JPH02303963A - Antiskid control device - Google Patents

Antiskid control device

Info

Publication number
JPH02303963A
JPH02303963A JP12141989A JP12141989A JPH02303963A JP H02303963 A JPH02303963 A JP H02303963A JP 12141989 A JP12141989 A JP 12141989A JP 12141989 A JP12141989 A JP 12141989A JP H02303963 A JPH02303963 A JP H02303963A
Authority
JP
Japan
Prior art keywords
wheel
speed
vehicle speed
wheel speed
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12141989A
Other languages
Japanese (ja)
Other versions
JP2591157B2 (en
Inventor
Kazuo Sakaguchi
一夫 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1121419A priority Critical patent/JP2591157B2/en
Publication of JPH02303963A publication Critical patent/JPH02303963A/en
Application granted granted Critical
Publication of JP2591157B2 publication Critical patent/JP2591157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve braking performance by utilizing a speed of non-drive wheel as an arithmetic data of a simulated car speed when a drive wheel is detected for its acceleration slip at the time of antiskid starting in which a pressure of brake fluid is reduced when the wheel speed is placed in a slip condition of not less than a predetermined degree for the simulated car speed. CONSTITUTION:In the captioned control device, a braking slip is prevented by reducing a pressure of brake fluid of a wheel in which a wheel speed is placed in a slip condition of no less than a predetermined degree for a simulated car speed obtained being based on speeds of non-drive and drive wheels in a simulated car speed generating circuit 27. Here the simulated car speed generating circuit 27 is provided with a simulated car speed arithmetic circuit 47, which calculates a simulated car speed being based on the wheel speed selected in a select switch 46, and a wheel spin discrimination value arithmetic circuit 48 which obtains a discrimination value for judging an acceleration slip of the drive wheel. While a comparator 49, which discriminates a wheel spin of the drive wheel from the discrimination value and the wheel speed, is provided, and the select switch 46 is switched for using the speed of the non-drive wheel as an arithmetic data of the simulation car speed when the wheel spin in generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車輪の制動スリップを防止するようブレーキ液
圧を制御するアンチスキッド制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an anti-skid control device that controls brake fluid pressure to prevent brake slippage of wheels.

(従来の技術) アンチスキッド制御装置は、制動中車輪速が車体速に対
し所定のスリップ関係(例えば車輪の路面[擦係数が最
大となる理想スリップ率を越える状B)となった時、当
該車輪のスリップ(ロック)を防止するようブレーキ液
圧を減圧する構成上なす。
(Prior art) An anti-skid control device is designed to control when the wheel speed during braking has a predetermined slip relationship with respect to the vehicle body speed (for example, the road surface of the wheels [state B exceeding the ideal slip ratio where the friction coefficient is maximum]). It is designed to reduce brake fluid pressure to prevent wheel slipping (locking).

ところで、車体速(実車速)は直接検出するのでは高価
なドツプラーレーダー等を必要とし、現実的でないため
、車輪速から例えば特開昭60−285163号公報に
示す技術を用いて擬似車速を造り出し、これを車体速と
して用いる。この技術は、右前輪(非駆動輪)の車輪速
■1、左前輪(非駆動輪)の車輪速■。2、及び後2輪
(駆動輪)の平均車輪速■。から第6図(a)(Vcは
参考までに示した実車速)の如きものである場合につき
述べると、以下のように擬似車速を演算するものである
。即ち、車輪速vWI+  ”’A2+  ■1−13
のうち最も高いものが実車速に一番近いことから、これ
を同図(b)に■−で示す如くにセレクトハイし、この
セレクトハイ車輪速v、Jの加速度αL4(負が減速度
)を同図(c)の如くに演算する。
By the way, direct detection of vehicle speed (actual vehicle speed) requires expensive Doppler radar, etc., and is not practical. Therefore, it is possible to detect pseudo vehicle speed from wheel speed using the technology disclosed in Japanese Patent Application Laid-Open No. 60-285163. and use this as the vehicle speed. This technology determines the wheel speed of the right front wheel (non-driving wheel) ■1 and the wheel speed of the left front wheel (non-driving wheel) ■. 2, and the average wheel speed of the two rear wheels (drive wheels)■. 6(a) (where Vc is the actual vehicle speed shown for reference), the pseudo vehicle speed is calculated as follows. That is, wheel speed vWI+ ``'A2+ ■1-13
Since the highest one among them is closest to the actual vehicle speed, it is selected high as shown by ■- in the same figure (b), and the acceleration αL4 of this selected high wheel speed v, J (negative is deceleration) is calculated as shown in (c) of the same figure.

そして、減速度α。が基準値b2以上になるt0〜t2
時、セレクトハイ車輪速■いが実車速■。
And the deceleration α. t0 to t2 when is equal to or greater than the reference value b2
At the time, select high wheel speed ■actual vehicle speed■.

を模したものでなくなることから、この時のセレクトハ
イ車輪速■。を基準にした所定低下勾配の演算車速■l
を求める。勾配は、初回は点■1゜。
Select high wheel speed at this time, as it will not be imitated. Calculated vehicle speed of a predetermined decreasing gradient based on
seek. The slope is point ■1° for the first time.

より予め定めておいた予定勾配とし、2回目は点■、。The second time, we set the slope to a predetermined slope.

、と点■1゜とを結んで得られる勾配とし、3回目以後
も2回目と同様点Vb(。、を起点として求めた勾配と
する。なお、vIは演算誤差の加重を避けるため一定時
間ΔTの経過時にセレクトハイ車輪速V。に一致させる
, and the point ■1°, and from the third time onward, the gradient obtained from the point Vb(.) is the same as the second time. Note that vI is a gradient obtained by connecting the point Vb(. When ΔT has elapsed, the wheel speed is made to match the select high wheel speed V.

そして、このようにして求めた演算車速■逼とセレクト
ハイ車輪速V−のうち、高い方が実車速VCに近いこと
から、これを第6図(d)中Viwの如くにセレクトハ
イして擬、似車速Vowとする。
Then, between the calculated vehicle speed ■ 〼 and the selected high wheel speed V- obtained in this way, the higher one is closer to the actual vehicle speed VC, so this is selected as shown in Viw in Fig. 6(d). Let it be pseudo-vehicle speed Vow.

(発明が解決しようとする課題) しかして、このように兎に角無条件に最も高い車輪速を
基に擬似車速を造り出すのでは、第7図に示す如く瞬時
tl迄のアクセルペダルの踏込みで駆動輪が加速スリッ
プ(ホイールスピン)を生じてその車輪速VW3が実車
速■、を上まわり、その後瞬時も!以後のブレーキペダ
ルの踏込みによる制動で車輪速■。が非駆動輪速VWI
+  VH2と共に2.低下する瞬時t3より、擬似車
速y iwが第7図の如きものとなる。
(Problem to be Solved by the Invention) However, if the pseudo vehicle speed is created unconditionally based on the highest wheel speed in this way, as shown in Fig. The drive wheels generate acceleration slip (wheel spin) and the wheel speed VW3 exceeds the actual vehicle speed, and then instantly! The wheel speed increases by braking by subsequently pressing the brake pedal■. is the non-driven wheel speed VWI
+ 2 with VH2. From the moment t3 when the vehicle speed decreases, the pseudo vehicle speed y iw becomes as shown in FIG.

