JPH0230364B2 - SEIKOYOSHINKUDATSUGASUSOCHINORAININGUKOZO - Google Patents

SEIKOYOSHINKUDATSUGASUSOCHINORAININGUKOZO

Info

Publication number
JPH0230364B2
JPH0230364B2 JP15253185A JP15253185A JPH0230364B2 JP H0230364 B2 JPH0230364 B2 JP H0230364B2 JP 15253185 A JP15253185 A JP 15253185A JP 15253185 A JP15253185 A JP 15253185A JP H0230364 B2 JPH0230364 B2 JP H0230364B2
Authority
JP
Japan
Prior art keywords
steel
limestone
dolomite
inclusions
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15253185A
Other languages
Japanese (ja)
Other versions
JPS6213515A (en
Inventor
Ryuzo Ooshima
Hiroshi Matsumoto
Akira Oote
Kaoru Shinozaki
Hideo Mori
Kenji Ichikawa
Hiroyuki Sugimoto
Ryosuke Nakamura
Takatoshi Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Shiro Renga KK
Kobe Steel Ltd
Original Assignee
Shinagawa Shiro Renga KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Shiro Renga KK, Kobe Steel Ltd filed Critical Shinagawa Shiro Renga KK
Priority to JP15253185A priority Critical patent/JPH0230364B2/en
Publication of JPS6213515A publication Critical patent/JPS6213515A/en
Publication of JPH0230364B2 publication Critical patent/JPH0230364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、清浄鋼をつくるための製鋼用真空脱
ガス装置のライニング構造に関するものである。 従来の技術 土木、建築、船舶、機械、化学、電気工業など
に使用される鋼材の要求品質は厳しくなつてきて
いる。製鋼関係では混銑車等での溶銑脱硫、真空
脱ガス装置による不純物の除去などにて高品質な
鋼材の製造が行なわれている。しかし、(1)スラ
グ、(2)Al2O3等の脱酸生成物、(3)溶鋼の再酸化、
(4)耐火物の損傷等に起因する酸化物系介在物が鋼
材の品質を低下させている。これらに対処するた
め、(1)転炉出鋼時のスラグカツト等によりスラグ
を除去、(2)溶鋼中に不活性ガスを吹き込む、また
は合成フラツクスを使用し脱酸生成物を浮上分離
除去、(3)大気と溶鋼との接触を防ぎ溶鋼の再酸化
を防止、(4)耐食性の高い耐火物を使用し耐火物の
損傷を抑制等の方法を実施し効果をあげている。 発明が解決しようとする問題点 耐火物の損傷により生成される介在物は大きさ
が数十μ〜数百μであり、最も浮上分離しがたい
酸化物介在物となつている。すなわち10μ以下の
酸化物系介在物は鋼材の均質性にそれ程影響を及
ぼさないし、数百μ以上のものは溶鋼の浮力によ
り浮上し問題はほとんどない。これに対し数十μ
〜数百μの酸化物系介在物は溶鋼中に懸濁し、そ
のまま鋼中に留まりやすく鋼材の品質を低下させ
る。この耐火物に起因する酸化物系介在物の大き
さは用いる耐火物の結晶粒子が30μ以上のものを
使用していることによると考えられる。 耐火物に起因する酸化物系介在物の中でSiO2
系介在物は、軟らかく展性があるため、比較的問
題とならない。これに対しAl2O3系、MgO系、ス
ピネル系の介在物は硬く展性がなく断線や表面疵
等の不良原因となる。 転炉以降の製鋼プロセスの中で、取鍋はSiO2
−Al2O3系、あるいはZrSiO4系の耐火物が主とし
て用いられ連鋳タンデイシユはMgO系の被覆材
が主に用いられている。 RHやDH方式等の真空脱ガス装置のライニン
グは、マグ・クロレンガやアルミナ系キヤスタブ
ルが用いられ、熱間補修材としてはマグネシア系
吹付材やアルミナ系圧入材が用いられている。す
なわち、RHやDH方式は鋼材品質向上の手段で
あるがMgO、Al2O3、スピネル系耐火物を使用し
ているため溶鋼を汚染させる可能性も有してい
る。 本発明は石灰石あるいは苦灰石からなる被覆材
を脱ガス装置の耐火物ライニングの上に被覆し、
より清浄な鋼をつくることを目的としたものであ
る。 間題点を解決するための手段 本発明者らは石灰石および/又は苦灰石と結合
剤から作られた被覆材を脱ガス装置のライニング
耐火物の上に吹付、流し込み、圧入、パツチング
等の方法で被覆し1000℃以上の温度で予熱してあ
るいは予熱せずに使用する。この石灰石あるいは
苦灰石の被覆材から生成するCaOあるいはMgO
は10μ以下の微細な結晶であり、数十μ〜数百μ
の酸化物系介在物の発生を防止できる。 本発明石灰石および/または苦灰石とアルカリ
金属又はアルカリ土金属の無機化合物または無機
塩あるいはハロゲン化化合物の1種以上を外掛で
0.1〜20重量%添加してなる結合剤からなる被覆
材を脱ガス装置のライニング耐火物であるマグ・
クロレンガ、アルミナキヤスタブル等の表面に吹
付、流し込み、圧入、パツチング等の施行方法に
より5〜50m/mの厚みで被覆してマグ・クロレ
ンガやアルミナキヤスタブルに起因するMgO、
Al2O3、スピネル系の数十μ〜数百μの酸化物系
介在物の発生を抑制する方法である。 石灰石あるいは苦灰石にアルカリ金属又はアル
カリ土金属の無機化合物または無機塩あるいはハ
ロゲン化化合物を結合剤として用いると高温で使
用しても収縮せず焼結が防止される。このため石
灰石あるいは苦灰石から生ずるCaOあるいは
MgOの結晶径は10μ以下の微細なものでかつ活性
なものである。 本発明に用いる石灰石、苦灰石は特に限定する
ものではなく、通常日本で用いられているもので
