JPH02304403A - Method for observing multi-core optical fiber - Google Patents

Method for observing multi-core optical fiber

Info

Publication number
JPH02304403A
JPH02304403A JP12440889A JP12440889A JPH02304403A JP H02304403 A JPH02304403 A JP H02304403A JP 12440889 A JP12440889 A JP 12440889A JP 12440889 A JP12440889 A JP 12440889A JP H02304403 A JPH02304403 A JP H02304403A
Authority
JP
Japan
Prior art keywords
image
optical fiber
image pickup
axis
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12440889A
Other languages
Japanese (ja)
Other versions
JP2635763B2 (en
Inventor
Hideki Watanabe
秀樹 渡辺
Takaharu Oda
敬治 織田
Yuji Sugiyama
雄二 杉山
Makoto Miyake
三宅 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12440889A priority Critical patent/JP2635763B2/en
Publication of JPH02304403A publication Critical patent/JPH02304403A/en
Application granted granted Critical
Publication of JP2635763B2 publication Critical patent/JP2635763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To easily observe an axis shift by slanting an image pickup surface at an image pickup angle to the optical axis of a microscope according to all focus positions of a real image and a virtual image which are picked up on the image pickup surface. CONSTITUTION:The image pickup surface 2 is slanted at the image pickup angle theta1 to the optical axis 3 of the microscope 1 according to all the focus position of the real image (a) and virtual image (b) picked upon on the image pickup surface 2. Therefore, optical fibers alpha0 and beta0 arranged on an operation surface L slanting at an optical axis angle theta1 to the optical axis 3 form images on alpha and beta on an image pickup surface P through an objective 4. Then the image pickup surface 2 of an image pickup device is arranged matching the position of the image pickup surface P (focus positions of all optical fibers to be picked up). Consequently, images can be picked up so that all the arrayed optical fibers alpha0 and beta0 are in focus at the same time, and the lens barrel of the microscope 1 is shortened to reduce the size of an observation position.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は第5図aのように、複数本の光ファイバAが複
数列並設されてなる多芯光ファイバB同tをその軸線方
向に対向させて、両多芯光ファイバBの対向面同士を融
着接続する際に、同光ファイバへの軸ずれを観察する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) As shown in FIG. The present invention relates to a method of observing the axis misalignment of both multi-core optical fibers when the facing surfaces of both multi-core optical fibers B are fusion spliced so as to face each other.

(従来の技術) 第5図aのように対向させた多芯光ファイバBの対向面
同士を融着する場合、対向する各光ファイバ八同士が同
図のファイバ軸線Xに対して亜直な直交する二輪方向、
即ちy軸(横軸)方向にも2軸(縦軸)方向にも軸ずれ
しないようにしなければならない、そこで従来はy軸方
向から先ファイバAのZ軸方向の軸ずれを観察し、Z軸
方向がら同光ファイバAのy軸方向の軸ずれを観察して
いた。
(Prior art) When the opposing surfaces of multi-core optical fibers B are fused together as shown in FIG. Orthogonal two-wheel direction,
In other words, it must be ensured that there is no misalignment in either the y-axis (horizontal) direction or the two-axis (vertical) direction.Therefore, conventionally, the axial misalignment in the Z-axis direction of the tip fiber A is observed from the y-axis direction, and the Z The axial deviation of the optical fiber A in the y-axis direction was observed as well as in the axial direction.

しかしこの観察方法はy軸方向とZ軸方向の二軸方向か
ら別々に観察しなければならないので観察が面倒で手間
がかかり、また、夫iの軸方向に顕微鏡等の観察装置を
設置しておかなければならないので同装置が大掛かりに
なる。
However, this observation method requires observation from two axes, the y-axis direction and the Z-axis direction, which is cumbersome and time-consuming.In addition, an observation device such as a microscope is installed in the axial direction of husband i. Since the equipment has to be kept in place, the equipment becomes large-scale.