よって、擬似車速Viwが実車速■。より高くなってし
まい、これと車輪速とを比較して行う制動スリップの判
断が、スリップしていないのにスリップしたとの誤判断
を生じ、不要なブレーキ液圧の減圧で制動距離が長くな
ったり、最悪の場合制動不能となる。
Therefore, the pseudo vehicle speed Viw is the actual vehicle speed■. This causes the braking slip to be judged by comparing this with the wheel speed, resulting in a erroneous judgment that the brake slip has occurred when there is no slip, and the braking distance becomes longer due to an unnecessary decrease in brake fluid pressure. Or, in the worst case scenario, you will be unable to brake.

なお、この問題解決のため駆動スリップを生じない非駆
動輪の車輪速のみから擬似車速を造り出すことが考えら
れるが、この場合以下の問題を生ずる。即ち、車輪はア
ンチスキッド制御によるブレーキ液圧の減圧で回転を回
復しつつある時、路面の凹凸にともなう車輪速の変動で
再増圧タイミングが早まるのを避けられず、従って自己
の車輪速から造り出した擬似車速に基きアンチスキッド
制御される車輪は擬似車速及び車輪速をどんどん低下し
てゆくこととなる。そして、路面の凹凸にともなう車輪
速の変動は非駆動輪同士、及び駆動輪同士でほぼ同期し
て発生し、上記の如く非駆動輪の車輪速のみから擬似車
速を造り出すのでは、非駆動輪が両方共に車輪速をどん
どん低下することとなり、結果として擬似車速が低下さ
れ、正値なアンチスキッド制御を期し難い。
In order to solve this problem, it is conceivable to create a pseudo vehicle speed from only the wheel speed of the non-driving wheels that do not cause drive slip, but in this case, the following problem occurs. In other words, when the wheels are recovering their rotation by reducing the brake fluid pressure due to anti-skid control, it is unavoidable that the timing of re-increasing the pressure will be earlier due to fluctuations in wheel speed due to unevenness of the road surface, and therefore the timing will be lower than the own wheel speed. The wheels subjected to anti-skid control based on the created pseudo-vehicle speed gradually reduce the pseudo-vehicle speed and wheel speed. Fluctuations in wheel speed due to unevenness of the road surface occur almost synchronously between non-driving wheels and driving wheels. In both cases, the wheel speed gradually decreases, and as a result, the pseudo vehicle speed decreases, making it difficult to achieve anti-skid control with a positive value.

この理由から、前記の通り、擬似車速は通常非駆動輪の
車輪速のみならず駆動輪の車輪速にも基き造り出すのが
普通であるが、その別の理由は非駆動輪である前輪が後
輪より大きな荷重を支えており、よって前輪のブレーキ
分担が後輪より大きく、前輪の減圧を抑制気味にずべき
であるためでもある。
For this reason, as mentioned above, the pseudo vehicle speed is usually created based on the wheel speed of the driving wheels as well as the wheel speed of the non-driving wheels. Another reason is that the front wheels, which are the non-driving wheels, This is also because the front wheels support a larger load than the wheels, so the front wheels have a larger share of braking than the rear wheels, and the depressurization of the front wheels should be slightly suppressed.

本発明は、駆動輪の加速ス、リップ発注時非駆動輪の車
輪速を基に擬似車速を造り出して、前述の問題を解消す
ることを目的とする。
An object of the present invention is to solve the above-mentioned problem by creating a pseudo vehicle speed based on the acceleration speed of the driving wheels and the wheel speed of the non-driving wheels at the time of lip order.

(課題を解決するための手段) この目的のため本発明は、非駆動輪又は駆動輪の車輪速
を基に擬似車速を求め、この擬似車速に対し車輪速が所
定以上の制動スリップ状態になった車輪のブレーキ液圧
を減じて制動スリップを防止するアンチスキッド制御装
置において、アンチスキッド開始時における駆動輪の加
速スリップを検知する加速スリップ検知手段と、この加
速スリップ検知時、非駆動輪の車輪速を前記擬似車速の
演算資料とする車輪速選択手段とを設けたものである。
(Means for Solving the Problem) For this purpose, the present invention obtains a pseudo vehicle speed based on the wheel speed of the non-driving wheels or the driving wheels, and when the wheel speed is in a braking slip state higher than a predetermined value with respect to the pseudo vehicle speed. An anti-skid control device that prevents braking slip by reducing the brake fluid pressure of a non-driving wheel includes an acceleration slip detecting means for detecting acceleration slip of a driving wheel at the time of anti-skid initiation, and an acceleration slip detecting means for detecting an acceleration slip of a driving wheel at the time of anti-skid initiation, and a non-driving wheel and wheel speed selection means that uses the speed as calculation data for the pseudo vehicle speed.

(作 用)  ′ アンチスキッド制御装置は、ブレーキ液圧を発生させた
制動中、非駆動輪又は駆動輪の車輪速を基に求めた擬似
車速に対し車輪速が所定以上の制動スリップ状態になっ
た車輪のブレーキ液圧を減じ、当該車輪の制動スリップ
を防止する。
(Function) ´ The anti-skid control device detects during braking when brake fluid pressure is generated that the wheel speed is higher than a predetermined value and enters a braking slip state with respect to the pseudo vehicle speed determined based on the wheel speed of the non-driving wheel or the driving wheel. This reduces the brake fluid pressure of the wheel that has been braked to prevent the brake slip of that wheel.

ところでアンチスキッド開始時に駆動輪が加速スリップ
を生じていると、これを検知する加速スリップ検知手段
からの信号を受けて車輪速選択手段は非駆動輪の車輪速
を前記擬似車速の演算資料とする。よって、加速スリッ
プを生じている駆動輪の車輪速を基に擬似車速を造り出
すようなことがなくなり、この擬似車速が実車速より高
くなって不要なブレーキ液圧の減圧により制動距離が長
くなったり、制動不能になるのを防止することができる
By the way, if the driving wheels are experiencing acceleration slip at the start of anti-skid, the wheel speed selection means receives a signal from the acceleration slip detection means that detects this and uses the wheel speed of the non-driving wheels as the data for calculating the pseudo vehicle speed. . Therefore, it is no longer possible to create a pseudo vehicle speed based on the wheel speed of the drive wheel that is experiencing acceleration slip, and this pseudo vehicle speed may become higher than the actual vehicle speed, resulting in a longer braking distance due to unnecessary brake fluid pressure reduction. , it is possible to prevent the vehicle from becoming unable to brake.

