JPH0230505B2 - - Google Patents

Info

Publication number
JPH0230505B2
JPH0230505B2 JP58233876A JP23387683A JPH0230505B2 JP H0230505 B2 JPH0230505 B2 JP H0230505B2 JP 58233876 A JP58233876 A JP 58233876A JP 23387683 A JP23387683 A JP 23387683A JP H0230505 B2 JPH0230505 B2 JP H0230505B2
Authority
JP
Japan
Prior art keywords
photoreceptor
particles
light
potential
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58233876A
Other languages
Japanese (ja)
Other versions
JPS60125855A (en
Inventor
Hajime Yamamoto
Hiromu Matsuda
Juji Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58233876A priority Critical patent/JPS60125855A/en
Publication of JPS60125855A publication Critical patent/JPS60125855A/en
Publication of JPH0230505B2 publication Critical patent/JPH0230505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/01Electrographic processes using a charge pattern for multicoloured copies
    • G03G13/016Electrographic processes using a charge pattern for multicoloured copies in which the colour powder image is formed directly on the recording material, e.g. DEP methods

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複写機やプリンタに応用される光透
過性粒子を用いた静電画像の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of forming an electrostatic image using light-transmitting particles, which is applied to copying machines and printers.

従来例の構成とその問題点 従来の光透過性粒子を用いた代表的画像形成方
法として特公昭56−110574号公報に示される方法
があつた。この方法では画像形成粒子として光透
過性粒子を用い、帯電させた感光体上に静電付着
させ、前記粒子面から像露光する。光を通さなか
つた。あるいは光が当たらなかつた粒子の下の感
光体は、露光前と同じく電荷を保持したままであ
り、粒子と感光体との間には強い静電引力が働い
ている。光を通した粒子の下の感光体は、電荷を
失い、粒子と感光体との静電引力が弱化する。露
光後この静電引力の差を用いて、静電引力の弱化
した粒子を感光体から除去し、感光体上に粒子に
よる像を得る。この方法で白地部を再現しようと
すると、感光体の露光電位をOVまで落とさなけ
ればならず、過度の露光量が必要であつた。また
残留電位の大きな感光体を用いると、白地部に地
かぶりが残り易く、また色純度が悪くなるという
欠点を有していた。
Structures of Conventional Examples and Their Problems A typical conventional image forming method using light-transmitting particles is the method disclosed in Japanese Patent Publication No. 110574/1983. In this method, light-transmitting particles are used as image-forming particles, are electrostatically deposited on a charged photoreceptor, and imagewise exposed from the particle surface. No light passed through it. Alternatively, the photoreceptor under the particle that is not exposed to light retains the same charge as before exposure, and a strong electrostatic attraction is exerted between the particle and the photoreceptor. The photoreceptor beneath the particle through which the light passes loses its charge, and the electrostatic attraction between the particle and the photoreceptor weakens. After exposure, this difference in electrostatic attraction is used to remove the particles whose electrostatic attraction has weakened from the photoreceptor, thereby obtaining an image of the particles on the photoreceptor. When attempting to reproduce a white background area using this method, the exposure potential of the photoreceptor had to be lowered to OV, requiring an excessive amount of exposure. Furthermore, when a photoreceptor with a large residual potential is used, there are disadvantages in that background fog tends to remain in white background areas and color purity deteriorates.

発明の目的 本発明の目的は、従来のかかる欠点を解決し、
少ない露光量でも地かぶりのないコピーを得るこ
とのできる画像形成方法を提供することである。
OBJECT OF THE INVENTION It is an object of the present invention to solve such drawbacks of the prior art,
To provide an image forming method capable of obtaining a copy without background fog even with a small amount of exposure.

発明の構成 本発明は、光導電性物質を含む電子写真感光体
を帯電させ、その上に光透過性粒子を静電付着さ
せた後に、感光体の粒子面から像露光する。その
後前記粒子面の電位を前記電子写真感光体の露光
電位と略同電位にした後、前記電子写真感光体か
ら光を透過した粒子を除去する工程を有すること
を特徴とする画像形成方法である。
Structure of the Invention In the present invention, an electrophotographic photoreceptor containing a photoconductive substance is charged, light-transmitting particles are electrostatically deposited thereon, and then imagewise exposed from the particle surface of the photoreceptor. The image forming method is characterized by comprising the step of: after making the potential of the particle surface substantially the same as the exposure potential of the electrophotographic photoreceptor, the particles through which light has passed are removed from the electrophotographic photoreceptor. .