そこで従来は一方向から同時に1ii記二軸の軸ずれを
観察する方法が開発されている。この観察方法の一つに
第6図に示すものがある。この観察方法は光ファイバA
の並設方向に直交し且つ同ファイバへの軸線x &、:
F行にミラーCを設け、同ミラーCに光ファイバへの虚
像すを写し、この虚(tabと実像aとを前記並設方向
に対して光軸角θ1だけずれた方向から顕微鏡りにより
拡大観察し、その拡大観察像をCCDカメラの撮像面E
に撮像し、それをモニタテレビに映し出してモニタして
いた。
Therefore, conventionally, a method has been developed in which the axis deviation of the two axes 1ii is observed simultaneously from one direction. One of these observation methods is shown in FIG. This observation method uses optical fiber A.
An axis x perpendicular to the direction in which the fibers are arranged and to the same fiber:
A mirror C is installed in the F row, and a virtual image onto the optical fiber is projected onto the mirror C, and this virtual image (tab and real image a) is enlarged with a microscope from a direction shifted by an optical axis angle θ1 with respect to the parallel direction. Observe the magnified observation image on the imaging plane E of the CCD camera.
The images were captured and displayed on a TV monitor for monitoring.

ちなみにこの場合、顕微mDにより観察される実像aは
第5図すのように光ファイバAの円周のうちeの部分で
あるため、この実像aを観察することにより同光ファイ
バAのy軸方向のずれを観察することができ、顕微鏡り
により観察される虚像すは同図のように光ファイバへの
円周方向のrの部分であるため、この虚像b+:iu察
することにより同ファイバAのZ軸方向のずれを観察す
ることができる。
Incidentally, in this case, the real image a observed by the microscope mD is the part e of the circumference of the optical fiber A, as shown in Figure 5, so by observing this real image a, the y-axis of the optical fiber A can be determined. The deviation in direction can be observed, and the virtual image observed with a microscope is the part r in the circumferential direction to the optical fiber as shown in the same figure, so by observing this virtual image b+:iu, the same fiber A The deviation in the Z-axis direction can be observed.

(発明が解決しようとする課題) 前記した後δの多芯光ファイバの観察方法は以下のよう
な問題があった。
(Problems to be Solved by the Invention) The method for observing a multi-core optical fiber with a rear δ described above has the following problems.

■ nii記撮像面EIJSillfi微鏡りの光軸F
に対して東直に設置さhているので、第6図の実像aを
撮像面Eと平行な作動面G3、G、に置き換えた場合、
光ファイバA、の作動面G、と光ファイバA、の作動面
G6との間には距離Hだけ差がある。この差はミラーC
に写された虚像すの場合も同じである。このためこれら
の実像a或は虚像すを撮像面ELに結像させる場合、例
えば第6図すに示すように、複数本の光ファイバの実像
aのうらいずれか一本の先ファイバ(同図すではA、)
の焦点り、を撮像面Eに合わせると、11!!の光ファ
イバの焦点ht、h3が撮像面Eの手前になるため、撮
像がビンぼけになってしまい、軸ずれが観察しにくかっ
た。
■ Imaging surface EIJSillfi optical axis F
Since the real image a in FIG. 6 is replaced by the operating plane G3, G, which is parallel to the imaging plane E,
There is a distance H difference between the working surface G of optical fiber A and the working surface G6 of optical fiber A. This difference is mirror C
The same is true for the virtual image captured in . Therefore, when forming these real images a or virtual images on the imaging surface EL, for example, as shown in FIG. Now A,)
When the focal point of is aligned with the imaging plane E, it becomes 11! ! Since the focal points ht and h3 of the optical fibers are in front of the imaging plane E, the imaging becomes blurred, making it difficult to observe axis deviation.