良い。また、粒度面でも通常耐火物に用いられて
いる粒度で何ら支障はない。 結合剤はアルカリ金属の無機化合物または無機
塩あるいはハロゲン化化合物の1種以上を使用し
なければならない。これ以外の無機化合物を用い
ると焼成収縮が大きく亀裂、脱落を発生しやすく
なるとともにCaO、MgOの結晶成長が生じ10μ以
上の結晶径となるため好ましくない。すなわち、
アルカリ金属又はアルカリ土金属の無機化合物ま
たは無機塩あるいはハロゲン化化合物を結合剤と
した時の焼成収縮は0〜2%程度で構造体として
使用できるのに対し、これ以外の結合剤を用いた
場合には10%以上の収縮を示すため亀裂、脱落を
発生しやすくなり、被覆材への使用は不可能とな
る。 結合剤の添加量は0.1〜20重量%の範囲内であ
り、0.1重量%未満では結合力が不足し、20重量
%を超えると耐食性が低下するため好ましくな
い。用いる結合剤としてはヘキサメタリン酸ナト
リウム、リン酸カリウム等のアルカリリン酸塩、
3号珪酸ソーダ、珪酸カリウム等のアルカリ珪酸
塩、塩化マグネシウム、塩化カルシウム、塩化ナ
トリウム等のハロゲン化化合物が使用できる。 この石灰石あるいは苦灰石から作られた被覆材
をRH、DH方式等の真空脱ガス装置のライニン
グ耐火物の冷間あるいは熱間の表面上に吹付、流
し込み、圧入、パツチング等の方法で5〜50mmの
厚で施工する。5mm未満では被覆層の耐用性が悪
く1チヤージの使用途中にマグ・クロレンガやア
ルミナキヤスタブルの稼動表面が露出するため好
ましくなく、50mmを超えると被覆する施工時間が
長くかかりすぎたり、脱ガススノーケルの内容積
を減じるため好ましくない。 石灰石あるいは苦灰石からなる被覆材は1000℃
以下でCO2ガスを解離する為出来るだけ1000℃以
上で予熱して使用することが望ましい。 以下に実施例を述べる。 石灰石あるいは苦灰石の被覆材の品質および施
工例を表1に示す。これらの被覆材をRH真空脱
ガス装置のスノーケル部分に適用した。被覆方法
は吹付あるいは/および圧入を使用した。吹付は
乾式吹付法を採用し、チヤージ毎に自動吹付機に
よりスノーケルの内、外面に実施した。圧入は大
量に厚く施工するのに適しており、スノーケルの
内面に適用した。 石灰石あるいは苦灰石の被覆材を使用した時と
しない時の脱ガス後の取鍋中の介在物指数の比較
を表2に示す。この結果より、石灰石あるいは苦
灰石の被覆材の使用により鋼中の介在物は低減し
効果が認められた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a lining structure for a vacuum degassing apparatus for steel manufacturing for producing clean steel. BACKGROUND OF THE INVENTION The quality requirements for steel materials used in civil engineering, architecture, ships, machinery, chemical, electrical industries, etc. are becoming stricter. In the steel manufacturing industry, high-quality steel products are manufactured by desulfurizing hot metal using a pig iron mixer and removing impurities using a vacuum degassing device. However, (1) slag, (2) deoxidation products such as Al 2 O 3 , (3) reoxidation of molten steel,
(4) Oxide-based inclusions caused by damage to refractories deteriorate the quality of steel materials. In order to deal with these problems, (1) slag is removed by slag cut during converter tapping, (2) deoxidized products are floated and removed by blowing inert gas into molten steel or by using synthetic flux. 3) Preventing contact between the atmosphere and molten steel to prevent re-oxidation of the molten steel, and (4) Using highly corrosion-resistant refractories to suppress damage to refractories. These methods have been effective. Problems to be Solved by the Invention The inclusions generated by damage to the refractory have a size of several tens of microns to several hundreds of microns, and are the most difficult oxide inclusions to float and separate. In other words, oxide inclusions with a size of 10 μm or less do not significantly affect the homogeneity of the steel material, and those with a size of several hundred μm or more float to the surface due to the buoyancy of the molten steel, causing almost no problem. On the other hand, several tens of μ