実施例の説明 次に、本発明を用いた画像形成方法について図
を用いて詳細に説明する。
DESCRIPTION OF EMBODIMENTS Next, an image forming method using the present invention will be described in detail with reference to the drawings.

まず、通常の電子写真に用いられる感光体1を
高圧電源3により高圧を印加したコロナ帯電器4
を用い帯電させる(第1図)。この感光体1とし
ては、無定形セレン、CdS、酸化亜鉛などを導電
性基盤2に蒸着または塗布したものが用いられ
る。感光体1に例えば酸化亜鉛を用いた場合は、
高圧電源は負極性にし、感光体表面を負に帯電さ
せる。この後第1図に示すように、導電性の光透
過性粒子5を帯電した感光体1上に散布する。こ
の状態の拡大図を第2図に示す。粒子5は導電性
であるため、帯電した感光体1からの静電誘導を
受けて正に帯電し、感光体1に強く静電付着す
る。このとき光透過性粒子層は1層に付着するの
が好ましく、この目的のためには、粒子5の散布
後、感光体1の背面を軽く加振すると、粒子層は
容易に1層になる。
First, a photoreceptor 1 used in ordinary electrophotography is charged with a corona charger 4 to which a high voltage is applied by a high voltage power supply 3.
(Figure 1). As the photoreceptor 1, one in which amorphous selenium, CdS, zinc oxide, or the like is deposited or coated on a conductive substrate 2 is used. For example, when zinc oxide is used for the photoreceptor 1,
The high voltage power source is set to negative polarity to negatively charge the surface of the photoreceptor. Thereafter, as shown in FIG. 1, conductive light-transmitting particles 5 are sprinkled onto the charged photoreceptor 1. As shown in FIG. An enlarged view of this state is shown in FIG. Since the particles 5 are conductive, they receive electrostatic induction from the charged photoreceptor 1, become positively charged, and are strongly electrostatically attached to the photoreceptor 1. At this time, it is preferable that the light-transmissive particle layer adheres to one layer. For this purpose, after dispersing the particles 5, if the back surface of the photoreceptor 1 is lightly vibrated, the particle layer will easily become one layer. .

ここで用いる光透過性粒子としては、ポリメチ
ルメタクリレートあるいはガラスビーズ等の透明
粒子の表面を着色材で着色したもの、アクリル樹
脂、スチレン樹脂、スチン−ブタジエン共重合体
などの透明性の良い樹脂に着色材を分散したもの
がある。さらに本発明に有効な光透過性粒子とし
ては、前記着色剤の代わりに、例えばビスフエノ
ールAや活性クレーなどの如き電子受容物質と反
応して発色する例えばトリアゼン染料、トリフエ
ニルメタン系ロイコ染料、フエナジン染料、スチ
ルベン染料の如きカラーフオーマを分散したも
の、あるいは前記着色剤と併用したものがある。
The light-transmitting particles used here include transparent particles such as polymethyl methacrylate or glass beads whose surfaces are colored with a coloring agent, and resins with good transparency such as acrylic resin, styrene resin, and styne-butadiene copolymer. Some have colorants dispersed in them. Furthermore, the light-transmitting particles useful in the present invention include triazene dyes, triphenylmethane-based leuco dyes, which develop color by reacting with electron-accepting substances such as bisphenol A and activated clay, instead of the above-mentioned colorants. There are those in which color formers such as phenazine dyes and stilbene dyes are dispersed, or those in which they are used in combination with the above-mentioned colorants.