■、顕微鏡りの鏡筒Jの長さは使用する対物レンズにの
倍率によって制約されるので、ga筒Jを短くすること
ができず、どうしてもIQ!装置全体が大型化してしま
う。
■The length of the microscope tube J is limited by the magnification of the objective lens used, so it is not possible to shorten the GA tube J, so it is impossible to shorten the IQ. The entire device becomes larger.

(発明の目的) 本発明の目的は、多心光ファイバの軸ずれを顕微鏡を用
いて拡大し、それを撮像して観察する場合に、接設され
ている全ての光ファイバのピントが同時に合うように撮
像することができ、しかも顕微鏡の鏡筒を短(して観察
装置を小型化することもできる多芯光ファイバの観察方
法を提供することにある。
(Objective of the Invention) The object of the present invention is to magnify the axis misalignment of multi-core optical fibers using a microscope, and when imaging and observing it, all the connected optical fibers are brought into focus at the same time. It is an object of the present invention to provide a method for observing a multi-core optical fiber, which allows imaging to be carried out in a similar manner, and which also allows the length of the microscope lens barrel to be shortened and the size of the observation apparatus to be reduced.

(問題点を解決するための手段) 本発明の多芯光ファイバの観察方法は、第1図のように
複数本の先ファイバAが複数列4【設されてなる多芯光
ファイバB同士を、その軸線方向に対向させ、同多芯光
ファイバBの9に対面と直交し且つ同ファイバAの軸X
方向に!PHなミラーCに前記多芯光ファイバBの虚像
を写し出し、同多芯尤ファイバBの実像aと虚像すとを
同時にまたは別 々に、前記軸X方向に対して6直で且
つ前記光ファイバAの並設方向に光軸角θ1だけずれた
方向から顕微talにより拡大観察し、その拡大観察像
を撮像機の撮像面2に撮像して前記光ファイバAの対向
部の並列方向及びそれと直交する方向の軸ずれを観察す
るようにした多芯光ファイバの観察方法において、前記
撮像面2を、それに撮像される111記実像aと11像
すの全ての焦点位置に合わ せて、 a!s1鏡lの光
軸3に対して撮像角θ2だけ傾けるようにしたことを特
徴とするものである。
(Means for Solving the Problems) The method for observing multi-core optical fibers of the present invention is as shown in FIG. , facing in the axial direction, perpendicular to 9 of the same multi-core optical fiber B, and the axis X of the same fiber A.
In the direction! A virtual image of the multi-core optical fiber B is projected onto a PH mirror C, and a real image a and a virtual image of the same multi-core optical fiber B are projected at the same time or separately. Magnified observation is performed using a microscope tal from a direction shifted by an optical axis angle θ1 in the parallel direction of the optical fibers A, and the magnified observation image is captured on the imaging surface 2 of the imaging device to detect the parallel direction of the opposing portions of the optical fibers A and orthogonal thereto. In the method for observing a multi-core optical fiber in which the axis deviation in the direction of a! This mirror is characterized by being tilted by an imaging angle θ2 with respect to the optical axis 3 of the mirror s1.

(作用) 第2図のように光軸3に対して光軸角θ、たけ傾斜して
いる作動面り上に配列されている光ファイバα。、β。
(Function) As shown in FIG. 2, the optical fibers α are arranged on a working surface that is inclined at an optical axis angle θ with respect to the optical axis 3. , β.

は、対物レンズ4を通ることにより同図のFQI’ll
而Pのα、面1に一列に結像する。
is the FQI'll in the same figure by passing through the objective lens 4.
α of P, images are formed in a line on surface 1.

本発明の多芯光ファイバ観察方法では第1図のように搬
像機の撮像面2を、第2図の撮像面Pの位2(撮像され
る複数本の全ての光ファイバの焦点位置)に合わせて配
置されているので、実像a或は+j!ribの全ての光
ファイバAが同撮像面2上にピントのあった状態で層像
される。
In the multi-core optical fiber observation method of the present invention, the imaging plane 2 of the image carrier as shown in FIG. The real image a or +j! All the optical fibers A of the rib are imaged on the same imaging surface 2 in a focused state.