Oxide-based inclusions of ~ several hundred microns are suspended in molten steel and tend to remain in the steel as they are, degrading the quality of the steel material. The size of the oxide-based inclusions caused by the refractory is thought to be due to the fact that the refractory used has crystal grains of 30μ or more. Among oxide inclusions caused by refractories, SiO 2
Since system inclusions are soft and malleable, they pose relatively no problem. On the other hand, Al 2 O 3 based, MgO based, and spinel based inclusions are hard and have no malleability and cause defects such as wire breakage and surface flaws. In the steelmaking process after the converter, the ladle is made of SiO 2
-Al2O3 - based or ZrSiO4- based refractories are mainly used, and MgO-based coating materials are mainly used for continuous cast tundishes. The lining of vacuum degassing equipment such as the RH and DH methods is made of mag-chlorite brick or alumina castable, and the hot repair material is magnesia-based spray material or alumina-based injection material. That is, the RH and DH methods are a means of improving the quality of steel materials, but because they use MgO, Al 2 O 3 , and spinel-based refractories, they also have the potential to contaminate molten steel. The present invention covers a refractory lining of a degasser with a covering material made of limestone or dolomite,
The aim is to produce cleaner steel. Means for Solving the Problems The present inventors applied a coating material made of limestone and/or dolostone and a binder onto the lining refractory of a degasser by spraying, pouring, press-fitting, patching, etc. coated with a method and used with or without preheating at a temperature of 1000°C or higher. CaO or MgO generated from this limestone or dolomite coating
is a fine crystal of 10 μ or less, and several tens of μ to several hundred μ
The generation of oxide-based inclusions can be prevented. Limestone and/or dolomite of the present invention and one or more inorganic compounds or inorganic salts of alkali metals or alkaline earth metals or halogenated compounds are mixed together.
A coating material made of a binder containing 0.1 to 20% by weight is used as a refractory lining for degassing equipment.
The surface of chlorine brick, alumina castable, etc. is coated with a thickness of 5 to 50 m/m by spraying, pouring, press-fitting, patching, etc. to remove MgO caused by mag/chlorine brick or alumina castable.
This is a method for suppressing the generation of Al 2 O 3 and spinel-based oxide inclusions of several tens to hundreds of microns. If an inorganic compound or inorganic salt of an alkali metal or alkaline earth metal or a halogenated compound is used as a binder for limestone or dolomite, it will not shrink even when used at high temperatures and sintering will be prevented. Therefore, CaO or