このような光透過性粒子の形状は、入射光の散
乱を防ぐため球状が好ましく、またその粒径は解
像力の点から数ミクロンから80ミクロンのものが
良い。また本発明に用いる光透過性粒子は、好ま
しくは導電性粒子の方が良い。これは導電粒子を
用いると、帯電した感光体への粒子の1層付着が
容易になることと、露光後の粒子面へのコロナ帯
電による粒子への電荷注入が容易になるためであ
る。この導電性光透過性粒子は、例えば前記光透
過性粒子の表面に、透明な導電材料である沃化第
一銅を塗布することにより容易に得られる。
The shape of such light-transmitting particles is preferably spherical in order to prevent scattering of incident light, and the particle size is preferably from several microns to 80 microns from the viewpoint of resolution. Further, the light-transmitting particles used in the present invention are preferably electrically conductive particles. This is because the use of conductive particles facilitates the adhesion of a single layer of particles to a charged photoreceptor, and facilitates charge injection into the particles due to corona charging of the particle surface after exposure. The conductive light-transmitting particles can be easily obtained, for example, by applying cuprous iodide, which is a transparent conductive material, to the surface of the light-transmitting particles.

次に、第3図に示すように、感光体粒子面を透
過原稿6を通して露光する。このときの粒子5の
静電付着状態を第4図に示す。粒子5aは光が当
たらなかつたかまたは光を通さなかつた粒子であ
り、感光体1との静電引力は強く残つたままであ
る。粒子5bは、光を通した粒子で、感光体1と
粒子5b中の電荷は消失し、両者の静電引力は無
くなつている。
Next, as shown in FIG. 3, the surface of the photoreceptor particles is exposed through the transparent original 6. As shown in FIG. The state of electrostatic adhesion of the particles 5 at this time is shown in FIG. Particles 5a are particles that are not exposed to light or do not allow light to pass therethrough, and their electrostatic attraction with photoreceptor 1 remains strong. Particles 5b are particles through which light passes, and the charges in photoreceptor 1 and particles 5b have disappeared, and the electrostatic attraction between them has disappeared.

ところが、光を通した粒子下の感光体の電位、
すなわち露光電位をOVにするためには過大な露
光量が必要であり、また残留電位の大きな感光体
を用いると、露光量を増しても残留電位が消え
ず、粒子と感光体の間に静電引力が残つてしま
う。このように感光体の露光部に電荷が残つたま
ま光を通した粒子のみを除去しようとしても完全
には取り切れず、地かぶりが発生したり、色純度
の悪い画像になつていまうという欠点があつた。
However, the potential of the photoreceptor under the particle through which light passes,
In other words, an excessive amount of exposure is required in order to bring the exposure potential to OV, and if a photoreceptor with a large residual potential is used, the residual potential will not disappear even if the exposure amount is increased, causing static between the particles and the photoreceptor. Electric attraction remains. In this way, even if you try to remove only the particles through which light passes while the charge remains on the exposed part of the photoreceptor, it cannot be completely removed, resulting in background fog or an image with poor color purity. It was hot.

本発明の特徴は、第3,4図に示す露光後の粒
子面の電位を、感光体の露光電位と略同電位にす
ることにより、光を通した粒子5aの感光体1表
面からの除去を容易にし、地かぶりのない色純度
の良い画像を得ることにある。
A feature of the present invention is that the particles 5a through which light passes can be removed from the surface of the photoreceptor 1 by making the potential of the particle surface after exposure as shown in FIGS. 3 and 4 approximately the same potential as the exposure potential of the photoreceptor. The objective is to easily obtain images with good color purity and no background fog.

