JPH02304399A - Method for cleaning volatile ruthenium - Google Patents

Method for cleaning volatile ruthenium

Info

Publication number
JPH02304399A
JPH02304399A JP1125323A JP12532389A JPH02304399A JP H02304399 A JPH02304399 A JP H02304399A JP 1125323 A JP1125323 A JP 1125323A JP 12532389 A JP12532389 A JP 12532389A JP H02304399 A JPH02304399 A JP H02304399A
Authority
JP
Japan
Prior art keywords
cleaning
gas
cleaning liquid
ruthenium
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1125323A
Other languages
Japanese (ja)
Inventor
Katsuyuki Shirato
白土 克之
Tetsuya Watanabe
哲也 渡辺
Masashi Kitamura
正史 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1125323A priority Critical patent/JPH02304399A/en
Publication of JPH02304399A publication Critical patent/JPH02304399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To allow a removal treatment with a simple treatment and high efficiency by incorporating nitrous acid ions into a cleaning liquid at the time of cleaning an off-gas contg. RuO4 with cleaning water and absorbing and removing the above-mentioned RuO4 into the cleaning liquid. CONSTITUTION:The off-gas is supplied from an off-gas supplying system 1 into a cleaning column 2 and the cleaning liquid contg. the nitrous acid ion is injected from a cleaning liquid supplying system 5 onto a tray 4 of the uppermost state. The cleaning liquid supplied from the cleaning liquid supplying system 5 and the off-gas come into gas-liquid contact in the respective trays 4 provided in the cleaning column 2 and migrate the volatile ruthenium in the off-gas into the cleaning liquid. The cleaning liquid absorbing the volatile ruthenium is discharged to a waste liquid discharge port 8 in the bottom of the cleaning column 2. The solubility of the volatile ruthenium in the cleaning liquid is increased by adding the nitrous acid ion into the cleaning liquid and, therefore, the decontamination of the volatile ruthenium from the off-gas is executed with the high efficiency.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、高放射性廃液を処理した際などに発生する
揮発性ルテニウム(RuO、)を含有したオフガスより
該揮発性ルテニウムを洗浄、吸収により除去するための
洗浄方法に関する。
Detailed Description of the Invention "Industrial Application Field" This invention is a method for cleaning and absorbing volatile ruthenium (RuO) from off-gas containing volatile ruthenium (RuO), which is generated when highly radioactive waste liquid is treated. Relating to a cleaning method for removal.

[従来の技術] 原子力発電所の使用済み核燃料再処理施設等で発生する
高放射性廃液中には、核分裂生成物で希少金属である放
射性ルテニウムが酸素化合物等の形で含有されているか
、この高放射性廃液にガラス固化処理等の処理を施す際
に、ルテニウム化合物のうち揮発性を有するRub、や
固体状のn u 02がオフガス中に移行するので、オ
フガス中からのルテニウムの除染処理が施されている。
[Conventional technology] Highly radioactive waste liquid generated at spent nuclear fuel reprocessing facilities of nuclear power plants contains radioactive ruthenium, a rare metal that is a nuclear fission product, in the form of oxygen compounds, etc. When radioactive waste liquid is subjected to treatments such as vitrification, volatile Rub and solid n u 02 of the ruthenium compounds migrate into the off-gas, so it is difficult to decontaminate ruthenium from the off-gas. has been done.

このオフガスからの揮発性ルテニウムを除染するには、
オフカスを洗浄塔内に導入し、該オフガスを洗浄液と接
触仕しめて揮発性ルテニウムを洗浄液中に吸収さけるこ
とにより除染することが行なイっれており、洗浄液とし
ては水なとが用いられている。
To decontaminate volatile ruthenium from this off-gas,
Decontamination is carried out by introducing the off-gas into a cleaning tower and bringing the off-gas into contact with a cleaning solution to absorb volatile ruthenium into the cleaning solution.Water is used as the cleaning solution. ing.

[発明が解決しようとする課題] ところが上記洗浄方法では揮発性ルテニウムの除染効率
が低いので、洗浄液中に水酸化ナトリウム等の添加剤を
添加することが試みられている。
[Problems to be Solved by the Invention] However, since the cleaning method described above has low decontamination efficiency for volatile ruthenium, attempts have been made to add additives such as sodium hydroxide to the cleaning solution.

しかしながらこのように洗浄液中に添加剤を加えて揮発
性ルテニウムの除染を行うと除染効率を向上させること
ができろものの、添加剤がオフガスと反応して二次廃棄
物が発生ずるという不都合があ っ ノこ 。
However, although decontamination of volatile ruthenium by adding additives to the cleaning solution improves decontamination efficiency, it has the disadvantage that the additives react with off-gas and generate secondary waste. Gaa Noko.