(実施例) 以下、本発明の実施例を図面に基き詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明アンチスキッド制御装置の一実施例を示
す全体システム図で、図中1は右前輪(非駆動輪)、1
aはそのホイールシリンダ、2は左前輪(非駆動輪)、
2aはそのホイールシリンダ、3は右後輪(駆動輪)、
3aはそのホイールシリンダ、4は左後輪(駆動輪)、
4aはそのホイールシリンダを夫々示す。又、5はエン
ジン、6は変速機、7はプロペラシャフト1.8はデ、
イファレンシャルギャ、9,10は夫々後車軸で、これ
らにより後2輪3,4を駆動して車両を走行させ得るも
のとする。
FIG. 1 is an overall system diagram showing an embodiment of the anti-skid control device of the present invention, in which 1 is the right front wheel (non-driving wheel);
a is the wheel cylinder, 2 is the left front wheel (non-driving wheel),
2a is the wheel cylinder, 3 is the right rear wheel (drive wheel),
3a is the wheel cylinder, 4 is the left rear wheel (drive wheel),
4a indicates the respective wheel cylinders. Also, 5 is the engine, 6 is the transmission, 7 is the propeller shaft 1.8 is de,
Differential gears 9 and 10 are rear axles, which drive the two rear wheels 3 and 4 to make the vehicle run.

ブレーキ装置は、2系統マスターシリンダ11の一系統
11aを管路12により右前輪ホイールシリンダ1aに
接続すると共に、管路13により左前輪ホイールシリン
ダ2aに接続し、他系統11bを管路14により右後輪
ホイール3aに接続すると共に、管路14゜15により
左後輪ホイールシリンダ4aに接続した所謂前後スプリ
ット式液圧ブレーキ装置とする。このブレーキ装置はブ
レーキペダル16の踏込みにより発生してマスターシリ
ンダ11の2系統11a、 llbから出力されるマス
ターシリンダ液圧により作動され、車両を減速させるこ
とができる。
In the brake system, one system 11a of the two-system master cylinder 11 is connected to the right front wheel cylinder 1a through a pipe 12, and the other system 11b is connected to the right front wheel cylinder 1a through a pipe 13, and the other system 11b is connected to the right front wheel cylinder 1a through a pipe 14. It is a so-called front-rear split type hydraulic brake device which is connected to the rear wheel 3a and to the left rear wheel cylinder 4a through conduits 14 and 15. This brake device is actuated by master cylinder hydraulic pressure generated by depression of the brake pedal 16 and output from two systems 11a and 11b of the master cylinder 11, and can decelerate the vehicle.

右前輪l、左前輪2及び後2輪3,4に対する合計3個
のアンデスキッド制御手段を設け、これらは管路12.
13.14中に夫々挿入したアクチュエータ17a、 
17b、 17cと、これらを作動制御するアンチスキ
ッド制御回路18とで構成する。
A total of three unskid control means for the front right wheel 1, the front left wheel 2, and the two rear wheels 3 and 4 are provided, and these control means are connected to the conduit 12.
13. Actuators 17a inserted into 14, respectively;
17b, 17c, and an anti-skid control circuit 18 that controls their operation.

アクチェエータ17a+ 17J 17cは夫々同様の
ものであるため、対応部分をサフィックスa、b。
Since the actuators 17a+ 17J and 17c are similar, corresponding parts are designated by suffixes a and b.

Cの異なる同一符号にて示し、右前輪用アクチュエータ
17aのみについて以下に詳細説明する。アクチュエー
タ17aは流入弁(EV弁)19aと、排出弁(AV弁
)20aと、ポンプ21a と、アキュムレータ22a
と、チェックバルブ23aとを図示の如くに接続して構
成する。EV弁19a及びAV弁20aはアンチスキッ
ド制御回路18からのHVI信号及びAVI信号により
個々に制御され、ポンプ21aは他のアクチュエータ1
7b、 17cにおけるポンプ21b、 21cと共に
共通なモータ24により適宜駆動され、この駆動をアン
チスキッド制御回路18からのMR倍信号より制御する
。EVI信号がLレベルでEV弁19aを開き、AVI
信号がLレベルでAV弁20aを閉じている状態で、ホ
イールシリンダlaへのブレーキ液圧はマスターシリン
ダ液圧と同じ値になる迄上昇される。
Only the right front wheel actuator 17a, which is indicated by the same reference numerals with different C, will be described in detail below. The actuator 17a includes an inflow valve (EV valve) 19a, an exhaust valve (AV valve) 20a, a pump 21a, and an accumulator 22a.
and a check valve 23a are connected as shown in the figure. The EV valve 19a and the AV valve 20a are individually controlled by the HVI signal and AVI signal from the anti-skid control circuit 18, and the pump 21a is controlled by the other actuator 1.
It is suitably driven by a common motor 24 together with the pumps 21b and 21c in the pumps 7b and 17c, and this drive is controlled by the MR multiplication signal from the anti-skid control circuit 18. When the EVI signal is at L level, the EV valve 19a is opened and the AVI
With the signal at L level and the AV valve 20a closed, the brake fluid pressure to the wheel cylinder la is increased to the same value as the master cylinder fluid pressure.

又、この状態でEVI信号がHレベルに転じてEV弁1
9aをも閉じると、ホイールシリンダ1aへのブレーキ
液圧は保持される。次に、この状態でAVI信号がHレ
ベルに転じてへν弁?oaを開き、加えてHレベルのM
R倍信号よりトランジスタ25を導通し、モータ24を
電源子Eにより付勢してボア7”21aを駆動すると、
ホイールシリンダ1aのブレーキ液圧はマスターシリン
ダ11に戻されて減圧される。
Also, in this state, the EVI signal changes to H level and EV valve 1
When 9a is also closed, the brake fluid pressure to the wheel cylinder 1a is maintained. Next, in this state, the AVI signal changes to H level and goes to the ν valve? Open oa, plus H level M
When the transistor 25 is made conductive by the R times signal and the motor 24 is energized by the power supply element E to drive the bore 7'' 21a,
The brake fluid pressure in the wheel cylinder 1a is returned to the master cylinder 11 and reduced therein.

上記の動作を表にまとめてると次表の如くである。The above operations are summarized in the table below.

