle prohibiting means 48 is provided to which knocking feedback correction amount AK of knocking feedback correction amount setting means 47 is input. , the learning value updating means 41 is prohibited from advancing the learning correction amount IGL until the knocking feedback correction amount AK=0.

更に、高回転数域の点火時期推定制御系について述べる
と、部分学習値記憶手段45に対して選出手段50を有
し、部分学習値APのいずれか1つを高回転数用として
選出する。ここで部分学習値APは、第5図のようにエ
ンジン回転数Noと吸入管圧力PI11とにより各運転
状態毎に区画されたマツプに、APj〜APmとして設
定されており、この際に高回転数域用として選ぶ場合、
最も高回転数側の部分学習値の信頼性が高い。そこで、
選出手段50で部分学習値APから高回転数域用の値を
選出する1つの方法として、現在の吸入管圧力Pmυつ
領域で最も高回転数側の部分学習値APh(第5図中A
P1〜AP4のいずれか1つ)を選出するのであり、こ
の部分学習値APhと全体学習値ATとが補正量算出手
段51に入力し、補正量ALを、 AL−AT+APh −K (Kは定数でに≧0)によ
り算出する。補正量ALは更に高回転数域補正量設定手
段52に入力し、進角限界MBTと比較されてAL<M
BTの場合は、補正量ALを高回転数域補正量IGLと
して出力する。
Furthermore, regarding the ignition timing estimation control system in the high rotational speed range, the partial learning value storage means 45 includes a selecting means 50, which selects any one of the partial learning values AP for high rotational speed. Here, the partial learning value AP is set as APj to APm in a map divided for each operating state according to engine speed No. and suction pipe pressure PI11 as shown in Fig. 5. When selecting for number area,
The reliability of the partial learning value on the highest rotation speed side is high. Therefore,
One method for selecting a value for a high rotational speed region from the partial learning value AP by the selection means 50 is to select the partial learning value APh (A in FIG.
The partial learning value APh and the total learning value AT are input to the correction amount calculation means 51, and the correction amount AL is calculated as AL-AT+APh-K (K is a constant). Calculated according to the following formula. The correction amount AL is further inputted to the high rotation speed range correction amount setting means 52, and compared with the advance limit MBT to find that AL<M.
In the case of BT, the correction amount AL is output as the high rotation speed range correction amount IGL.

一方、エンジン回転数Neが入力する高目数域判定手段
53を有し、例えばN e > 5000rpmのノッ
キング検出不可能な場合に高回転数域と判断する。
On the other hand, it has a high engine speed range determining means 53 which inputs the engine speed Ne, and determines that the engine speed is in the high engine speed range, for example, when knocking cannot be detected when Ne > 5000 rpm.

そして学習補正量IGLと高回転数域補正量IGLのい
ずれかを、高回転数域か否かにより選択手段54で選択
して点火時期算出手段38に出力するようになっている
Then, either the learning correction amount IGL or the high rotational speed region correction amount IGL is selected by the selection means 54 depending on whether the rotational speed is in the high rotational speed region or not and outputted to the ignition timing calculation means 38.

次いで、かかる構成の点火時期学習制御系の作用を、第
3図(a)ないしくe)のフローチャートを用いて述べ
る。
Next, the operation of the ignition timing learning control system having such a configuration will be described using the flowcharts shown in FIGS. 3(a) to 3(e).

先ず、第3図(a)のルーチンのステップ5tooない
し5103でエンジン回転数Ne、吸入管圧力Pm。
First, in steps 5too to 5103 of the routine shown in FIG. 3(a), the engine speed Ne and the intake pipe pressure Pm are determined.