この発明は上記事情に鑑みてなされた乙ので、その目的
とするところは、揮発性ルテニウムを高効率で除染し、
かつ二次廃棄物を発生しない洗浄方法を提供することに
ある。
This invention was made in view of the above circumstances, and its purpose is to decontaminate volatile ruthenium with high efficiency,
Another object of the present invention is to provide a cleaning method that does not generate secondary waste.

[課題を解決するための下段] この発明の揮発性ルテニウムの洗浄方法では、洗浄液中
に亜硝酸イオンを含有させたことを解決下段とした。
[Lower part to solve the problem] In the volatile ruthenium cleaning method of the present invention, the lower part of the solution is to include nitrite ions in the cleaning liquid.

「作用 」 亜硝酸イオンを含有した洗浄液を用いてオフガスを洗浄
することにより、オフガス中に含’f’−rされている
揮発性ルテニウムを高効率で除染することができる。
"Function" By cleaning the off-gas using a cleaning solution containing nitrite ions, volatile ruthenium contained in the off-gas 'f'-r can be decontaminated with high efficiency.

また洗浄液に添加した亜硝酸イオンは、分解してオフガ
ス中へNOXとして放出されるか、あるいは廃液中にし
含有されている硝酸となるために、二次廃棄物を発生し
ない。
Further, the nitrite ions added to the cleaning liquid are decomposed and released into the off-gas as NOX, or become nitric acid contained in the waste liquid, so no secondary waste is generated.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

第1図はこの発明の揮発性ルテニウムの洗浄方法lこ好
適に用いられる洗浄塔の一例を示すらのであって、第1
図中、符号1はオフガス供給系、符号2は洗浄塔である
。このオフガス供給系lには供給管3が接続されている
。この供給管3は、洗浄塔2の下部に配管されてその先
端か洗浄塔2内に配置されたしのであって、オフガスを
洗浄塔2内に供給ケる丸めのものである。洗浄塔2はオ
フガス中の揮発性ルテニウムを吸収するよう予め設定さ
れた複数の棚4・・をaし、最上段に位置する棚・1よ
りL方に洗浄液供給系5からの給水管6を接続した中空
体からなる乙ので、その頂部にはオフガス排気[17、
その底部には洗浄廃液排出口8がそれぞれ取り付けられ
ている。
FIG. 1 shows an example of a cleaning tower preferably used in the volatile ruthenium cleaning method of the present invention.
In the figure, numeral 1 is an off-gas supply system, and numeral 2 is a cleaning tower. A supply pipe 3 is connected to this off-gas supply system 1. This supply pipe 3 is a round pipe that is installed at the bottom of the cleaning tower 2 and has its tip disposed inside the cleaning tower 2, and is capable of supplying off-gas into the cleaning tower 2. The cleaning tower 2 has a plurality of shelves 4 set in advance to absorb volatile ruthenium in the off-gas, and a water supply pipe 6 from the cleaning liquid supply system 5 is connected to the L side from the topmost shelf 1. Since it consists of a connected hollow body, there is an off-gas exhaust [17,
Washing waste liquid discharge ports 8 are respectively attached to the bottoms thereof.

このような洗浄塔2にて、この発明の洗浄方法を実施す
るに際しては、オフガス供給系lより洗浄塔2内へオフ
ガスを供給すると共に、洗浄液供給系5から亜硝酸イオ
ンを含有する洗浄液を最−L段の棚4上に注入する。洗
浄液供給系5から供給された洗浄液とオフガスとは、洗
浄塔2内に設けられた各欄4・・・にて気液接触し、こ
れによりオフガス中の揮発性ルテニウムを洗浄液中に移
行さU−ることかできる。そしてオフガスと接触して揮
発性ルテニウムを吸収した洗浄液は順次下段の棚4・・
・へと落下していき、洗浄塔2の底部に設けられた洗浄
廃液排出口8より排出される。
When carrying out the cleaning method of the present invention in such a cleaning tower 2, off-gas is supplied from the off-gas supply system 1 into the cleaning tower 2, and at the same time, the cleaning liquid containing nitrite ions is supplied from the cleaning liquid supply system 5. - Pour onto the L shelf 4. The cleaning liquid supplied from the cleaning liquid supply system 5 and the off-gas come into gas-liquid contact in each column 4 provided in the cleaning tower 2, thereby transferring volatile ruthenium in the off-gas into the cleaning liquid. -I can do something. The cleaning liquid that has come into contact with the off-gas and absorbed the volatile ruthenium is then transferred to the lower shelf 4...
The cleaning waste liquid is discharged from the cleaning waste liquid outlet 8 provided at the bottom of the cleaning tower 2.