MgO has a fine crystal diameter of 10μ or less and is active. The limestone and dolomite used in the present invention are not particularly limited, and may be those commonly used in Japan. In addition, in terms of particle size, there is no problem with the particle size normally used for refractories. The binder must be one or more inorganic compounds or salts of alkali metals or halogenated compounds. If inorganic compounds other than these are used, firing shrinkage is large and cracking and falling off are likely to occur, and crystal growth of CaO and MgO occurs, resulting in a crystal diameter of 10 μm or more, which is not preferable. That is,
When inorganic compounds, inorganic salts, or halogenated compounds of alkali metals or alkaline earth metals are used as a binder, the firing shrinkage is about 0 to 2% and it can be used as a structure, whereas when other binders are used Because it shows a shrinkage of 10% or more, it is prone to cracking and falling off, making it impossible to use it as a covering material. The amount of the binder added is within the range of 0.1 to 20% by weight, and if it is less than 0.1% by weight, the binding strength will be insufficient, and if it exceeds 20% by weight, the corrosion resistance will decrease, which is not preferable. Binders used include alkali phosphates such as sodium hexametaphosphate and potassium phosphate;
Alkali silicates such as No. 3 sodium silicate and potassium silicate, and halogenated compounds such as magnesium chloride, calcium chloride, and sodium chloride can be used. This coating material made from limestone or dolomite is sprayed, poured, press-fitted, patched, etc. onto the cold or hot surface of the lining refractory of vacuum degassing equipment such as RH and DH methods. Construct with a thickness of 50mm. If it is less than 5 mm, the durability of the coating layer will be poor and the working surface of the mag/chlorite brick or alumina caster will be exposed during the use of one charge, which is undesirable. If it exceeds 50 mm, the coating will take too long and the degassing snorkel This is not preferable because it reduces the internal volume of the container. Covering material made of limestone or dolomite is heated to 1000℃
In order to dissociate CO 2 gas below, it is desirable to preheat to 1000°C or higher before use. Examples will be described below. Table 1 shows the quality and construction examples of limestone or dolomite covering materials. These coatings were applied to the snorkel part of a RH vacuum degasser. The coating method used was spraying and/or press fitting. A dry spraying method was used for spraying, and an automatic sprayer was used to spray the inside and outside of the snorkel after each charge. Press-fitting is suitable for large-volume, thick construction, and was applied to the inner surface of the snorkel. A comparison of the inclusion index in the ladle after degassing with and without a limestone or dolomite coating is shown in Table 2. From this result, inclusions in steel were reduced by using limestone or dolomite coating material, and the effect was recognized.