本発明の方法を第5図を用いて説明する。第3
図に示す露光後の粒子面を、第5図に示すように
コロナ帯電器4を用いて帯電させる。このときコ
ロナ帯電器4に印加する電圧の極性は、第1図で
感光体1を帯電するのに用いた電圧の極性と同じ
でなくてはならない。例えば感光体1に酸化亜鉛
を用いた場合は電源3は負でなければならない。
このときの粒子の電位は、あらかじめ測定してお
いた感光体の露光電位におおよそ等しくなるよう
にする。粒子面の電位の制御は、第5図に示すよ
うに、グリツド電極4′を設けたスコロトロン帯
電器を用いた方が、より容易になる。スコロトロ
ン帯電器を用いた場合には、グリツド4′の印加
電圧を感光体1の露光電位に設定しておくと、粒
子面の電位は感光体の露光電位に等しくなる。こ
のときの粒子5と感光体1との静電付着状態を第
6図に示す。光を通さなかつたかあるいは光が当
たらなかつた粒子5aは、第4図に示した状態よ
りも電荷量が小さくなるものの、感光体1との間
には、いまだ十分な静電引力が残つている。一
方、光を通した粒子5bは、感光体1の露光電位
と同電位になつているので、感光体1と粒子間に
は静電引力は全くなくなつている。この状態で、
第7図のように感光体1を加振機7を用い背面か
ら加振すると、静電引力のない粒子5bのみが感
光体1から除去される。この光を通した粒子の除
去方法としては、感光体に加振する方法、空気流
で吹き飛ばす方法、静電引力を用いる方法等があ
るが、感光体を加振する方法が最も容易である。
The method of the present invention will be explained using FIG. Third
The exposed particle surface shown in the figure is charged using a corona charger 4 as shown in FIG. At this time, the polarity of the voltage applied to the corona charger 4 must be the same as the polarity of the voltage used to charge the photoreceptor 1 in FIG. For example, if zinc oxide is used for the photoreceptor 1, the power source 3 must be negative.
The potential of the particles at this time is made approximately equal to the exposure potential of the photoreceptor measured in advance. The potential on the particle surface can be more easily controlled by using a scorotron charger provided with a grid electrode 4', as shown in FIG. When a scorotron charger is used, if the voltage applied to the grid 4' is set to the exposure potential of the photoreceptor 1, the potential of the particle surface becomes equal to the exposure potential of the photoreceptor. The state of electrostatic adhesion between the particles 5 and the photoreceptor 1 at this time is shown in FIG. Although the particles 5a that do not transmit light or are not exposed to light have a smaller amount of charge than the state shown in FIG. 4, sufficient electrostatic attraction remains between them and the photoreceptor 1. . On the other hand, since the light-transmitting particles 5b have the same potential as the exposure potential of the photoreceptor 1, there is no electrostatic attraction between the photoreceptor 1 and the particles. In this state,
When the photoreceptor 1 is vibrated from the back using the vibrator 7 as shown in FIG. 7, only particles 5b without electrostatic attraction are removed from the photoreceptor 1. Methods for removing particles through light include a method of vibrating the photoreceptor, a method of blowing the particles away with an air stream, a method of using electrostatic attraction, etc., but the method of vibrating the photoreceptor is the easiest.

本方法を用いてネガ原稿からポジのフルカラー
の画像を得る実施例を次に示す。
An example of obtaining a positive full-color image from a negative original using this method will be described below.

実施例 まず下記処方により赤、緑、青紫の溶液を用意
した。
Example First, red, green, and blue-purple solutions were prepared according to the following formulations.