この際に用いる洗浄液としては、揮発性ルテニウムと亜
硝酸イオンとが可溶でかつこれと反応しない溶媒であれ
ば特に限定されないが、たとえば水などを好適?ご用い
ることができる。またこの洗浄液に亜硝酸イオンを含有
さlるには、亜硝酸ナトリウムや亜硝酸アンモニウム等
の亜硝酸塩を洗浄液中に溶解させるほか、硝酸に一酸化
窒素を通じて直接亜硝酸水溶液を合成する方法を用いろ
ことができる。いずれの場合であってら、洗浄液供給系
5にて洗浄液中に亜硝酸イオンを含有せしめた後、直ち
にこの洗浄液を洗浄塔2内に供給することが望ましい。
The cleaning liquid used at this time is not particularly limited as long as it is a solvent that can dissolve volatile ruthenium and nitrite ions and does not react with them, but water is preferably used, for example. You can use it. In addition, in order to contain nitrite ions in this cleaning solution, in addition to dissolving nitrite salts such as sodium nitrite and ammonium nitrite in the cleaning solution, a method of directly synthesizing a nitrite aqueous solution by passing nitrogen monoxide into nitric acid is required. be able to. In either case, it is desirable to supply the cleaning liquid into the cleaning tower 2 immediately after the cleaning liquid is made to contain nitrite ions in the cleaning liquid supply system 5.

これは亜硝酸イオンが酸化されやすく不安定であるため
である。
This is because nitrite ions are easily oxidized and unstable.

このような洗浄方法においては、洗浄液中に亜硝酸イオ
ンを添加することにより、揮発性ルテニウムの洗浄液中
への溶解度を高めることができるので、オフガス中から
の揮発性ルテニウムの除染を高効率で行うことかできる
In such a cleaning method, the solubility of volatile ruthenium in the cleaning solution can be increased by adding nitrite ions to the cleaning solution, making it possible to decontaminate volatile ruthenium from the off-gas with high efficiency. I can do what I want to do.

また洗浄液中に含有されている亜硝酸イオンは、オフガ
スと接触することによりNOxの形で洗浄廃液より放出
される一方、酸化されて硝酸イオンとなる。よってNO
y、と硝酸以外には新たに二次廃棄物を発生しない。そ
してこのNOxと硝酸は、いずれらオフガス中あるいは
洗浄廃液中にδト浄処理前から含有されているものであ
るので、NOXはオフガスと共に、硝酸イオンは洗浄廃
液と共に処理することができ、二次廃棄物を特別に処理
ずろ必要かない。
Further, the nitrite ions contained in the cleaning liquid are released from the cleaning waste liquid in the form of NOx upon contact with the off-gas, and are oxidized to become nitrate ions. Therefore, NO
No new secondary waste is generated other than y and nitric acid. Since both NOx and nitric acid are contained in the off-gas or cleaning waste liquid before the δT purification process, NOx can be treated with the off-gas and nitric acid ions can be treated with the cleaning waste liquid, and the secondary No special treatment of waste is required.

[実施例] 洗浄塔を第2図に示したようなテスト装置内に接続し、
この発明の洗浄方法を実施し、その揮発性ルテニウムの
除染効果を測定した。
[Example] A cleaning tower was connected to a test device as shown in Fig. 2,
The cleaning method of the present invention was implemented and its decontamination effect on volatile ruthenium was measured.

第2図中、符号2は第1図に示した洗浄塔であり、この
洗浄塔には、オフガス供給系iとして、ルテニウム発生
器9と、空気供給系10とがそれぞれ接続した。空気供
給系10にはフィルタ11を接続し、空気中に食合され
ている微細な塵埃を除去できるようにした。またルテニ
ウム発生器9内には、所定量のRu O4を収容し、ル
テニウム発生器9内に空気を流入させることにより上記
ルテニウムを揮発させ、流量計12によってルテニウム
発生器9内へ供給する空気の流量を調節した。
In FIG. 2, reference numeral 2 denotes the cleaning tower shown in FIG. 1, and a ruthenium generator 9 and an air supply system 10 were connected to this cleaning tower as an off-gas supply system i, respectively. A filter 11 is connected to the air supply system 10 so as to remove fine dust trapped in the air. Further, a predetermined amount of RuO4 is stored in the ruthenium generator 9, and the ruthenium is volatilized by flowing air into the ruthenium generator 9. The flow rate was adjusted.