水温Twが読込まれると共に、ノッキング発生の有無が
判定され、ステップ9104.5105でエンジン回転
数Neと吸入管圧力Pmにより進角限界マツプと基本点
火時期マツプから進角限界MBT、基本点火時期IGB
が検索される。そしてステップ5106ないし5108
で学習実施条件がチェックされ、ノッキング検出信号に
外乱の多い高回転数側、センサ出力の小さい低負荷側、
冷態時が除かれ、これ以外の運転状態で学習条件が成立
してステップ5109の学習値更新ルーチンが実行され
る。
As the water temperature Tw is read, it is determined whether or not knocking has occurred, and in step 9104.5105, the advance limit MBT and the basic ignition timing IGB are determined from the advance limit map and the basic ignition timing map based on the engine speed Ne and the intake pipe pressure Pm.
is searched. and steps 5106 to 5108
The learning execution conditions are checked and the knocking detection signal is on the high rotation speed side where there is a lot of disturbance, the low load side where the sensor output is small,
The learning condition is satisfied in any operating state other than the cold state, and the learning value update routine of step 5109 is executed.

即ち、エンジン始動時等においては、第3図(b)のル
ーチンのステップ5200で先ず全体学習が選択され、
ステップ82吋で全体学習値ATのアドレスをインデッ
クスレジスタXに入れておく。ステップ5203でノッ
キングの有無が判定され、ノッキング有りの場合は、ス
テップ5204で全体学習値ATを一定量γ遅角し、ス
テップ5205てタイマ]、2をクリアし、ステップ8
20Gでカウンタをインクリメントしてノッキング回数
をカウントする。ノッキング無しの場合は、ステップ5
207で進角限界MBTと学習補正量IGL (−AT
+AP)とを比較し、MBT≦IGLの領域に入った場
合は、これ以上進角させても進角限界MBTを越えて逆
に出力トルクは低下してしまうため学習値の更新は行わ
ない。そしてステップ8208でノッキング無しの時間
を計るタイマ1をチェックし、ノッキング無しが一定時
間11 (例えば1秒)し、ステップ5217でノッキ
ングフィードバック補正量AK=0であると、ステップ
5209で全体学習値ATを一定量aだけ進角側に更新
し、ステップ5210でタイマ1がクリアされる。
That is, when starting the engine, first, the entire learning is selected in step 5200 of the routine of FIG. 3(b), and
In step 82, the address of the overall learning value AT is stored in the index register X. The presence or absence of knocking is determined in step 5203, and if knocking is present, the overall learning value AT is retarded by a certain amount γ in step 5204, the timer], 2 is cleared in step 5205, and step 8
At 20G, the counter is incremented to count the number of knocks. If there is no knocking, step 5
207, advance angle limit MBT and learning correction amount IGL (-AT
+AP), and if it falls within the region of MBT≦IGL, the learning value is not updated because even if the angle is advanced further, the advance limit MBT will be exceeded and the output torque will decrease. Then, in step 8208, timer 1, which measures the time without knocking, is checked, and if no knocking has occurred for a certain period of time 11 (for example, 1 second), and if the knocking feedback correction amount AK = 0 in step 5217, the overall learning value AT is determined in step 5209. is updated to advance by a certain amount a, and timer 1 is cleared in step 5210.

ステップ8211以降では全体学習の終了条件がチェッ
クされ、ステップ5212で所定の最大進角量AMに対
する全体学習値ATの大きさが判断され、AT<AMの
場合はステップ821Bでタイマ2をクリアし、ステッ
プ5214でノッキング回数がチェックされて設定値α
(例えば5回)以上の場合は、全体学習値ATがノッキ
ング限界に収束したと判−17= 断して全体学習を終了し、ステップ5215でその終了
フラグがセットされる。また、ノッキング無しで進角が
進みAT≧AMに達すると、ステップ5212から52
13に進んでタイマ2の累積時間12 (例えば3秒)
経過後に同様に全体学習を終了する。
After step 8211, the overall learning termination condition is checked, and in step 5212, the magnitude of the overall learning value AT with respect to the predetermined maximum advance amount AM is determined, and if AT<AM, timer 2 is cleared in step 821B, In step 5214, the number of knocking is checked and the set value α
(for example, 5 times) or more, it is determined that the overall learning value AT has converged to the knocking limit, and the overall learning is terminated, and the end flag is set in step 5215. Further, when the advance angle progresses without knocking and reaches AT≧AM, steps 5212 to 52
Proceed to step 13 and set the cumulative time of timer 2 to 12 (for example, 3 seconds)
After that, complete the overall learning in the same way.