この場合第2図の作動面り上の二点α。、c。In this case, the two points α on the operating plane in FIG. ,c.

の光軸3からの距離Mα。1Mβ0は、撮像面2Lに距
離Mα、Mβとして斜影方向にのみ一軸拡大されるので
1本発明によれば顕微mlで拡大されて撮像面2に撮像
される画像は、第4図のように先ファイバへの軸X方向
は拡大されず、同光ファイバへの−1を設方向Yにのみ
拡大されたものとなる。
The distance Mα from the optical axis 3. 1Mβ0 is uniaxially magnified only in the oblique direction as distances Mα and Mβ on the imaging surface 2L. According to the present invention, the image magnified by the microscope ml and captured on the imaging surface 2 is first magnified as shown in FIG. The axis X direction to the fiber is not expanded, and -1 to the optical fiber is expanded only in the installation direction Y.

(実施例) 第1図は本発明の多芯光ファイバの観察方法に使用され
る観察装置の一実施例である。
(Example) FIG. 1 shows an example of an observation device used in the method for observing a multi-core optical fiber of the present invention.

同図に示すBは多芯光ファイバであり、これは複数本の
光ファイバAが捗設されてテープ状に構成されている。
B shown in the figure is a multi-core optical fiber, which has a tape-like configuration in which a plurality of optical fibers A are arranged side by side.

同図のCは光ファイバAの4に設方向に直交し且つその
軸線方向に平行に設置されたミラーであ同図る。このミ
ラーCは光ファイバAの虚像すを写し出すものである。
C in the same figure is a mirror installed in 4 of the optical fiber A perpendicularly to the installation direction and parallel to its axial direction. This mirror C reflects a virtual image of the optical fiber A.

同図に示すN:tSifl微鏡、5は鏡筒である。この
顕微鏡lは実像aと虚像すとを同時にまたは別々に拡大
観察するものであり、その光軸3が前記光ファイバへの
軸線方向に垂直で且つ4に設方向に対して光軸角θl 
(例えば45度)だけ傾斜するように設置されている。
In the N:tSifl microscope shown in the figure, 5 is a lens barrel. This microscope 1 is used for magnifying observation of a real image a and a virtual image 2 at the same time or separately, and its optical axis 3 is perpendicular to the axial direction to the optical fiber, and the optical axis 4 is at an optical axis angle θl with respect to the installation direction.
(for example, 45 degrees).

第1図に示す2はCCDカメラ等の撮像機の撮像面であ
り、これは顕y1鏡lの対物側と反対側に設けられてい
る。この撮像面2はそれに撮像される前記実像a及び虚
像すの全ての焦点位置に合うように、Si#i微mlの
光軸3に対して撮像角θ2だけ傾けである。このため例
えば第3図aの作動面り上の点α。のファイバは、撮像
面2の0点にld像され、しかもこの撮像Mαは第6図
の撮像Mα冒こ比べて拡大されている(この撮fg1M
α。
Reference numeral 2 shown in FIG. 1 is an imaging surface of an imaging device such as a CCD camera, and this is provided on the side opposite to the objective side of the microscope 1. This imaging surface 2 is inclined by an imaging angle θ2 with respect to the optical axis 3 of Si#i minute ml so that the focal positions of all the real images a and virtual images taken thereon are aligned. For this purpose, for example, point α on the operating plane in FIG. 3a. The fiber is imaged at the 0 point of the imaging surface 2, and this imaging Mα is enlarged compared to the image Mα in FIG. 6 (this imaging fg1M
α.