このようなルテニウ13発生器9と空気供給系10とか
ら、それぞれ揮発性ルテニウムと空気とを混合して高放
射性廃液を処理した際などに発生ずるオフガスのルテニ
ウム組成を模擬した試験用オフガスを発生させ、上記洗
浄塔2内に一定流速で供給した。さらに洗浄塔2のオフ
ガス排気ロアを、分析用吸収瓶I3.13に接続し、洗
浄処理が施された試験用オフガスをこの吸収瓶内で吸収
して、揮発性ルテニウムの除染効率を測定した。この除
染効率は、除染係数(DP)によって評価した。この除
染係数は洗浄塔2のオフガス排気ロアにおけるルテニウ
ム濃度を洗浄塔2のオフガス供給系Iにおけるルテニウ
ム濃度で割った値であり、この除染係数値が大きい程、
除染効率が高いしのである。なおこれら試験装置内の試
験用オフガスの流動は、ガスメータ15が接続されたポ
ンプ14の吸引によって行った。
The ruthenium-13 generator 9 and the air supply system 10 each generate test off-gas that simulates the ruthenium composition of off-gas generated when highly radioactive waste liquid is treated by mixing volatile ruthenium and air. and supplied into the washing tower 2 at a constant flow rate. Furthermore, the off-gas exhaust lower of cleaning tower 2 was connected to an analytical absorption bottle I3.13, and the test off-gas that had been cleaned was absorbed in this absorption bottle to measure the decontamination efficiency of volatile ruthenium. . This decontamination efficiency was evaluated by the decontamination coefficient (DP). This decontamination coefficient is a value obtained by dividing the ruthenium concentration in the off-gas exhaust lower of the cleaning tower 2 by the ruthenium concentration in the off-gas supply system I of the cleaning tower 2, and the larger this decontamination coefficient value is, the more
It has high decontamination efficiency. Note that the flow of the test off-gas in these test devices was performed by suction from the pump 14 to which the gas meter 15 was connected.

(実施例1) 水に亜硝5酸ナトリウムを添加してl規定濃度の1+h
硝酸ナトリウム水溶液を調整し、これを洗浄液として上
記テスt・装置内の洗浄塔2に供給し、揮発性ルテニウ
ムの除染効果を除染係数によって評klli L、た。
(Example 1) Add sodium nitrite to water for 1+h of the specified concentration.
An aqueous sodium nitrate solution was prepared and supplied as a cleaning liquid to the cleaning tower 2 in the test equipment described above, and the decontamination effect of volatile ruthenium was evaluated by the decontamination coefficient.

この結果を第1表に示した。The results are shown in Table 1.

(比較例2、比較例3および比較例4)洗浄液として水
を用い、Ru O4濃度とガス流速とを変化させた以外
は実施例1と全く同様にして揮発性ルテニウムの除染効
果を評価した。この結果を第1表にあイっ仕て示した。
(Comparative Example 2, Comparative Example 3, and Comparative Example 4) The decontamination effect of volatile ruthenium was evaluated in the same manner as in Example 1, except that water was used as the cleaning liquid and the Ru O4 concentration and gas flow rate were changed. . The results are shown in Table 1.

(以下、余白) 第!表 第1表の結果より、この発明の洗浄方法によると、従来
の洗浄方法を実施した場合に比較して揮発性ルテニウム
の除染係数が約5〜IO倍となり、非常に高効率でオフ
ガス中から揮発性ルテニウムを除染できることが確認で
き、これにより洗浄液中に亜硝酸イオンを添加すること
が汀効であることが確認できた。
(The following is the margin) No. From the results shown in Table 1, the cleaning method of the present invention has a decontamination coefficient of volatile ruthenium approximately 5 to 10 times higher than that of the conventional cleaning method, and is extremely efficient in off-gas. It was confirmed that volatile ruthenium could be decontaminated from the cleaning solution, and it was confirmed that adding nitrite ions to the cleaning solution was effective as a deterrent.

[発明の効果] 以上説明したように、この発明のルテニウムの洗浄方法
は、洗浄液中に亜硝酸イオンを含有させた乙のであるか
ら、高度の処理工程を必要とすることなく、簡略な処理
により高効率で除去処理を行うことができ、したがって
処理コストの低減化を図ることかできる。
[Effects of the Invention] As explained above, since the method for cleaning ruthenium of the present invention contains nitrite ions in the cleaning solution, it can be done by simple treatment without requiring sophisticated treatment steps. Removal processing can be performed with high efficiency, and therefore processing costs can be reduced.

さらに洗浄水中に含有される亜硝酸イオンは、廃液中か
らオフガス中へNOXとして放出されるか、酸化されて
硝酸となるので、処理前から硝酸酸性である廃液の性状
を変化させることがなく、二次廃棄物の発生を低減させ
ることができる。
Furthermore, the nitrite ions contained in the cleaning water are either released from the waste liquid into the off-gas as NOX or are oxidized to become nitric acid, so the properties of the waste liquid, which is already acidic with nitric acid, do not change. Generation of secondary waste can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のルテニウム洗浄方法に好適に用いら
れろ洗浄塔の一例を示した概略構成図であり、第2図は
この発明のルテニウムの洗浄方法の除染効率を評価する
ためのテスト装置の一例を示した概略構成図である。 l・・・・・・オフガス供給系、 2・・・・・・洗浄
塔、5・・・・・洗浄液供給系。
FIG. 1 is a schematic configuration diagram showing an example of a cleaning tower suitably used in the ruthenium cleaning method of the present invention, and FIG. 2 is a test for evaluating the decontamination efficiency of the ruthenium cleaning method of the present invention. FIG. 1 is a schematic configuration diagram showing an example of a device. 1...Off gas supply system, 2...Cleaning tower, 5...Cleaning liquid supply system.

Claims (1)

【特許請求の範囲】 RuO_4を含有するオフガスを洗浄水で洗浄して、上
記RuO_4を洗浄液中に吸収させることにより除去す
るに際し、 該洗浄液中に亜硝酸イオンを含有させたことを特徴とす
る揮発性ルテニウムの洗浄方法
[Claims] A volatilization method characterized in that the off-gas containing RuO_4 is washed with washing water to remove the RuO_4 by absorption into the washing liquid, the washing liquid containing nitrite ions. How to clean ruthenium
JP1125323A 1989-05-18 1989-05-18 Method for cleaning volatile ruthenium Pending JPH02304399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125323A JPH02304399A (en) 1989-05-18 1989-05-18 Method for cleaning volatile ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125323A JPH02304399A (en) 1989-05-18 1989-05-18 Method for cleaning volatile ruthenium

Publications (1)

Publication Number Publication Date
JPH02304399A true JPH02304399A (en) 1990-12-18

Family

ID=14907272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125323A Pending JPH02304399A (en) 1989-05-18 1989-05-18 Method for cleaning volatile ruthenium

Country Status (1)

Country Link
JP (1) JPH02304399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345004A (en) * 1998-12-22 2000-06-28 Aea Technology Plc Treating off-gas containing ruthenium tetroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345004A (en) * 1998-12-22 2000-06-28 Aea Technology Plc Treating off-gas containing ruthenium tetroxide

Similar Documents

Publication Publication Date Title
CA1252415A (en) Decontaminating metal surfaces with chelating solution and electrolysis
DE69838857T2 (en) Process for the treatment of a contaminated gas
JPS613095A (en) Method of removing contaminant on surface of metal in cooling system of nuclear reactor
JPH02304399A (en) Method for cleaning volatile ruthenium
CN109166642A (en) Nuclear power station radioactive liquid waste organic matter treating apparatus
KR200248785Y1 (en) H3 Retrieval Equipment
JPH0319520B2 (en)
JPS644220A (en) Adsorbing and decomposing agent of ozone and usage thereof
JP4306999B2 (en) Dissolution / decontamination method
CN101313367A (en) Fast reduction of iodine species to iodide
JP2549415B2 (en) Method for removing arsine and / or phosphine
JPH0677068B2 (en) Treatment method of radioactive ion exchange resin
JP2819662B2 (en) How to remove ruthenium tetroxide
JPS5522320A (en) Gas cleaning process
EP0261662A2 (en) Method for removal of iodine in gas
DE69933997T2 (en) METHOD AND APPARATUS FOR DECONTAMINATING METALLIC SURFACES
KR101341143B1 (en) Apparatus for removing using micro bubble and removing method of the same
JP7456916B2 (en) Iodine collection equipment and nuclear structures
RU2143756C1 (en) Method for fractional cleaning of gases from harmful chemical agents and radioactive materials formed in dissolving nuclear wastes
JP3096753B2 (en) Solvent regeneration method for dry cleaning equipment
Watson et al. Iodine containment by dousing in NPD-II
JP6475686B2 (en) Tritium extinction apparatus and tritium extinction method
JP2002228796A (en) Method and device for chemically decontaminating structural component of radiation handling facility
JP5096652B2 (en) Treatment agent and treatment method for aluminum member surface
Kornev et al. Technology for NPP decantate treatment realized at Kola NPP