こうして全体学習値ATが学習して決定されると、ステ
ップ5200から5202に進んで現在の運転状態の部
分学習値APが格納されているアドレスをインデックス
レジスタXに入れ、ステップ8203以降部分学習が同
様に実行される。即ち、ノッキング有りの場合は部分学
習値APが遅角側に更新され、ノッキング無しの場合は
MBT> I GLの条件で部分学習値APが進角側に
更新されるのであり、これらの部分学習値APの学習更
新が学習条件が成立している限り運転中宮に行われる。
When the overall learning value AT is learned and determined in this way, the process proceeds from step 5200 to step 5202, where the address where the partial learning value AP of the current driving state is stored is entered into the index register is executed. That is, in the case of knocking, the partial learning value AP is updated to the retard side, and in the case of no knocking, the partial learning value AP is updated to the advance side under the condition of MBT>IGL. The learning update of the value AP is performed during operation as long as the learning condition is satisfied.

これにより、上述の全体学習値ATと部分学習値APと
を加算した学習補正量IGLは、各運転状態で実際のノ
ッキング限界に非常に近い値となる。
As a result, the learning correction amount IGL, which is the sum of the above-mentioned overall learning value AT and partial learning value AP, becomes a value very close to the actual knocking limit in each driving state.

一方、ステップ5I13でノッキングフィードバック補
正量AKを設定した後、ステップ911.0で上記全体
学習値ATと部分学習値APとの和による学習補正量I
GLにノッキングフィードバック補正量AKを加算した
値を進角限界MBTと比較する。
On the other hand, after setting the knocking feedback correction amount AK in step 5I13, in step 911.0, the learning correction amount I is determined by the sum of the overall learning value AT and the partial learning value AP.
The value obtained by adding the knocking feedback correction amount AK to GL is compared with the advance limit MBT.

MBT≦I GL+AKの場合はステップ5111で進
角限界MBTと基本点火時期IGBとにより点火時期I
GTが算出される。このため、第4図の太い実線のよう
に進角限界MBT特性で点火時期■GTが決定される。
If MBT≦I GL+AK, step 5111 sets the ignition timing I based on the advance limit MBT and the basic ignition timing IGB.
GT is calculated. Therefore, the ignition timing (GT) is determined by the advance limit MBT characteristic as shown by the thick solid line in FIG.

また、MBT> I GLの場合は、ステップ5112
てI GT−I GB+ I GL+AKとする。ここ
でAK−0であると、学習補正量IGLと基本点火時期
IGBとにより点火時期工GTが算出され、このため点
火時期IGTは第4図の太い実線のように基本点火時期
IGBと平行になり、成るオクタン価の実際のノッキン
グ限界IGT’ に近接して沿った値になるのである。
Also, if MBT>IGL, step 5112
IGT-IGB+IGL+AK. If it is AK-0, the ignition timing GT is calculated from the learning correction amount IGL and the basic ignition timing IGB, and therefore the ignition timing IGT is parallel to the basic ignition timing IGB as shown by the thick solid line in Fig. 4. This results in a value closely aligned with the actual knocking limit IGT' for the octane rating.

次いて、ノッキング発生の場合について述べると、ステ
ップ8113により第3図(C,)のルーチンが実行さ
れてノッキングフィードバック制御される。
Next, regarding the case where knocking occurs, the routine shown in FIG. 3(C) is executed in step 8113 to perform knocking feedback control.