は第6図の撮像面Eが顕微鏡の光軸Fに対して垂直であ
る場合の撮像)、このため本発明の観察方法において、
従来のll!察方法における撮像と同じ大きさの撮像を
得るためには、従来の観察方法で用いられた対物レンズ
よりも倍率のちいさなものでよい、即ら、同じ倍率の対
物レンズを使用すれば本発明の観察方法では第3図すの
ように撮像面2を距+foldだけ対物レンズ4111
1に近づけることができる。このようにすれば顕微鏡の
鏡面を短くする憤が可能となる。ちなみに、この場合は
撮像面2を距離dだけ対物レンズ41I11に近づけた
分だけ第3図すのように対象物を対物レンズ4から離し
て、撮像面2に結像される像の焦点を合せる。
is an image taken when the imaging plane E in FIG. 6 is perpendicular to the optical axis F of the microscope), therefore, in the observation method of the present invention,
Conventional ll! In order to obtain an image of the same size as the image taken in the observation method, it is sufficient to use an objective lens with a smaller magnification than that used in the conventional observation method. In the observation method, as shown in Figure 3, the objective lens 4111 moves the imaging plane 2 by a distance
It can be brought close to 1. In this way, it becomes possible to shorten the mirror surface of the microscope. Incidentally, in this case, the image formed on the imaging surface 2 is focused by moving the object away from the objective lens 4 as shown in Figure 3 by moving the imaging surface 2 closer to the objective lens 41I11 by a distance d. .

なお本発明では、実像aと虚像すとを一つの顕微鏡で同
時に撮像し、その両との撮像を一台のモニタテレビに同
時に映して軸ずれをモニタしてもよいが、そのようにす
ると第1図のように一列に和んでいる実像aと虚像すの
両端の光フアイバ間の距離が大きくなって、ビンぼけし
易くなるため、実際は例えば実像aだけを先に撮像して
モニテレビでモニタし1次に顕微鏡をその軸線に平行移
動させて虚像すを撮像し、それをモニテレビでモニタし
、ている、このようにすればビンぼけが実像aと虚像す
とを同時に撮像する場合の半分にな(発明の効果) 本発明の多芯光ファイバの観察方法は以下のような効果
がある。
In the present invention, the real image a and the virtual image A may be simultaneously imaged with one microscope, and both images may be simultaneously displayed on one monitor television to monitor the axis misalignment. As shown in Figure 1, the distance between the optical fibers at both ends of the real image a and the virtual image becomes large, making it easy to blur, so in reality, for example, only the real image a is captured first and then monitored on a monitor TV. First, move the microscope parallel to its axis to capture a virtual image, and monitor it on a TV monitor.In this way, the blurring is reduced to half that of capturing the real image A and the virtual image at the same time. (Effects of the Invention) The multicore optical fiber observation method of the present invention has the following effects.

■、Ji!像面2が撮像される複数本の全ての光ファイ
バの焦点位置にあうように傾斜されているので、撮像面
2上に撮像されるwi数本の光ファイバ八全体の撮像が
全て同時にピントのあった状態になる。従って従来のよ
うに各光フアイバ毎にピント合わせなする必要がな(、
軸ずれ観察が容易になる。
■、Ji! Since the image plane 2 is tilted so as to match the focal position of all the optical fibers to be imaged, all of the several optical fibers to be imaged on the image plane 2 are all in focus at the same time. It becomes the state it was. Therefore, there is no need to focus on each optical fiber as in the past.
Observation of axis deviation becomes easier.

■、顕微鏡lの層像方向が光ファイバΔの並設方向と一
致しているので、同顕微鏡lにより撮像される像が同方
向に拡大され、同方向への軸ずれが益々観察し易くなる
■Since the layer image direction of the microscope L matches the direction in which the optical fibers Δ are arranged in parallel, the image captured by the microscope L is magnified in the same direction, making it easier to observe axis deviation in the same direction. .