アンチスキッド制御回路18は、右前輪lの回転速度を
検出する車輪速センサ26aがらの信号を基に上記EV
I信号及びAVI信号を発する回路部分18aと、左前
輪2の回転速度を検出する車輪速センサ26bからの信
号を基に左前輪用アクチュエーク17bのためのEV2
信号及びAV2信号を発する回路部分18bと、後2輪
3,4の平均回転速度であるプロペラシャフト7の回転
速度を検出する車輪速センサ26cからの信号を基に後
輪用アクチュエータ17cのためのEV3信号及びAV
3信号を発する回路部分18cと、これら回路部分18
a、 18b、 18cに共通な擬似車速発生回路27
、目標車輪速発生回路28、AVI。
The anti-skid control circuit 18 controls the EV based on a signal from a wheel speed sensor 26a that detects the rotational speed of the right front wheel l.
The EV2 for the left front wheel actuator 17b is based on the signals from the circuit section 18a that generates the I signal and the AVI signal, and the wheel speed sensor 26b that detects the rotational speed of the left front wheel 2.
Based on the signals from the circuit portion 18b that generates the signal and the AV2 signal, and the wheel speed sensor 26c that detects the rotational speed of the propeller shaft 7, which is the average rotational speed of the two rear wheels 3 and 4, EV3 signal and AV
A circuit portion 18c that emits three signals and these circuit portions 18
Pseudo vehicle speed generation circuit 27 common to a, 18b, and 18c
, target wheel speed generation circuit 28, AVI.

^V2. AV3信号(Hレベル)の論理和をとるOR
ゲート29、及び該ORゲートの出力の立上がり毎にト
リガされて所定時間1(レベルのMR倍信号発するリド
リカプルタイマ30とで構成する。
^V2. OR to take the logical sum of the AV3 signal (H level)
It consists of a gate 29 and a lid couple timer 30 which is triggered every time the output of the OR gate rises and generates a signal MR times the level 1 (level MR) for a predetermined period of time.

回路部分18a、 18b、 18cは夫々同様な構成
とするため、対応部分をサフィックスa、b、cの異な
る同一符号にて示し、回路部分18aのみについて詳細
説明を行なう。31aは車輪速検出回路で、車輪速セン
サ26aからの右前輪回転数(パルス)信号と右前輪回
転半径とからその周速(車輪速)■1を演算する。この
車輪速■い、は車輪加速度検出回路32aに入力されて
車輪加速度α、1.(負が減速度)の演算に供される。
Since the circuit portions 18a, 18b, and 18c have similar configurations, corresponding portions are designated by the same reference numerals with different suffixes a, b, and c, and only the circuit portion 18a will be described in detail. A wheel speed detection circuit 31a calculates the circumferential speed (wheel speed) 1 from the right front wheel rotation speed (pulse) signal from the wheel speed sensor 26a and the right front wheel rotation radius. This wheel speed is input to the wheel acceleration detection circuit 32a, and the wheel acceleration α, 1. (The negative value is deceleration).

車輪加速度α、、は比較器33a、 34aで減速度基
準値し及び加速度基準値a1 と比較され、比較器33
a、は車輪減速度α□が基準値す、より大きな減速度に
なる時Hレベル信号を出力し、比較器34aは車輪加速
度α、が基準値a1より大きな加速度になる時Hレベル
信号を出力する。比較器35aは車輪速VW+を目標車
輪速発生回路28からの後述する目標車輪速(V、、x
O,85)と比較し、車輪速■。1がこの目標車輪速以
下の間比較器35aはHレベル信号を出力する。ORゲ
ー) 36aは比較器33a〜35aのHレベル出力の
論理和をとって[■レベルのEVI信号を発し、この信
号を増幅器37aを経てEV弁19aに供給する。
The wheel acceleration α, , is compared with the deceleration reference value and the acceleration reference value a1 by the comparators 33a and 34a.
a, outputs an H level signal when the wheel deceleration α□ becomes a larger deceleration than the reference value, and the comparator 34a outputs an H level signal when the wheel acceleration α becomes larger than the reference value a1. do. The comparator 35a converts the wheel speed VW+ into a target wheel speed (V, , x
0,85), wheel speed■. 1 is below this target wheel speed, the comparator 35a outputs an H level signal. The OR game 36a takes the logical sum of the H level outputs of the comparators 33a to 35a, generates an EVI signal at [■ level, and supplies this signal to the EV valve 19a via the amplifier 37a.

ANDゲート38aは比較器35aのHレベル出力と、
比較器34aからのLレベル信号との論理積をとってH
レベルのAVI信号を発し、この信号を増幅器39aを
経てAV弁20aに供給する。
AND gate 38a connects the H level output of comparator 35a and
The logical product with the L level signal from the comparator 34a is taken and the H level signal is
A level AVI signal is generated, and this signal is supplied to the AV valve 20a via an amplifier 39a.

擬似車速発生回路27は第2図の構成とし、車輪速■1
〜V、、、MR信号及び駆動輪用のAV3信号を夫々入
力され、これらに暴き擬似車速V、Wを後述の如くに演
算するもとする。これがため回路27は前輪速VWI+
  vwzの高い方を選択するセレクトハイスイッチ4
1及び低い方を選択するセレクトロースイッチ42を具
える。スイッチ41からのセレクトハイ前輪速を、MR
倍信号Hレベルとなるアンチスキッド制御中は内輪差補
正回路43により内輪差補正して、又MR倍信号15レ
ベルのアンチスキッド制御非実行中はそのままセレクト
ハイスイッチ44に入力する。このセレクトハイスイッ
チ44は内輪差補正回路43を経由したセレクトハイ前
輪速及びスイッチ42からのセレクトロー前輪速のうち
大きい方を実車速に近いことから非駆動輪速VWFとし
てセレクトハイスイッチ45及びセレクトスイッチ46
に入力する。セレクトハイスイッチ45は非駆動輪速■
1及び駆動輪速vw3のうち大きい方を実車速ニ近いこ
とからセレクトハイ車輪速VWHとしてセレクトスイッ
チ46に入力する。このセレクトスイッチは接点を通常
実線位置としてスイッチ45からのセレクトハイ車輪速
V−を擬似車速V iwの演算に供し、制御信号S1の
Hレベル中接点を点線位置として非駆動輪速■。Fを擬
似車速y iwの演算に供するべ(、擬似車速演算回路
47に入力する。
The pseudo vehicle speed generation circuit 27 has the configuration shown in FIG.
~V, . . . The MR signal and the AV3 signal for the drive wheels are respectively input, and the revealed pseudo vehicle speeds V and W are calculated from these as described below. Therefore, circuit 27 is front wheel speed VWI+
Select high switch 4 to select the higher vwz
1 and a select low switch 42 for selecting the lower one. Select high front wheel speed from switch 41, MR
During the anti-skid control when the double signal is at H level, the inner race difference is corrected by the inner race difference correction circuit 43, and when the anti-skid control is not executed when the MR double signal is at the 15 level, it is directly input to the select high switch 44. This select high switch 44 selects the higher of the select high front wheel speed via the inner wheel difference correction circuit 43 and the select low front wheel speed from the switch 42 as the non-driving wheel speed VWF because it is close to the actual vehicle speed. switch 46
Enter. Select high switch 45 is the non-driving wheel speed ■
1 and drive wheel speed vw3 is input to the select switch 46 as the select high wheel speed VWH because it is closer to the actual vehicle speed. This select switch sets the contact point to the normal solid line position and uses the select high wheel speed V- from the switch 45 to calculate the pseudo vehicle speed Viw, and sets the contact point to the dotted line position while the control signal S1 is at H level to calculate the non-driving wheel speed ■. F should be used to calculate the pseudo vehicle speed y iw (input to the pseudo vehicle speed calculation circuit 47).