即ち、ステップ5300から5304に進んでノッキン
グフィードバック補正量AKが遅角量γ、により大きく
遅角側に更新され、ステップ5305でタイマ3がクリ
アされる。この時、学習制御の第3図(b)のルーチン
のステップ8208.3204により学習補正量IGL
も遅角側に更新され、第3図(a)のルーチンのステッ
プ5118の点火時期IGTは、遅角量γとγFとによ
り遅角制御される。その後ノッキング回避されると、ノ
ッキングフィードバック補正量設定の第3図(e)のル
ーチンのステップ5300からステップ5301に進ん
で、タイマ3によりノッキング無しの時間がチェックさ
れ、一定時間t3継続してノッキング無しの場合は、ス
テップ5302でノッキングフィードバック補正量AK
が進角量a、により進角側に徐々に更新され、ステップ
5303でタイマ3がクリアされる。またこの場合は、
第3図(b)のルーチンのステップ5217から521
1に進んで学習補正量IGLの部分学習値APは進角禁
止されることになる。こうしてノッキング発生時には、
学習制御とノッキングフィードバック制御とにより大き
く遅角制御され、2回目以降のノッキングが続けて生じ
ることを防止する。その後、ノッキング無しでは先ずノ
ッキングフィードバック補正量AKが零になる迄進角側
に更新され、次いで学習補正量IGLが進角側に更新可
能になり、この2者択一の制御で相互干渉、学習補正量
IGLのバラツキが防止される。
That is, the process proceeds from step 5300 to 5304, where the knocking feedback correction amount AK is updated to a larger retard side by the retard amount γ, and in step 5305, timer 3 is cleared. At this time, the learning correction amount IGL is determined by steps 8208 and 3204 of the learning control routine shown in FIG. 3(b).
The ignition timing IGT in step 5118 of the routine of FIG. 3(a) is retarded by the retard amounts γ and γF. After that, when knocking is avoided, the process proceeds from step 5300 to step 5301 of the knocking feedback correction amount setting routine shown in FIG. In this case, the knocking feedback correction amount AK is determined in step 5302.
is gradually updated to the advance angle side by the advance angle amount a, and timer 3 is cleared in step 5303. Also in this case,
Steps 5217 to 521 of the routine of FIG. 3(b)
1, the partial learning value AP of the learning correction amount IGL is prohibited from advancing. In this way, when knocking occurs,
Learning control and knocking feedback control greatly retard the angle to prevent second and subsequent knocking from occurring in succession. After that, without knocking, the knocking feedback correction amount AK is first updated to the advance side until it becomes zero, and then the learning correction amount IGL can be updated to the advance side, and this two-way control allows mutual interference and learning. Variations in the correction amount IGL are prevented.

ところで、N e > 500Orpmの高回転数域で
は、ステップ510Bの学習条件が不成立し、ステップ
5109の学習値更新は中断する。そしてステップ81
15から5tie、 5L17に進んで全体学習値AT
と、現在の吸入管圧力Pmに対応した部分学習値APの
最も高回転数側の値APhとで補正量ALが推定される
。また、ステップ5121でノッキングフィードバック
補正量AKを設定した後、ステップ8118に進んで補
正量ALとノッキングフィードバック補正量AKを加算
した値が進角限界MBTと比較され、小さい方の値を高
回転数域補正量として、ステップ5L19.8120で
基本点火時期IGBに加算することにより、点火時期I
GLが算出される。
By the way, in a high rotational speed region of N e > 500 rpm, the learning condition in step 510B is not satisfied, and the learning value update in step 5109 is interrupted. and step 81
From 15 to 5tie, proceed to 5L17 and total learning value AT
The correction amount AL is estimated from the value APh on the highest rotation speed side of the partial learning value AP corresponding to the current suction pipe pressure Pm. Further, after setting the knocking feedback correction amount AK in step 5121, the process proceeds to step 8118, where the value obtained by adding the correction amount AL and the knocking feedback correction amount AK is compared with the advance limit MBT, and the smaller value is set at the high rotation speed. By adding the range correction amount to the basic ignition timing IGB in step 5L19.8120, the ignition timing I
GL is calculated.

これにより、高回転数側の点火時期IGTは各吸入管圧
力Pm毎に最も高回転数側で設定される値と同一になり
、運転状態が類似することでノッキングの発生が少なく
て充分進角されることになる。
As a result, the ignition timing IGT on the high rotation speed side becomes the same as the value set on the highest rotation speed side for each suction pipe pressure Pm, and since the operating conditions are similar, the occurrence of knocking is small and the ignition timing is sufficiently advanced. will be done.