■ 撮像面2に結像される像が従来の観察方法の場合よ
りも拡大されるので、従来り法での撮像と同等の大きさ
のIf!(tlを得るには撮像面2を対物レンズ411
qに近づけることができ、そのようにすれば顕微mlの
m17+5を短くすることができ、観察装置全体を小型
化することができる。
■ Since the image formed on the imaging plane 2 is enlarged more than in the conventional observation method, If! is the same size as in the conventional observation method. (To obtain tl, the imaging surface 2 is
In this way, m17+5 of the microscopic ml can be shortened, and the entire observation apparatus can be downsized.

■ 本発明で使用される顕微fatの鏡筒5の長さを、
従来の観察方法で使用される顕微鏡の鏡筒と同じ長さに
すれば、対物レンズ4が低倍率なもので間に合うので、
安価な顕微鏡lを使用することができる。
■ The length of the lens barrel 5 of the FAT microscope used in the present invention is
If the length is the same as that of the microscope lens barrel used in the conventional observation method, the objective lens 4 can be of low magnification.
An inexpensive microscope can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の多芯光ファイバの観察方法を実施化す
る観察装置の説明図、第2図は本発明の原理説明図、第
3図a、bは本発明における撮像の拡大説明図、第4図
は本発明の観察方法によって観察される画像の説明図、
第5図aは多芯光ファイバの軸合わせの説明図、同図す
は光ファイバの実像とミラーに写る虚像との関係を示す
説明図、第6図aは従来の多芯光ファイバの観察方法に
使用される観察装置の説明図、同図すは同図aの7部に
おける撮像の焦点位置の説明図である。 lは顕微鏡 2は機像面 3は光軸 Aは光ファイバ Bは多芯光ファイバ θ1は光軸角 θ2は撮像角
FIG. 1 is an explanatory diagram of an observation device implementing the method for observing a multicore optical fiber of the present invention, FIG. 2 is an explanatory diagram of the principle of the present invention, and FIGS. 3 a and b are enlarged explanatory diagrams of imaging in the present invention. , FIG. 4 is an explanatory diagram of an image observed by the observation method of the present invention,
Figure 5a is an explanatory diagram of axis alignment of a multi-core optical fiber, the figure is an explanatory diagram showing the relationship between the real image of the optical fiber and the virtual image reflected on the mirror, and Figure 6a is an observation of a conventional multi-core optical fiber. FIG. 2 is an explanatory diagram of the observation device used in the method, and is an explanatory diagram of the imaging focal point position in section 7 of FIG. 1 is the optical axis angle θ2 is the imaging angle

Claims (1)

【特許請求の範囲】[Claims] 複数本の光ファイバAが複数列並設されてなる多芯光フ
ァイバB同士を、その軸線方向に対向させ、同多芯光フ
ァイバBの並列面と直交し且つ同ファイバAの軸x方向
に平行なミラーCに前記多芯光ファイバBの虚像を写し
出し、同多芯光ファイバBの実像aと虚像bとを同時に
または別々に、前記軸x方向に対して垂直で且つ前記光
ファイバAの並設方向に光軸角θ_1だけずれた方向か
ら顕微鏡1により拡大観察し、その拡大観察像を撮像機
の撮像面2に撮像して前記光ファイバAの対向部の並列
方向及びそれと直交する方向の軸ずれを観察するように
した多芯光ファイバの観察方法において、前記撮像面2
を、それに撮像される前記実像aと虚像bの全ての焦点
位置に合わせて、顕微鏡1の光軸3に対して撮像角θ_
2だけ傾けるようにしたことを特徴とする多芯光ファイ
バの観察方法。
Multicore optical fibers B, each of which is made up of a plurality of optical fibers A arranged in multiple rows, are arranged to face each other in the axial direction, and are perpendicular to the parallel plane of the multicore optical fibers B and in the axial x direction of the same fibers A. A virtual image of the multi-core optical fiber B is projected onto a parallel mirror C, and a real image a and a virtual image b of the multi-core optical fiber B are projected perpendicularly to the axis x direction and of the optical fiber A, simultaneously or separately. The microscope 1 is used for magnification observation from a direction shifted by an optical axis angle θ_1 in the parallel direction, and the magnified observation image is captured on the imaging surface 2 of the imaging device to observe the parallel direction of the opposing portions of the optical fibers A and the direction perpendicular thereto. In the method for observing a multi-core optical fiber, the axis shift of the imaging surface 2 is observed.
is set at an imaging angle θ_ with respect to the optical axis 3 of the microscope 1, with all focal positions of the real image a and virtual image b imaged thereon.
A method for observing a multicore optical fiber characterized by tilting it by 2.
JP12440889A 1989-05-19 1989-05-19 Observation method of multi-core optical fiber Expired - Lifetime JP2635763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12440889A JP2635763B2 (en) 1989-05-19 1989-05-19 Observation method of multi-core optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12440889A JP2635763B2 (en) 1989-05-19 1989-05-19 Observation method of multi-core optical fiber