擬似車速演算回路47は、セ、レフトスイッチ46で゛
選択した車輪速を基に第6図(b) 、 (c) 、 
(d)の如くにして擬似車速■1を演算する周知のもの
とし、この擬似車速をホイールスピン判別値演算回路4
8に入力する他、第1図の目標車輪速発生回路28に入
力する。回路48は、実験から駆動輪3,4の加速スリ
ップ(ホイールスピン)を判断する設定値をV i、、
X 1.05+ 4にm/hの演算により求め、これを
比較器49に入力する。比較2S49は駆動輪速■。□
を抽入力に供給され、これがホイールスピン判別値V=
、X1.05+4Km/h以上になる時、駆動輪3゜4
のホイールスピンと判別して出力をHレベルにする。こ
のHレベル出力は一方でORゲート50の1人力に、他
方でNOTゲート51及びリトリガブルタイマ52を経
てORゲートの抽入力に供給する。
The pseudo vehicle speed calculation circuit 47 calculates the speeds shown in FIGS. 6(b), (c), based on the wheel speed selected by the left switch 46.
It is assumed that the pseudo vehicle speed 1 is calculated as shown in (d), and this pseudo vehicle speed is calculated by the wheel spin discrimination value calculation circuit 4.
8 and also to the target wheel speed generation circuit 28 shown in FIG. The circuit 48 determines the set value for determining the acceleration slip (wheel spin) of the driving wheels 3 and 4 from experiments as V i, .
X1.05+4 is calculated by m/h, and this is input to the comparator 49. Comparison 2S49 is driving wheel speed■. □
is supplied to the extraction input, and this is the wheel spin judgment value V=
, when the speed exceeds X1.05+4Km/h, the driving wheel is 3°4
It is determined that this is wheel spin and the output is set to H level. This H level output is supplied to one input of the OR gate 50 on the one hand, and to the extraction input of the OR gate via the NOT gate 51 and the retriggerable timer 52 on the other hand.

リトリガブルタイマ52はNOTゲート51の出力の立
上がり、つまり第7図に対応する第3図にも示すように
比較器49の出力が立下がるホイールスピン解消時より
設定時間TI中出力をHレベルにするものとする。よっ
て、ORゲート50は駆動輪3,4のホイールスピン中
とその後の設定時間T、中に出力をHレベルにしてAN
Dゲート53の1人力に供給する。
The retriggerable timer 52 keeps the output at H level for a set time TI from when the output of the NOT gate 51 rises, that is, when the output of the comparator 49 falls as shown in FIG. 3 corresponding to FIG. shall be made. Therefore, the OR gate 50 sets the output to H level during the wheel spin of the drive wheels 3 and 4 and during the subsequent set time T, and performs the AN
Supply to D gate 53 by one person.

ANDゲート53の他の1人力にはMR倍信号立上がり
、即ちどれか1輪でもアンチスキッドを開始した瞬時t
、より第3図の如く設定時間T2中14レベル信号を出
力するリトリガブルタイマ54からの出力を供給する。
The other person operating the AND gate 53 has the MR multiplication signal rising, that is, the instant t when any one wheel starts anti-skid.
, and supplies the output from the retriggerable timer 54 which outputs a 14-level signal during the set time T2 as shown in FIG.

そして、ANDゲート53の残りの1人力にはフリップ
フロップ回路55の出力を供給し、このフリップフロッ
プ回路はAV3信号の立上がり時、つまり駆動輪のアン
チスキ・ンド開始瞬時t4にセットされて出力をLレベ
ルに、又MR倍信号入力されるNOTORゲート50力
の立上がり時、つまり全車輪のアンチスキッド終了時に
出力をHレベルにするものとする。3人力ANDゲート
53の出力はORゲート57の1人力に供給し、ORゲ
ート57の抽入力に?IR信号を反転するNQTゲート
59の出力を供給する。そして、ORゲート57の出力
はセレクトスイッチ46にその制御信号S、として用い
る。
Then, the output of the flip-flop circuit 55 is supplied to the remaining one input of the AND gate 53, and this flip-flop circuit is set at the rising edge of the AV3 signal, that is, at the instant t4 when the anti-skid of the drive wheels starts, and outputs L. At the rise of the NOTOR gate 50 force to which the MR multiplied signal is input, that is, when the anti-skid of all wheels is completed, the output is set to H level. The output of the three-man power AND gate 53 is supplied to the one-man power of the OR gate 57, and is input to the extraction input of the OR gate 57. Provides the output of NQT gate 59 which inverts the IR signal. The output of the OR gate 57 is used as a control signal S for the select switch 46.

第1図の目標車輪連発生回、路2日は擬似車速V!、か
ら、車輪の路面摩擦係数が最大となる(制動距離が最短
となる)理想スリップ率0.15を得るための目標車輪
速vi、xo、85を求め、これを比較器35a〜35
cに供給して車輪のロックを判断する。
In the target wheel continuous generation circuit in Figure 1, on the 2nd day of the road, the pseudo vehicle speed is V! , the target wheel speeds vi, xo, 85 for obtaining an ideal slip ratio of 0.15 at which the road surface friction coefficient of the wheels is maximized (the braking distance is the shortest) are determined, and these are determined by the comparators 35a to 35.
c to determine whether the wheels are locked.

上記実施例の作用を次に説明する。The operation of the above embodiment will be explained next.

先ず擬似重連発生回路27の作用を第3図の如く、瞬時
り、迄の加速で駆動輪速VP3がホイールスピンを生じ
、瞬時11以後の制動で非駆動輪速V W I +VW
Zが瞬時む、にロックしてアンチスキッド制御され始め
た(MR倍信号立上がった)例につき説明する。瞬時t
3迄はMR倍信号Lレベルのアンチスキッド制御非実行
中であるため、NOTゲート59からのHレベル出力が
ORゲート57を経てセレクトスイッチ46に供給され
、このセレクトスイッチ46は非駆動輪速VWFを回路
47に供給して擬似車速Viwの演算に資する。
First, as shown in FIG. 3, the action of the pseudo double series generation circuit 27 is as shown in FIG.
An example will be explained in which Z is locked instantaneously and anti-skid control begins (the MR multiplier signal rises). instant t
Up to 3, the anti-skid control of the MR multiplied signal L level is not being executed, so the H level output from the NOT gate 59 is supplied to the select switch 46 via the OR gate 57, and this select switch 46 controls the non-driving wheel speed VWF. is supplied to the circuit 47 to contribute to the calculation of the pseudo vehicle speed Viw.