一方、かかる高回転数域でもノッキングが生じると、ス
テップ5121により第3図(e)のルーチンが実行さ
れ、ノッキングフィードバック制御により点火時期IG
’Tは遅角される。この場合のノッキングフィードバッ
ク制御では、学習制御の場合に比べてステップ8306
ないし8308によりノッキングフィードバック補正量
AKが設定値AKoてガードされ遅角制御される。
On the other hand, if knocking occurs even in such a high rotational speed range, the routine shown in FIG. 3(e) is executed in step 5121, and the ignition timing IG is
'T is retarded. In knocking feedback control in this case, step 8306 is different from learning control.
Through steps 8308 to 8308, the knocking feedback correction amount AK is guarded by the set value AKo and retarded control is performed.

以上、高回転数域の点火時期を、学習制御の全体学習値
と、部分学習値の運転状態が似ている部分学習値の選出
値とで補正することについて述べたが、これ以外の方法
も可能である。
Above, we have described correcting the ignition timing in the high rotation speed range using the overall learning value of the learning control and the selected value of the partial learning value whose operating condition is similar to the partial learning value, but there are other methods as well. It is possible.

即ち、学習制御の全体学習値ATにより進角量は成る程
度確保され、この他にノッキングの発生を抑制する点で
部分学習値APの最小値を選出して用いてもよい。更に
、これらの方法による全体学習値AT、部分学習値AP
の値に所定の値を減算または乗算して遅角側に定めても
よい。
That is, the advance angle amount is ensured to a certain extent by the overall learned value AT of the learning control, and in addition to this, the minimum value of the partial learned values AP may be selected and used in order to suppress the occurrence of knocking. Furthermore, the overall learning value AT and partial learning value AP by these methods
The value may be set to the retard side by subtracting or multiplying the value by a predetermined value.

= 22 − 〔発明の効果〕 以上述べてきたように、本発明によれば、車両用エンジ
ンの点火時期学習制御において、ノッキング検出不可能
な高回転数域では、学習制御の全体学習値と部分学習値
とにより最適な補正量を求めて点火時期を推定するので
、補正量の信頼性が高く、ノッキングの発生を抑えて充
分進角し、出力、燃費を向上することができる。
= 22 - [Effects of the Invention] As described above, according to the present invention, in the ignition timing learning control of a vehicle engine, in the high rotational speed region where knocking cannot be detected, the overall learning value and the partial learning value of the learning control are Since the ignition timing is estimated by determining the optimum correction amount using the learned value, the reliability of the correction amount is high, and the occurrence of knocking can be suppressed and the ignition timing can be sufficiently advanced to improve output and fuel efficiency.

さらに、学習制御の全体学習値と部分学習値とを共に用
いることで、補正量推定の自由度、適正度が高くなり、
制御形態も同一化して好ましい。
Furthermore, by using both the overall learning value and the partial learning value of learning control, the degree of freedom and appropriateness in estimating the correction amount is increased.
It is preferable that the control form is also the same.

さらにまた、高回転数域のノッキングフィードバック制
御ではノッキングフィードバック補正量にガードをかけ
るため、該補正量が機械的ノイズによって間違っても大
きくなりすぎず、誤作動を防止できる。
Furthermore, in knocking feedback control in a high rotation speed range, the knocking feedback correction amount is guarded, so even if the correction amount is incorrect due to mechanical noise, it will not become too large, and malfunctions can be prevented.

また、全体学習値に運転状態の類似した最も高回転数側
の部分学習値を加算したものでは、ノッキングを抑えて
最大限進角することができる。
Further, by adding the partial learning value on the highest rotational speed side with similar driving conditions to the overall learning value, it is possible to suppress knocking and advance the engine angle to the maximum extent possible.