Publications (2)

Publication Number Publication Date
JPH02304403A true JPH02304403A (en) 1990-12-18
JP2635763B2 JP2635763B2 (en) 1997-07-30

Family

ID=14884728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12440889A Expired - Lifetime JP2635763B2 (en) 1989-05-19 1989-05-19 Observation method of multi-core optical fiber

Country Status (1)

Country Link
JP (1) JP2635763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909966A1 (en) * 1997-10-15 1999-04-21 Sumitomo Electric Industries, Ltd. Observation apparatus and fusion splicer for optical fibers
EP0889337B1 (en) * 1997-05-23 2007-04-25 Telefonaktiebolaget LM Ericsson (publ) Device for imaging optical fiber ribbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889337B1 (en) * 1997-05-23 2007-04-25 Telefonaktiebolaget LM Ericsson (publ) Device for imaging optical fiber ribbons
EP0909966A1 (en) * 1997-10-15 1999-04-21 Sumitomo Electric Industries, Ltd. Observation apparatus and fusion splicer for optical fibers
US6287020B1 (en) 1997-10-15 2001-09-11 Sumitomo Electric Industries, Ltd. Observation apparatus and fusion splicer for optical fibers

Also Published As

Publication number Publication date
JP2635763B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
JP3500850B2 (en) Method and apparatus for observing butted portion of ribbon-type optical fiber
US20070188859A1 (en) Visual inspection apparatus
JP3176574B2 (en) Optical fiber observation device and optical fiber fusion splicer
JP2007251143A (en) Visual inspection system
JPH02304403A (en) Method for observing multi-core optical fiber
JPH11127382A (en) Image processor
JP2529604B2 (en) Optical fiber fusion splicer
EP0173345B1 (en) Method and apparatus for simultaneously observing a transparent object from two directions
JP3389595B2 (en) Optical fiber observation device and fusion splicing device
JPH11109257A (en) Image pickup optical system of endoscope
JPH05249044A (en) Apparatus for inspecting external appearance of semiconductor integrated circuit
JPH0237306A (en) Method of inspecting juncture of multiple optical fiber
JPH10307252A (en) Automatic focusing optical television camera microscope
JP3366728B2 (en) Optical fiber observation equipment
JPH08271798A (en) Plural-head microscope
JPH0618771A (en) Automatic focusing device for enlarging magnification image pickup device
JPS6139018A (en) Device for entering three-dimensional information of substance in optical microscope
JPH0943447A (en) Fusion splicing device for optical fibers
EP3523618B1 (en) Imaging system for multi-fiber optic connector inspection
JPH1137720A (en) Method and instrument for measuring position of subject
JP2599670Y2 (en) Woven tissue enlargement inspection device
JPH03113411A (en) Scanning type image pickup device
JPH09288224A (en) Method for estimating core position of multiple optical fiber and alignment method
JPH0219818A (en) Dark field binocular
JPH0855889A (en) Image connection device