瞬時t3でMR倍信号立上がり、前2輪の一方でもアン
チスキッド制御が開始されると、NOTゲート59の出
力がLレベルとなり、セレクトスイッチ46の制御信号
S、はANDゲート53によりレベ、ルを決定される。
When the MR double signal rises at instant t3 and anti-skid control is started for one of the front two wheels, the output of the NOT gate 59 goes to L level, and the control signal S of the select switch 46 is set to the level S by the AND gate 53. It is determined.

瞬時も、でl信号が立上がると、これから設定時間T2
中リトリガブルタイマ54はANDゲート53の対応入
力をHレベルにする。又フリップフロップ回路55は前
回のアンチスキッド終了時リセットされ、出力をHレベ
ルに保つため、ANDゲート53の対応入力をHレベル
にしている。
Even momentarily, when the l signal rises, the set time T2 starts.
The middle retriggerable timer 54 sets the corresponding input of the AND gate 53 to H level. Further, the flip-flop circuit 55 is reset when the previous anti-skid is completed, and in order to keep the output at the H level, the corresponding input of the AND gate 53 is set at the H level.

他方、ORゲート50は駆動輪のホイールスピン中及び
その後の設定時間T、中ANDゲート53の対応入力を
Hレベルにする。よってアンチスキッド制御開始瞬時も
、以後は瞬時t、迄の間、ANDゲート53はホイール
スピン検知故にセレクトスイッチ46の制御信号SIを
Hレベルにし、非駆動輪速■。Fを擬似車速■iの演算
に資する。これがため、ホイールスピン発生時駆動輪速
V。、を擬似車速v!。
On the other hand, the OR gate 50 sets the corresponding input of the AND gate 53 to the H level during and after the wheel spin of the driving wheels for a set time T. Therefore, from the moment when the anti-skid control starts, until the moment t, the AND gate 53 sets the control signal SI of the select switch 46 to the H level due to wheel spin detection, and the non-driven wheel speed ■. F contributes to the calculation of the pseudo vehicle speed ■i. Therefore, the driving wheel speed V when wheel spin occurs. , is the pseudo vehicle speed v! .

の演算に資することはなく、この擬似車速を回路47は
第3図中2点鎖線の如くに求めることができ、擬似車速
Viwが駆動輪速VW3の影響を受けて実車速より大き
くなる問題を解消することができる。
The circuit 47 can obtain this pseudo vehicle speed as shown by the two-dot chain line in FIG. It can be resolved.

なお、同じアンチスキッド制御中でもホイールスピンを
生じずORゲート50.の出力がLレベルであれば、制
御信号S遥はLレベルであってセレクトスイッチ46の
接点を実線位置とする。これにより従来通り全車輪の車
輪速のうち最も高いものが擬似車速■1の演算に供され
ることとなるが、ホイールスピンを生じていないため、
擬似車速V iwが実車速より高くなることはない。
Note that even under the same anti-skid control, no wheel spin occurs and the OR gate 50. If the output of the select switch 46 is at the L level, the control signal S is at the L level and the contact of the select switch 46 is set to the solid line position. As a result, the highest wheel speed of all wheels will be used to calculate the pseudo vehicle speed ■1 as before, but since no wheel spin has occurred,
The pseudo vehicle speed V iw never becomes higher than the actual vehicle speed.

又、駆動輪3,4のアンチスキッド制御が開始される瞬
時L4以後、又は瞬時も、から設定時間T!の経過後は
ANDゲート53の対応2人力がLレベルとなり、これ
らの場合も全車輪速のうち最も高いものが擬似車速の演
算に供される。よって、何時までも非駆動輪速vwFの
みに基き擬似車速を演算することで生ずる前記の問題を
防止し得る。
Also, after the instant L4 when the anti-skid control of the drive wheels 3 and 4 is started, or even at that instant, the set time T! After the elapse of , the corresponding two-manpower of the AND gate 53 becomes L level, and in these cases as well, the highest of all wheel speeds is used for calculating the pseudo vehicle speed. Therefore, it is possible to prevent the above-mentioned problem caused by calculating a pseudo vehicle speed based only on the non-driven wheel speed vwF at any time.

次に、第17図に示す装置の右前輪1に係るアンチスキ
ッド制御を第4図の動作例に基き説明する。
Next, anti-skid control related to the right front wheel 1 of the device shown in FIG. 17 will be explained based on the operation example shown in FIG. 4.

瞬時L0にブレーキペダル16の踏込みでブレーキ液圧
が発生すると、車輪速V W +が低下し、車輪減速度
α1が発生する。車輪減速度α□が基準値す。
When brake fluid pressure is generated by depressing the brake pedal 16 at instant L0, wheel speed V W + decreases and wheel deceleration α1 occurs. Wheel deceleration α□ is the reference value.

を越える瞬時t1に比較器33aの1−ルベル出力によ
りEVI信号を立上げEV弁19aを閉じる。これによ
りブレーキ液圧P−をブレーキペダル踏力の上昇にもか
かわらずこの時の値に保圧し、第1スキツドサイクルを
開始する。
At the instant t1 exceeding the 1-level output of the comparator 33a, the EVI signal is raised and the EV valve 19a is closed. As a result, the brake fluid pressure P- is maintained at the current value despite the increase in the brake pedal depression force, and the first skid cycle is started.

この保圧によっても車輪速■1が低下し、遂に目標車輪
速VtwX0.85  以下になる瞬時ttに比較器3
5aの出力も立上がり、比較器34aのLレベル出力と
相俟ってAVI信号も立上がり、AV弁20aを開く。
The wheel speed 1 also decreases due to this pressure holding, and the comparator 3
The output of the comparator 5a also rises, and together with the L level output of the comparator 34a, the AVI signal also rises, opening the AV valve 20a.

よって瞬時t2以後ブレーキ液圧は減圧され、前輪1の
回転を回復させることができる。
Therefore, after the moment t2, the brake fluid pressure is reduced, and the rotation of the front wheel 1 can be restored.

この時、MR倍信号立上がり、そのHレベルをリトリガ
ブルタイマ30によりアンチスキッド制御中継続させる
ことで、モータ24を駆動し、上記の減圧を可能ならし
める。
At this time, the MR multiplier signal rises and the retriggerable timer 30 continues the H level during the anti-skid control, thereby driving the motor 24 and making the above pressure reduction possible.

前輪Iが回転を回復され、その車輪速Vwlが上昇する
と、車輪加速度α1が発生する。α1≧a、になる瞬時
L3〜t4間では、比較器34aが出力ヲ■Iレベルに
し、Aν1信号の■7レベルでAV弁20aを閉じる。
When the rotation of the front wheel I is restored and its wheel speed Vwl increases, a wheel acceleration α1 occurs. Between the instants L3 and t4 when α1≧a, the comparator 34a sets the output to the ■I level, and closes the AV valve 20a at the ■7 level of the Aν1 signal.