またさらに、全体学習値に部分学習値の最小値を加算し
たものでは、ノッキング発生の抑制効果が高い。
Furthermore, when the minimum value of the partial learning values is added to the overall learning value, the effect of suppressing the occurrence of knocking is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の点火時期学習制御方法の実施例を示す
ブロック図、 第2図は本発明が適用される車両用エンジンの概略を示
す構成図、 第3図(a)ないしくC)は点火時期学習制御の作用を
示すフローチャート図、 第4図はマツプの特性図、 第5図は部分学習値のマツプを示す図である。 1・・・エンジン本体、7・・・点火プラグ、30・・
・制御ユニット、35・・・基本点火時期検索手段、3
6・・・進角限界検索手段、37・領域判別手段、38
・・・点火時期算出手段、40・・・学習条件判別手段
、41・・・学習値更新手段、45・・・部分学習値記
憶手段、46・・・学習補正量算出手段、50・・・選
出手段、52・・・高回転数域補正量設定手段、53・
・高回転数域判定手段、54・・・選択手段。
FIG. 1 is a block diagram showing an embodiment of the ignition timing learning control method of the present invention, FIG. 2 is a block diagram showing an outline of a vehicle engine to which the present invention is applied, and FIG. 3 (a) to C) is a flowchart showing the action of ignition timing learning control, FIG. 4 is a characteristic diagram of the map, and FIG. 5 is a diagram showing a map of partial learning values. 1... Engine body, 7... Spark plug, 30...
- Control unit, 35... Basic ignition timing search means, 3
6... Lead angle limit search means, 37. Area discrimination means, 38
... Ignition timing calculation means, 40 ... Learning condition determination means, 41 ... Learning value updating means, 45 ... Partial learning value storage means, 46 ... Learning correction amount calculation means, 50 ... Selection means, 52... High rotation speed range correction amount setting means, 53.
- High rotation speed range determination means, 54... selection means.

Claims (3)

【特許請求の範囲】[Claims] (1)ノッキング発生の有無に応じ進・遅角しながら全
体学習値を設定する全体学習を実行し、次いで各運転状
態毎にノッキング発生の有無に応じ進・遅角して部分学
習値を設定する部分学習を実行し、これらの全体学習値
と部分学習値との和により点火時期を補正して決定する
方法において、エンジン高回転数域では、上記全体学習
および部分学習を中断し、 上記全体学習値および部分学習値に基づいて高回転数域
補正量を算出し、高回転数域の点火時期を高回転域補正
量で補正して決定することを特徴とする点火時期学習制
御方法。
(1) Execute overall learning to set the overall learning value while advancing or retarding depending on whether or not knocking occurs, and then setting partial learning values by advancing or retarding the angle depending on whether or not knocking occurs for each driving state. In this method, the ignition timing is corrected and determined based on the sum of the overall learning value and the partial learning value, and in the high engine speed range, the above overall learning and partial learning are interrupted, and the above overall learning value is An ignition timing learning control method characterized by calculating a high rotation speed range correction amount based on a learned value and a partial learning value, and determining the ignition timing in the high rotation speed range by correcting it with the high rotation speed range correction amount.
(2)上記高回転数域補正量は、少なくとも全体学習値
に各エンジン負荷毎の最も高回転数側の部分学習値を加
算して算出する請求項(1)記載の点火時期学習制御方
法。
(2) The ignition timing learning control method according to claim 1, wherein the high rotational speed range correction amount is calculated by adding a partial learning value on the highest rotational speed side for each engine load to at least the overall learning value.
(3)上記高回転数域補正量は、少なくとも全体学習値
に部分学習値の最小値を加算して算出する請求項(1)
記載の点火時期学習制御方法。
(3) Claim (1) wherein the high rotational speed range correction amount is calculated by adding at least the minimum value of the partial learning values to the overall learning value.
The ignition timing learning control method described.
JP1125134A 1989-05-18 1989-05-18 Ignition timing learning control method Expired - Lifetime JP2832299B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1125134A JP2832299B2 (en) 1989-05-18 1989-05-18 Ignition timing learning control method
DE4015759A DE4015759C2 (en) 1989-05-18 1990-05-16 Method for setting the ignition timing of an internal combustion engine and device for carrying out the method
GB9011101A GB2232441A (en) 1989-05-18 1990-05-17 I.c. engine ignition timing control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125134A JP2832299B2 (en) 1989-05-18 1989-05-18 Ignition timing learning control method

Publications (2)

Publication Number Publication Date
JPH02305371A true JPH02305371A (en) 1990-12-18
JP2832299B2 JP2832299B2 (en) 1998-12-09