【表】【table】

【表】 発明の効果 本発明により、次の効果が得られる。 (1) 石灰石あるいは苦灰石から生成するCaOある
いはMgOの結晶径は10μ以下で鋼材の不良原因
にはなりにくい。 (2) 活性なCaOにより脱酸生成物であるAl2O3
吸収できる。 (3) 活性なCaOにより鋼中のS、Pを吸収出来
る。
[Table] Effects of the Invention The present invention provides the following effects. (1) The crystal size of CaO or MgO produced from limestone or dolomite is less than 10μ and is unlikely to cause defects in steel materials. (2) Al 2 O 3 , a deoxidation product, can be absorbed by active CaO. (3) Active CaO can absorb S and P in steel.

Claims (1)

【特許請求の範囲】[Claims] 1 石灰石および/または苦灰石とアルカリ金属
又はアルカリ土金属の無機化合物または無機塩あ
るいはハロゲン化化合物の1種以上を外掛で0.1
〜20重量%添加してなる結合剤からなる被覆材を
真空脱ガス装置の内張りライニング耐火物の表面
に被覆した製鋼用真空脱ガス装置のライニング構
造。
1 Limestone and/or dolomite and one or more inorganic compounds or inorganic salts of alkali metals or alkaline earth metals or halogenated compounds in an amount of 0.1
A lining structure for a vacuum degassing device for steel manufacturing, in which the surface of the inner lining refractory of the vacuum degassing device is coated with a coating material made of a binder containing ~20% by weight.
JP15253185A 1985-07-12 1985-07-12 SEIKOYOSHINKUDATSUGASUSOCHINORAININGUKOZO Expired - Lifetime JPH0230364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15253185A JPH0230364B2 (en) 1985-07-12 1985-07-12 SEIKOYOSHINKUDATSUGASUSOCHINORAININGUKOZO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15253185A JPH0230364B2 (en) 1985-07-12 1985-07-12 SEIKOYOSHINKUDATSUGASUSOCHINORAININGUKOZO

Publications (2)

Publication Number Publication Date
JPS6213515A JPS6213515A (en) 1987-01-22
JPH0230364B2 true JPH0230364B2 (en) 1990-07-05

Family

ID=15542474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15253185A Expired - Lifetime JPH0230364B2 (en) 1985-07-12 1985-07-12 SEIKOYOSHINKUDATSUGASUSOCHINORAININGUKOZO

Country Status (1)

Country Link
JP (1) JPH0230364B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496206A (en) * 2014-06-19 2015-04-08 谢英健 Method for preparation of high activity lime from calcite and comprehensive application of product
CN113772970B (en) * 2021-09-01 2022-09-30 鞍钢集团北京研究院有限公司 Method for preparing magnesium oxide by using magnesite

Also Published As

Publication number Publication date
JPS6213515A (en) 1987-01-22

Similar Documents

Publication Publication Date Title
US3962492A (en) Method of protecting refractory lining in containers for molten metal
US4174972A (en) Nonfibrous castable refractory concrete having high deflection temperature and high compressive strength and process
TWI847975B (en) Refractory compositions, in situ anti-oxidation barrier layers and method for forming a single-use working lining in a metallurgical vessel
US5124288A (en) Refractory material containing calcium carbonate-stabilized synthetic dolomite
JP4786252B2 (en) Molten steel insulation
EP0472350B1 (en) Surface coating material for tundish and steel ladle
JPH0230364B2 (en) SEIKOYOSHINKUDATSUGASUSOCHINORAININGUKOZO
WO2022215727A1 (en) Castable refractory
JPH05285612A (en) Nozzle inner hole body for continuous casting
KR20120080250A (en) Agent for maintaining surface temperature of molten steel and method for maintaining surface temperature of molten steel
EP0325862A2 (en) Additive for promoting slag formation in steel refining ladle
JP6734539B2 (en) Continuous casting method for ultra high manganese steel
JPS6343188B2 (en)
JP7380900B2 (en) Continuous steel casting method
JP2733644B2 (en) Non-phosphoric acid spray repair material
JP2718271B2 (en) Repairing and extending the life of alumina refractories
US5700309A (en) Method and powder mixture for repairing oxide based refractory bodies
JP2816585B2 (en) Method for producing refractory material containing magnesia
JP3393803B2 (en) Insulation agent for molten steel in container
RU2149191C1 (en) Method of steel treatment in ladle
JPH07291748A (en) Executing method of monolithic refractory
JP3726599B2 (en) Method for refining molten steel using refractory scrap containing carbon
JPH10170163A (en) Method for protecting lining refractories of metal refining furnace
JP3439909B2 (en) Lining structure of vacuum molten steel processing equipment
JP3009580B2 (en) Flame sprayed material and manufacturing method thereof