よってブレーキ液圧P。は保圧され、αkl<a+にな
った瞬時も4以後、比較器34aの出力の立下がり(E
V1.信号の立上がり)によりEV弁19aを開いてブ
レーキ液圧P。を上昇させる。
Therefore, brake fluid pressure P. is maintained, and even at the moment when αkl<a+, the fall of the output of the comparator 34a (E
V1. When the signal rises, the EV valve 19a is opened and the brake fluid pressure P is increased. to rise.

ブレーキ液圧P。の上昇で車輪速Vl+11がまた低下
し、その減速度α1が基準値す、を越える瞬時t、より
次のスキッドサイクルとなり、スキッドサイクル毎に上
記のアンチスキッド制御を繰返す。
Brake fluid pressure P. As the wheel speed Vl+11 increases, the wheel speed Vl+11 decreases again, and at the instant t when the deceleration α1 exceeds the reference value , the next skid cycle begins, and the above-mentioned anti-skid control is repeated for each skid cycle.

よってブレーキ液圧Pいは制動効率が最高となるような
ロック液圧PL近辺の値に保たれ、制動距離を最短にす
るような態様でアンチスキッド制御が前輪1に対して行
われることとなる。
Therefore, the brake fluid pressure P is maintained at a value near the lock fluid pressure PL that maximizes braking efficiency, and anti-skid control is performed on the front wheels 1 in a manner that minimizes the braking distance. .

他の前輪2及び後2輪3,4についても同様のアンチス
キッド制御が行われるが、共通な擬似車速Viwを求め
るに当り駆動輪3,4のホイールスピン発生時にはその
車輪速v1を用いず、非駆動輪1,2の車輪速■。1.
Vwg(非駆動輪速V、IF)を用いることから、擬似
車速V iwが実車速より大きくなって不要な減圧によ
り制動距離が延びたり、制動不能になるのを防止するこ
とができる。
Similar anti-skid control is performed for the other front wheels 2 and the two rear wheels 3 and 4, but in determining the common pseudo vehicle speed Viw, when wheel spin occurs in the driving wheels 3 and 4, the wheel speed v1 is not used. Wheel speed of non-driven wheels 1 and 2 ■. 1.
Since Vwg (non-driven wheel speed V, IF) is used, it is possible to prevent the pseudo vehicle speed V iw from becoming larger than the actual vehicle speed, thereby preventing the braking distance from increasing due to unnecessary pressure reduction, or from making braking impossible.

なお、擬似車速発生回路27は第2図の代りに第5図の
如くに構成し、フリップフロップ回路55をセットする
ようにしてもよい。つまり本例では、フリップフロップ
回路55のセット入力にANDゲート61を接続し、A
NDN−ゲート610力にリトリガブルタイマ62を、
又他入力にNORゲート63を接続する。リトリガブル
タイマ62はAV、信号の立上がり、即ち駆動輪3,4
の減圧開始から設定時間中Hレベル信号を出力し、NO
Rゲート63はEV、信号及び^v3信号が共にLレベ
ルとなる駆動輪3.4の増圧開始時Hレヘル信号を出力
するものとする。
Incidentally, the pseudo vehicle speed generating circuit 27 may be constructed as shown in FIG. 5 instead of that shown in FIG. 2, and a flip-flop circuit 55 may be set therein. That is, in this example, the AND gate 61 is connected to the set input of the flip-flop circuit 55, and the
Retriggerable timer 62 to NDN-gate 610,
Also, a NOR gate 63 is connected to other inputs. The retriggerable timer 62 detects the rising edge of the AV signal, that is, the driving wheels 3 and 4.
Outputs an H level signal for the set time from the start of depressurization, and NO
It is assumed that the R gate 63 outputs an H level signal when the pressure increase of the driving wheels 3.4 starts when the EV, signal, and ^v3 signal are all at the L level.

よって、ANDゲート61は駆動輪3.4の最初の減圧
後における増圧時フi7ツプフロツプ回路55をセット
する。
Therefore, the AND gate 61 sets the i7 flip-flop circuit 55 when the pressure of the drive wheel 3.4 increases after the initial pressure decrease.

(発明の効果) かくして本発明アンチスキッド制御装置は上述の如く、
駆動輪の加速スリップ時非駆動輪の車輪速を基に擬似車
速を求める構成としたから、加速スリップ中の駆動輪速
を基に実車速より高い擬似車速を求めるようなことがな
くなり、このような擬似車速に基くアンチスキッド制御
で不要な減圧がなされ、制動距離が延びたり、制動不能
になるのを防止することができる。
(Effects of the Invention) Thus, the anti-skid control device of the present invention has the following effects as described above.
Since the pseudo vehicle speed is determined based on the wheel speed of the non-drive wheels during acceleration slip of the driving wheels, it is no longer necessary to obtain a pseudo vehicle speed higher than the actual vehicle speed based on the drive wheel speed during acceleration slip. Anti-skid control based on a simulated vehicle speed can prevent unnecessary pressure reduction, extending braking distance, and preventing braking from becoming impossible.