Family

ID=14902702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125134A Expired - Lifetime JP2832299B2 (en) 1989-05-18 1989-05-18 Ignition timing learning control method

Country Status (3)

Country Link
JP (1) JP2832299B2 (en)
DE (1) DE4015759C2 (en)
GB (1) GB2232441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166573A (en) * 2011-02-09 2012-09-06 Suzuki Motor Corp Control system for outboard motor, method of learning optimum trim angle, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109433A1 (en) * 1991-03-22 1992-09-24 Audi Ag KNOCK CONTROL OF A FOREIGN IGNITION ENGINE
DE4109429A1 (en) * 1991-03-22 1992-09-24 Audi Ag AUTOMATIC IGNITION TIMING ADJUSTMENT IN DYNAMIC PROCESSES FOR A FOREIGN-IGNITION ENGINE
DE19618403A1 (en) * 1996-05-08 1997-11-13 Bayerische Motoren Werke Ag Control device for the idle speed of a vehicle internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110862A (en) * 1982-12-15 1984-06-26 Toyota Motor Corp Control of knocking in internal-combustion engine
JPS63306282A (en) * 1987-06-08 1988-12-14 Fuji Heavy Ind Ltd Ignition timing control method for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640249A (en) * 1984-06-30 1987-02-03 Nissan Motor Company, Limited System for controlling an ignition timing in an internal combustion engine and method therefor
JPS61157768A (en) * 1984-12-28 1986-07-17 Fuji Heavy Ind Ltd Ignition timing control system for internal-combustion engine
JPS6296780A (en) * 1985-10-22 1987-05-06 Nissan Motor Co Ltd Ignition timing control device
JP2731905B2 (en) * 1987-06-08 1998-03-25 富士重工業株式会社 Ignition timing control method for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110862A (en) * 1982-12-15 1984-06-26 Toyota Motor Corp Control of knocking in internal-combustion engine
JPS63306282A (en) * 1987-06-08 1988-12-14 Fuji Heavy Ind Ltd Ignition timing control method for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166573A (en) * 2011-02-09 2012-09-06 Suzuki Motor Corp Control system for outboard motor, method of learning optimum trim angle, and program

Also Published As

Publication number Publication date
DE4015759A1 (en) 1990-11-22
GB2232441A (en) 1990-12-12
JP2832299B2 (en) 1998-12-09
DE4015759C2 (en) 1994-09-22
GB9011101D0 (en) 1990-07-04

Similar Documents

Publication Publication Date Title
JP2910858B2 (en) Engine knock detection method
JP2950848B2 (en) Ignition timing learning control method
JP2782231B2 (en) Ignition timing learning control method
JPS58143169A (en) Method for controlling ignition timing
JP2899657B2 (en) Ignition timing learning control method
JP2715207B2 (en) Electronic control fuel supply device for internal combustion engine
JP3900088B2 (en) Internal combustion engine knock determination period setting method, fuel injection timing setting method, and internal combustion engine control apparatus
JP2784664B2 (en) Ignition timing learning control method
JP2731929B2 (en) Ignition timing control device
JPH0814271B2 (en) Ignition timing control device for internal combustion engine
JPH02305371A (en) Method of ignition timing learning control
JPH0357879A (en) Ignition timing controller
JPH0826838B2 (en) Ignition timing control method for internal combustion engine
JP2999778B2 (en) Ignition timing learning control method
JP3055688B2 (en) Engine ignition timing learning control method
JP3281574B2 (en) Knock detection method for internal combustion engine
JP2528168B2 (en) Ignition timing control device for internal combustion engine
JP2766905B2 (en) Ignition timing learning control method
JP2731927B2 (en) Ignition timing control device
JPH0412172A (en) Control device for ignition timing of engine
JP2682218B2 (en) Knocking control device for internal combustion engine
JPS6380075A (en) Ignition timing control device for internal combustion engine
JPH0742926B2 (en) Engine ignition timing control device
JP2514442B2 (en) Knock detection device for internal combustion engine
JPH06100151B2 (en) Engine controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11