(1) 赤溶液 SBR樹脂結着剤:ノーガテツクス2752(住友ノ
ーガタツク(株)製以下同じ) …100重量部 シリカ:スノーテツクスN(日産化学(株)製以下
同じ) …80重量部 C.I.ピグメントレツド5 …2.6重量部 C.I.ピグメントオレンジ21115 …5.3重量部 アニオン系活性剤 …1.0重量部 水 …130重量部 昇華性カラーフオマ:3,7−ビス−ジエチル
アミノ−10−トリクロロアセチル−フエノキ
サジン …8重量部 (2) 緑溶液 SBR樹脂結着剤 …100重量部 シリカ …80重量部 C.I.ピグメントグリーン36 …5.4重量部 C.I.バツトイエロ20 …0.8重量部 β−型銅フタロシアニン …2.2重量部 アニオン系活性剤 …0.3重量部 ノニオン系活性剤 …0.46重量部 水 …160重量部 昇華性カラーフオマ:4−(5−クロロ−1,
3,3−トリメチル−インドリノ)メチル−
7−(N−メチルN−フエニル)アミノ−
5′−クロロ−1′,3′,3′−トリメチル−スピ
ロ〔2H−1−ベンゾピラン−(2H)−インド
ール〕 …3重量部 (3) 青紫溶液 SBR樹脂結着剤 …100重量部 シリカ …80重量部 C.I.ピグメントブルー15 …3重量部 ジオキサジンバイオレツト …0.5重量部 メチルバイオレツトレーキ …0.5重量部 アニオン系活性剤 …0.3重量部 昇華性カラーフオーマ:N−(1,2−ジメチ
ル−3−イル)メチリデン−2,4−ジメト
キシアニリン …5重量部 水 …160重量部 以上3種類の溶液をそれぞれ別々にボールミル
で3時間分散したインクとした後、これを噴霧乾
燥して5ミクロン〜50ミクロンの赤、緑、青紫の
球状粒子を得た。次に前記粒子100重量部に対し、
下記処方のヨウ化銅溶液200重量部をそれぞれ
別々に流動塗布した後分級し15〜20μmの粒子を
得た。粒子の比抵抗は約103Ω・cmであつた。
(1) Red solution SBR resin binder: Naugatex 2752 (manufactured by Sumitomo Naugataku Co., Ltd., the same hereinafter) ...100 parts by weight Silica: Snowtex N (manufactured by Nissan Chemical Co., Ltd., the same hereinafter) ...80 parts by weight CI Pigment Red 5 …2.6 parts by weight CI Pigment Orange 21115 …5.3 parts by weight Anionic activator …1.0 parts by weight Water …130 parts by weight Sublimable color fumer: 3,7-bis-diethylamino-10-trichloroacetyl-phenoxazine …8 parts by weight (2) Green solution SBR resin binder...100 parts by weight Silica...80 parts by weight CI Pigment Green 36...5.4 parts by weight CI Batsuto Yellow 20...0.8 parts by weight β-type copper phthalocyanine...2.2 parts by weight Anionic activator...0.3 parts by weight Nonionic Activator...0.46 parts by weight Water...160 parts by weight Sublimation color forumer: 4-(5-chloro-1,
3,3-trimethyl-indolino)methyl-
7-(N-methylN-phenyl)amino-
5'-Chloro-1',3',3'-trimethyl-spiro[2H-1-benzopyran-(2H)-indole]...3 parts by weight (3) Blue-violet solution SBR resin binder...100 parts by weight Silica... 80 parts by weight CI Pigment Blue 15...3 parts by weight Dioxazine violet...0.5 parts by weight Methyl violet lake...0.5 parts by weight Anionic activator...0.3 parts by weight Sublimable color former: N-(1,2-dimethyl-3- yl) Methylidene-2,4-dimethoxyaniline...5 parts by weight Water...160 parts by weight Each of the above three types of solutions was dispersed separately in a ball mill for 3 hours to form an ink, which was then spray dried to form an ink of 5 to 50 microns. Red, green, and blue-violet spherical particles were obtained. Next, for 100 parts by weight of the particles,
200 parts by weight of a copper iodide solution having the following formulation was separately flow-coated and then classified to obtain particles of 15 to 20 μm. The specific resistance of the particles was approximately 10 3 Ω·cm.

ヨウ化銅溶液処方 ヨウ化銅 2重量部 アセトニトリル 100重量部 次に、露光電位が−30Vの酸化亜鉛感光体1を
暗所で−6kV印加したコロナ帯電器4で−400V
に荷電し、前記の3種の光透過性粒子の等量混合
物5を感光体に散布したところ、光透過性粒子5
は静電誘電を受け正に帯電し、感光体1に静電付
着した。次に感光体上の粒子付着面から、カラー
ネガ原稿6を像露光した(第3図)。その後グリ
ツド電極4′を備えたスコロトロン帯電器4を用
い、グリツド電極には−30V、コロナワイヤには
−6kVの電圧を印加して粒子面を−30Vにした。
次に感光体1の粒子面を下向け背面から加振機7
で加振すると、光を通した粒子5bのみが落下
し、感光体1上には光を通さなかつた粒子のみが
残つた(第7図)。この感光体を全面白色露光し
除電した後、クレー紙10のクレー表面9を粒子
像に近接し、クレー紙の背面を+6kVの電圧を印
加したコロナ帯電器4で帯電させ、粒子像をクレ
ー紙に転写した(第8図)。粒子を転写したクレ
ー紙を約200℃に加熱し無色昇華性染料を昇華さ
せてクレー層で発色させ(第9図)、粒子をクリ
ーニングブラシ13でクレー紙上から除去したと
ころ(第10図)、地かぶりの全くない、色純度
の良いフルカラーのコピーが得られた。
Copper iodide solution prescription Copper iodide 2 parts by weight Acetonitrile 100 parts Next, the zinc oxide photoreceptor 1 with an exposure potential of -30V was charged with -400V by the corona charger 4 which applied -6kV in the dark.
When a mixture 5 of equal amounts of the three types of light-transmitting particles described above was sprayed on the photoreceptor, the light-transmitting particles 5
received electrostatic dielectricity, became positively charged, and electrostatically adhered to the photoreceptor 1. Next, the color negative original 6 was imagewise exposed from the particle-attached surface on the photoreceptor (FIG. 3). Thereafter, using a scorotron charger 4 equipped with a grid electrode 4', a voltage of -30 V was applied to the grid electrode and a voltage of -6 kV was applied to the corona wire to bring the particle surface to -30 V.
Next, the vibrator 7
When the photoreceptor 1 was vibrated, only the particles 5b through which light passed fell, and only the particles through which light did not pass remained on the photoreceptor 1 (FIG. 7). After this photoreceptor is completely exposed to white light to remove static electricity, the clay surface 9 of the clay paper 10 is brought close to the particle image, and the back surface of the clay paper is charged with a corona charger 4 applying a voltage of +6 kV, and the particle image is transferred to the clay paper. (Fig. 8). The clay paper on which the particles were transferred was heated to about 200°C to sublimate the colorless sublimable dye and develop color in the clay layer (Figure 9), and the particles were removed from the clay paper using the cleaning brush 13 (Figure 10). A full-color copy with good color purity and no background fog was obtained.

発明の効果 以上のように本発明に用いれば、光透過性粒子
を用いた画像形成方法において、感光体の露光電
位が比較的高い場合においても、地かぶりの少な
い画像を得ることができる。
Effects of the Invention As described above, when the present invention is used, an image with less background fog can be obtained in an image forming method using light-transmitting particles even when the exposure potential of the photoreceptor is relatively high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は帯電した感光体への光透過性粒子の付
着方法を示す図、第2図は第1図における光透過
性粒子の感光体への付着状態を説明する図、第3
図は透過原稿を用いて感光体面上に像露光する
図、第4図は第3図における光透過性粒子の光を
通さなかつた場合と通した場合の感光体への付着
状態を説明する図、第5図はスコロトロン帯電器
を用いた露光後の粒子面の帯電方法を示す図、第
6図は第5図における粒子の感光体への静電付着
状態を説明する図、第7図は感光体の背面を加振
することによる現像方法を説明する図、第8図は
感光体上に残つた粒子像のクレー紙上への転写方
法を示す図、第9図は光透過性粒子にあらかじめ
含まれた無色昇華性染料を加熱することにより、
クレー紙上で発色させる方法を示す図、第10図
はクレー紙上の光透過性粒子をクリーニングブラ
シで除去する方法を示す図である。 1…酸化亜鉛感光板、2…導電性基盤、3…高
圧電源、4…コロナ帯電器、4′…グリツド電極、
5…光透過性粒子、5a…光を通さなかつた、ま
たは光が当たらなかつた粒子、5b…光を通した
粒子、6…透過原稿、7…加振機、8…高圧電
源、9…クレー層、10…クレー紙、11…加熱
ローラ、12…加圧ローラ、13…クリーニング
ブラシ。
FIG. 1 is a diagram showing a method of attaching light-transmitting particles to a charged photoconductor, FIG. 2 is a diagram explaining how the light-transmitting particles in FIG. 1 are attached to a photoconductor, and FIG.
The figure shows image exposure on the photoconductor surface using a transparent original, and FIG. 4 is a diagram illustrating the state of adhesion of the light-transmissive particles in FIG. , FIG. 5 is a diagram showing the method of charging the particle surface after exposure using a scorotron charger, FIG. 6 is a diagram explaining the state of electrostatic adhesion of the particles to the photoreceptor in FIG. 5, and FIG. Figure 8 is a diagram illustrating a developing method by vibrating the back surface of a photoreceptor, Figure 8 is a diagram showing a method for transferring a particle image remaining on a photoreceptor onto clay paper, and Figure 9 is a diagram showing a method of transferring a particle image remaining on a photoreceptor onto clay paper. By heating the colorless sublimable dye contained,
FIG. 10 is a diagram showing a method of developing color on clay paper, and FIG. 10 is a diagram showing a method of removing light-transmitting particles on clay paper with a cleaning brush. 1... Zinc oxide photosensitive plate, 2... Conductive substrate, 3... High voltage power supply, 4... Corona charger, 4'... Grid electrode,
5... Light-transmitting particles, 5a... Particles that did not pass light or were not exposed to light, 5b... Particles that allowed light to pass through, 6... Transparent original, 7... Vibrator, 8... High-voltage power supply, 9... Clay Layer, 10... Clay paper, 11... Heating roller, 12... Pressure roller, 13... Cleaning brush.

Claims (1)

【特許請求の範囲】 1 光導電性物質を含む電子写真感光体を帯電さ
せ、その上に光透過性粒子を静電付着させた後
に、感光体の粒子面から像露光し、その後前記粒
子面の電位を前記電子写真感光体の露光電位と略
同電位にした後、前記電子写真感光体から光を透
過した粒子を除去する工程を有することを特徴と
する画像形成方法。 2 前記粒子面の電位を前記電子写真感光体の露
光電位と略同電位にする方法が、グリツド電極を
有するスコロトロン帯電器を用いる方法である特
許請求の範囲第1項記載の画像形成方法。
[Scope of Claims] 1. After charging an electrophotographic photoreceptor containing a photoconductive substance and electrostatically adhering light-transmitting particles thereon, imagewise exposure is performed from the particle surface of the photoreceptor, and then the particle surface An image forming method comprising the step of: adjusting the potential of the electrophotographic photoreceptor to approximately the same potential as the exposure potential of the electrophotographic photoreceptor, and then removing particles through which light has passed from the electrophotographic photoreceptor. 2. The image forming method according to claim 1, wherein the method of bringing the potential of the particle surface to approximately the same potential as the exposure potential of the electrophotographic photoreceptor is a method using a scorotron charger having a grid electrode.
JP58233876A 1983-12-12 1983-12-12 Image forming method Granted JPS60125855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58233876A JPS60125855A (en) 1983-12-12 1983-12-12 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233876A JPS60125855A (en) 1983-12-12 1983-12-12 Image forming method

Publications (2)

Publication Number Publication Date
JPS60125855A JPS60125855A (en) 1985-07-05
JPH0230505B2 true JPH0230505B2 (en) 1990-07-06

Family

ID=16961946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233876A Granted JPS60125855A (en) 1983-12-12 1983-12-12 Image forming method

Country Status (1)

Country Link
JP (1) JPS60125855A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118853A (en) * 1983-11-30 1985-06-26 Matsushita Electric Ind Co Ltd Image forming method
EP0447566B1 (en) * 1989-10-12 1994-11-30 Citizen Watch Co. Ltd. Color image forming method

Also Published As

Publication number Publication date
JPS60125855A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
WO1990004810A1 (en) Color electrophotographic method and apparatus
US20030190544A1 (en) Toner for electrophotography and developer for electrophotography using the same, apparatus for forming image, and method for forming image
JPH0230505B2 (en)
CA1163851A (en) Image formation by transfer of a vaporizable dye former and subsequent color development
JP2633248B2 (en) Color electrophotographic method
JPS6345591B2 (en)
JPH0242222B2 (en)
JPS6031150A (en) Formation of color image
JPS59142567A (en) Image forming method
JPS5862668A (en) Image forming particle
JPS5924857A (en) Color electrophotography method
JPS63285566A (en) Image forming method
JPS5923350A (en) Color electrophotographic method
JPS60119582A (en) Image forming method
JPS6017767A (en) Image forming method
JPS6348060B2 (en)
JPH0421598B2 (en)
JPS59127070A (en) Image forming method
JPS63301963A (en) Electrophotographic toner
JPS6246858B2 (en)
JPS6048032B2 (en) Image forming method and device
JPS63146055A (en) Multicolor image forming method
JPS59109062A (en) Image forming particles
JPS62249172A (en) Electrophotographing method
JPS59123863A (en) Formation of color image