又、請求項2の構成によれば駆動輪のアンチスキッド開
始以後は、この駆動輪が加速スリップしてないこと明白
である故、通常通り非駆動輪速及び駆動輪速の高い方を
基に擬似車速を求めることから、いつまでも非駆動輪速
に基き擬似車速を求める前記の弊害を回避することがで
きる。
Further, according to the structure of claim 2, after the anti-skid of the driving wheel starts, it is clear that the driving wheel is not experiencing acceleration slip, so the calculation is performed based on the higher of the non-driving wheel speed and the driving wheel speed as usual. Since the pseudo vehicle speed is determined, it is possible to avoid the above-mentioned disadvantage of forever obtaining the pseudo vehicle speed based on the non-driven wheel speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明アンチスキッド制御装置の一実施例を示
す全体システム図、 第2図は同側における擬似車速発生回路の電子回路図、 第3図は同回路の動作波形図、 第4図は第1図に示す装置の右前輪に係るアンチスキッ
ド制御作用を示す動作波形図、第5図は擬似車速発生回
路の他の例を示す電子回路図、 第6図及び第7図は夫々従来の擬似車速演算動作波形図
である。 1・・・右前輪(非駆動輪) 2・・・左前輪(非駆動
輪)3.4・・・後輪(駆動輪) la〜4a・・・ホイールシリンダ 7・・・プロペラシャフト 8・・・ディファレンシャルギヤ 11・・・2系統マスターシリンダ 16・・・ブレーキペダル 17a、 17b、 17c =−アクチュエータ18
・・・アンチスキッド制御回路 19a、 19b、 19c −EV弁20a、 20
b、 20c −AV弁21a、 21b、 21c 
−−−ポンプ22a、 22b、 22c ・・・アキ
ュムレータ24・・・ポンプ駆動モータ 26a、 26b、 26c −車輪速センサ27・・
・擬似車速発生回路 28・・・目標車輪速発生回路 30・・・リトリガブルタイマ 31a、 31b、 31c −車輪速検出回路32a
、 32b、 32c・・・車輪加速度検出回路41、
44.45・・・セレクトハイ不イッチ42・・・セレ
クトロースイッチ 43・・・内輪差補正回路  46・・・セレクトスイ
ッチ47・・・1疑似車速演算回路 48・・・ホイールスピン判別値演算回路49・・・比
較器 52、54.65・・・リトリガブルタイマ55・・・
フリップフロップ回路 第3図 第7図
Fig. 1 is an overall system diagram showing one embodiment of the anti-skid control device of the present invention, Fig. 2 is an electronic circuit diagram of a pseudo vehicle speed generation circuit on the same side, Fig. 3 is an operating waveform diagram of the circuit, and Fig. 4 is an operation waveform diagram showing the anti-skid control effect on the right front wheel of the device shown in FIG. 1, FIG. 5 is an electronic circuit diagram showing another example of the pseudo vehicle speed generation circuit, and FIGS. 6 and 7 are respectively conventional FIG. 3 is a waveform diagram of pseudo vehicle speed calculation operation. 1... Right front wheel (non-driving wheel) 2... Left front wheel (non-driving wheel) 3.4... Rear wheel (driving wheel) la~4a... Wheel cylinder 7... Propeller shaft 8. ... Differential gear 11 ... Two-system master cylinder 16 ... Brake pedals 17a, 17b, 17c =-actuator 18
...Anti-skid control circuits 19a, 19b, 19c -EV valves 20a, 20
b, 20c - AV valve 21a, 21b, 21c
---Pumps 22a, 22b, 22c...Accumulator 24...Pump drive motors 26a, 26b, 26c -Wheel speed sensor 27...
- Pseudo vehicle speed generation circuit 28...Target wheel speed generation circuit 30...Retriggerable timer 31a, 31b, 31c -Wheel speed detection circuit 32a
, 32b, 32c...wheel acceleration detection circuit 41,
44.45...Select high off switch 42...Select low switch 43...Inner wheel difference correction circuit 46...Select switch 47...1 pseudo vehicle speed calculation circuit 48...Wheel spin discrimination value calculation circuit 49...Comparators 52, 54.65...Retriggerable timer 55...
Flip-flop circuit Figure 3 Figure 7

Claims (1)

【特許請求の範囲】 1、非駆動輪又は駆動輪の車輪速を基に擬似車速を求め
、この擬似車速に対し車輪速が所定以上の制動スリップ
状態になった車輪のブレーキ液圧減じて制動スリップを
防止するアンチスキッド制御装置において、 アンチスキッド開始時における駆動輪の加速スリップを
検知する加速スリップ検知手段と、この加速スリップ検
知時、非駆動輪の車輪速を前記擬似車速の演算資料とす
る車輪速選択手段とを具備したことを特徴とするアンチ
スキッド制御装置。 2、請求項1において、車輪速選択手段が駆動輪のアン
チスキッド開始以後は非駆動輪の車輪速及び駆動輪の車
輪速のうち高い方を擬似車速の演算資料とするようにし
たアンチスキッド制御装置。
[Claims] 1. A pseudo vehicle speed is determined based on the wheel speed of a non-driving wheel or a driving wheel, and braking is performed by reducing the brake fluid pressure of a wheel whose wheel speed is in a braking slip state with respect to this pseudo vehicle speed. In an anti-skid control device that prevents slipping, an acceleration slip detection means detects acceleration slip of the driving wheels at the time of starting anti-skid, and when the acceleration slip is detected, the wheel speed of the non-driving wheels is used as calculation data for the pseudo vehicle speed. An anti-skid control device comprising wheel speed selection means. 2. The anti-skid control according to claim 1, wherein the wheel speed selection means uses the higher of the wheel speeds of the non-driving wheels and the wheel speeds of the driving wheels as the calculation data for the pseudo vehicle speed after the anti-skid of the driving wheels starts. Device.
JP1121419A 1989-05-17 1989-05-17 Anti-skid control device Expired - Fee Related JP2591157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121419A JP2591157B2 (en) 1989-05-17 1989-05-17 Anti-skid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121419A JP2591157B2 (en) 1989-05-17 1989-05-17 Anti-skid control device

Publications (2)

Publication Number Publication Date
JPH02303963A true JPH02303963A (en) 1990-12-17
JP2591157B2 JP2591157B2 (en) 1997-03-19

Family

ID=14810687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121419A Expired - Fee Related JP2591157B2 (en) 1989-05-17 1989-05-17 Anti-skid control device

Country Status (1)

Country Link
JP (1) JP2591157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414628A (en) * 1991-07-11 1995-05-09 Sumitomo Electric Industries, Ltd. Estimated vehicle speed calculation apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213552A (en) * 1984-04-04 1985-10-25 Aisin Seiki Co Ltd Antiskid controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213552A (en) * 1984-04-04 1985-10-25 Aisin Seiki Co Ltd Antiskid controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414628A (en) * 1991-07-11 1995-05-09 Sumitomo Electric Industries, Ltd. Estimated vehicle speed calculation apparatus

Also Published As

Publication number Publication date
JP2591157B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP3905574B2 (en) Brake control device for vehicle
WO2008087789A1 (en) Controller of vehicle, control method, recording medium recording program for implementing that method
US11932258B2 (en) Vehicle speed estimation method and vehicle speed estimation device for four-wheel drive vehicle
JP5686721B2 (en) Control device for electric vehicle
JPH01249560A (en) Antiskid control device
US20180050593A1 (en) Electric motorcycle with wheel anti-lock system
JPS62146759A (en) Anti-skid control device
US5664850A (en) Anti-skid control system for an electrically operated vehicle
JP4830602B2 (en) Braking device for vehicle
JP2562174B2 (en) Anti-skid controller
US20220258618A1 (en) Braking control device
JPH02303963A (en) Antiskid control device
JP2021066302A (en) Braking control device
WO2021080011A1 (en) Control device
JPH06104444B2 (en) Wheel slip prevention device simulated vehicle speed generator
JPH04293654A (en) Antiskid braking device for vehicle
JP2585288B2 (en) Simulated vehicle speed generator for anti-skid control device
JP2585287B2 (en) Simulated vehicle speed generator for anti-skid control device
JP2697079B2 (en) Anti-lock control device
JP4453152B2 (en) Starting method of braking force distribution control
JP2593179B2 (en) Anti-skid control device
JPH0270566A (en) Anti-skid controller
JP4560850B2 (en) Brake hydraulic pressure control device
JPH1111290A (en) Estimated car speed calculation method
JPH05262219A (en) Anti-skid brake device for vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees