JPH02303097A - Radio wave anechoic chamber - Google Patents

Radio wave anechoic chamber

Info

Publication number
JPH02303097A
JPH02303097A JP12284289A JP12284289A JPH02303097A JP H02303097 A JPH02303097 A JP H02303097A JP 12284289 A JP12284289 A JP 12284289A JP 12284289 A JP12284289 A JP 12284289A JP H02303097 A JPH02303097 A JP H02303097A
Authority
JP
Japan
Prior art keywords
radio wave
reflected
wall
radio
absorbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12284289A
Other languages
Japanese (ja)
Inventor
Makoto Tsuruta
鶴田 真琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKZO KASHIMA Ltd
Kashima Industries Co
Original Assignee
AKZO KASHIMA Ltd
Kashima Industries Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKZO KASHIMA Ltd, Kashima Industries Co filed Critical AKZO KASHIMA Ltd
Priority to JP12284289A priority Critical patent/JPH02303097A/en
Publication of JPH02303097A publication Critical patent/JPH02303097A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a reflected wave from arriving at a reception antenna by forming the walls of a radio wave anechoic chamber of a metal material, arranging many conical radio wave absorbers made of a radio wave absorption material inside at least one wall of a floor wall, four sidewalls and a ceiling wall, and providing random reflectors on the walls. CONSTITUTION:An electromagnetic wave oscillated from an oscillation source 18 is radiated radially in addition to a reception antenna 19, and arrives at radio wave absorbers 20. The wave is partly reflected on the surfaces of the absorbers 20, and residually transmitted therethrough. The waves which are transmitted through the absorbers 21 and arrived at random reflecting faces 23 of random reflectors 24 are not reflected perpendicularly toward a flat bottom 22 but mostly reflected in a state inclined toward the bottom 22. When the waves are inclined and reflected in this manner, the waves are not transmitted through a radio wave absorbing plate 22 disposed in the bottom but reflected here. The reflected wave is further reflected on the surfaces of the reflectors 23 to be gradually attenuated. Accordingly, the waves transmitted through the absorbers 20 are reflected on the wall 12, not returned to a radio wave anechoic chamber, but repeatedly reflected between the absorbers 20 and the absorbers 23 to be absorbed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電波暗室、電波半無響室、或いは電波無反射室
とも言われる電波無響室に関し、特に、小型化しても波
長の長い電波に対する測定をも行ない得るようにした電
波無響室に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a radio anechoic chamber, which is also called a radio anechoic chamber, radio semi-anechoic chamber, or radio wave no-reflection chamber, and particularly relates to a radio anechoic chamber, which is also called a radio wave anechoic chamber, a radio wave semi-anechoic chamber, or a radio wave no-reflection chamber. This invention relates to a radio anechoic chamber that can also perform measurements on radio waves.

(従来の技術) コンピュータを初めとする種々の電子機器からは電磁波
ノイズが発生することから、これらの機器からの発生電
波を?11す定する場合がある。この測定は基本的には
屋外で行なうことが、発生電波の伝わり状態を最も良く
検出し得ることとなるが、そめような測定を屋外で行な
うと、外来電波の影響を受けることになり、正確な測定
を行なうことができないのみならず、測定作業が天候に
左右されることにになり、測定の再現性を期待すること
ができない。また、新たに開発されたアンテナの特性を
調べる際にも、外来電波の影響を受けないようにして受
信状態をal11定する必要がある。
(Prior art) Since various electronic devices such as computers generate electromagnetic noise, how about the radio waves generated by these devices? 11 may be set. Basically, performing this measurement outdoors is the best way to detect the propagation conditions of the generated radio waves. However, if such measurements are made outdoors, they will be affected by external radio waves, making it difficult to be accurate. Not only is it not possible to perform accurate measurements, but the measurement work is dependent on the weather, and reproducibility of measurements cannot be expected. Furthermore, when examining the characteristics of a newly developed antenna, it is necessary to determine the reception condition so as not to be influenced by external radio waves.

そこで、外来電波の影響を排除しつつl−述した測定を
行ない得るようにすべく、電波無響室が開発されている
。電波発生源から受信アンテナに人射する電波に地上か
らの反射波が含むことを前提とした場合を半無響室と言
い、宇宙空間を想定して地」二からの反射波をも受信ア
ンテナに入射させないようしにした場合のみを電波無響
室という狭義の意味−でこれを使用する場合があり、更
に地上からの反射波が入射させる場合をも含めて広義の
意味で電波無響室と言うことがある。
Therefore, a radio anechoic chamber has been developed in order to be able to perform the above-mentioned measurements while eliminating the influence of external radio waves. A semi-anechoic chamber assumes that the radio waves emitted from the radio wave source to the receiving antenna include reflected waves from the ground, and assuming outer space, the receiving antenna also receives reflected waves from the ground. In some cases, the term radio anechoic chamber is used in a narrow sense, only when the waves are prevented from entering the room, and in a broader sense, it also includes cases in which reflected waves from the ground are allowed to enter the room. There is something to be said.

従来の電波無響室にあっては、外来電波を遮蔽するため
に金属材料からなる壁材を用いて内部に収容空間を有す
る電波無響室を形成し、この収容空間内に設けられた発
生電波が反射するのを防止するために壁材の内面に電波
吸収体を貼り付けている。従来用いられている電波吸収
体としては、ピラミッド型と言われる四角錐形状の電波
吸収体が、通常用いられている。このタイプの電波吸収
体は発泡ウレタンにカーボン粉末を含浸させており、抵
抗体型電波吸収体とも言われている。
In conventional radio anechoic chambers, a radio anechoic chamber with an internal storage space is formed using wall materials made of metal materials in order to shield external radio waves, and the radio waves provided in this storage space are Radio wave absorbers are attached to the inner surface of wall materials to prevent radio waves from being reflected. As a conventionally used radio wave absorber, a square pyramid-shaped radio wave absorber is usually used. This type of radio wave absorber is made by impregnating urethane foam with carbon powder, and is also called a resistive radio wave absorber.

(発明が解決しようとする課題) このタイプの電波吸収体は電波の電気エネルギーを抵抗
体の発熱作用により熱エネルギーに変換して、吸収体か
ら受信部に直接向かう反射を避けながら、電波の吸収を
行なうようにしたものである。この電波吸収体の性能は
、ピラミッドの長さに最も依存しており、その長さを吸
収すべき電波の波長の3分の1以」二に設定しなければ
ならなかった。また、このタイプの電波吸収体は前述の
ように、電磁波を透過させながら電気エネルギーを熱エ
ネルギーに変換させて減衰させるものであるが、完全に
減衰されず、電波無響室を形成するだめの金属性の壁に
まで到達した電磁波は更にここで反射して、再度電波吸
収体を透過して電波無響室の内部にまで一部の電磁波が
戻ることがある。
(Problem to be solved by the invention) This type of radio wave absorber converts the electric energy of radio waves into thermal energy by the heating action of the resistor, and absorbs radio waves while avoiding reflections that go directly from the absorber to the receiver. It was designed to do this. The performance of this radio wave absorber is most dependent on the length of the pyramid, which must be set to one-third or more of the wavelength of the radio waves to be absorbed. In addition, as mentioned above, this type of radio wave absorber attenuates electromagnetic waves by converting them into thermal energy while transmitting them, but it is not completely attenuated, creating a radio anechoic chamber. The electromagnetic waves that reach the metal wall are further reflected there, and some of the electromagnetic waves may return to the inside of the radio anechoic chamber by passing through the radio wave absorber again.

このような戻りの電波が存在すると、高精度の測定を行
なうことができなくなる。
The presence of such return radio waves makes it impossible to perform highly accurate measurements.

本発明は上記従来技術の問題点に鑑みてなされたもので
あり、電波吸収体の底部にまで透過した電波を電波無響
室内部にまで戻さないようにすることを目的とする。
The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to prevent the radio waves that have passed through the bottom of the radio wave absorber from returning to the inside of the radio anechoic chamber.

(課題を解決するための手段) 1を述した目的を達成するための本発明は、床壁と、前
後左右壁の側壁と、天井壁とにより内部に収容空間を形
成し、当該収容空間内に電波を発信する送信源と、この
送信源からの電波を受信する受信アンテナとを設けるよ
うにしてなる電波無響室において、前記それぞれの壁を
金属材料により形成し、前記床壁と前記4つの側壁と前
記天井壁とのうち少なくとも1つの壁の内側に、錐形状
をなし電波吸収材料を何する電波吸収体を多数配列し、
それぞれの前記電波吸収体の底部に前記壁に沿う゛P−
川面を形成し、前記電波吸収体が配列された前記壁の内
面に、前記平坦面を通過した電波を当該平坦面に向けて
傾斜させて反射させる乱反射面をUする乱反射部を形成
してなる電波無響室である。
(Means for Solving the Problems) In order to achieve the object described in 1, the present invention forms a storage space inside by a floor wall, side walls of the front, rear, left and right walls, and a ceiling wall, and a storage space is formed inside the storage space. In a radio anechoic chamber provided with a transmitting source that transmits radio waves and a receiving antenna that receives radio waves from the transmitting source, each of the walls is formed of a metal material, and the floor wall and the four A large number of cone-shaped radio wave absorbers made of radio wave absorbing material are arranged inside at least one of the two side walls and the ceiling wall,
At the bottom of each of the radio wave absorbers, there is a ゛P- along the wall.
A diffused reflection part is formed on the inner surface of the wall forming a river surface and on which the radio wave absorbers are arranged, forming a diffused reflection surface that tilts and reflects the radio waves that have passed through the flat surface toward the flat surface. It is a radio anechoic chamber.

(作用) 電波吸収体が取付けられる壁の内側にはこの壁の一部を
なす乱反射部が形成され、しかも電波吸収体の底部には
、平坦面が形成されているので、電波吸収体を透過した
電磁波は、乱反射部で前記平坦面に向けて殆どが傾斜し
た状態で反射することになる。したがって、この反射波
は電波吸収体の平坦面を透過することなく反射して次第
に減衰することになる。
(Function) On the inside of the wall to which the radio wave absorber is attached, a diffused reflection part that forms part of the wall is formed, and since a flat surface is formed at the bottom of the radio wave absorber, the radio wave absorber is not transmitted through the wall. Most of the generated electromagnetic waves are reflected toward the flat surface at the diffused reflection section in an inclined state. Therefore, this reflected wave is reflected without passing through the flat surface of the radio wave absorber and is gradually attenuated.

(実施例) 以下、図示する本発明の実施例に基いて本発明の詳細な
説明する。
(Example) Hereinafter, the present invention will be described in detail based on the illustrated example of the present invention.

第1図は本発明の電波無響室の全体を示す斜視図であり
、第2図は第1図の平面側の断面図である。この電波無
響室は通常の電波無響室と同様に、それぞれ金属材料か
らなる床壁11と、前後壁12.13と、左右壁14.
15と、天井壁16とにより内部に収容空間17が形成
されている。この収容空間17内には、送信源18と受
信アンテナ19とが設けられ、発信源18から発信され
た電磁波を受信アンテナ19により受信するようにして
いる。
FIG. 1 is a perspective view showing the entire radio anechoic chamber of the present invention, and FIG. 2 is a cross-sectional view of the plane side of FIG. 1. This radio anechoic chamber, like a normal radio anechoic chamber, has a floor wall 11, front and rear walls 12, 13, left and right walls 14.
15 and a ceiling wall 16 define an accommodation space 17 inside. A transmitting source 18 and a receiving antenna 19 are provided in the accommodation space 17, and the receiving antenna 19 receives electromagnetic waves transmitted from the transmitting source 18.

前後左右の側壁12〜15の内面には、四角錐形状の電
波吸収体20が多数配列されている。それぞれの電波吸
収体20は発泡ウレタンに電波吸収材料としてのカーボ
ン粉末を含浸させて形成しており、図示する電波吸収体
20はそれぞれ中空の軽量構造となっている。ただし、
これらの電波吸収体20の形状は四角錐形状以外の種々
の多角形状の錐形状や円錐形状としても良い。
A large number of square pyramid-shaped radio wave absorbers 20 are arranged on the inner surfaces of the front, rear, left and right side walls 12 to 15. Each radio wave absorber 20 is formed by impregnating foamed urethane with carbon powder as a radio wave absorbing material, and each of the illustrated radio wave absorbers 20 has a hollow lightweight structure. however,
The shape of these radio wave absorbers 20 may be various polygonal pyramid shapes or conical shapes other than the quadrangular pyramid shape.

第3図は本発明の電波無響室の一部を示す図であり、こ
の部分は第1図及び第2図に示された前壁12の内側に
配列された2つの電波吸収体の部分を示す。図示するよ
うに、各々の電波吸収体20は、その底部に複数枚の電
波吸収板21が組込まれており、その底面22は側壁1
2に沿う平坦面となっている。図示する中空の電波吸収
体20に代えて、中空部を有さず中にまで電波吸収材が
充填されたタイプの電波吸収体を用いるようにしても良
い。その場合には、前記底面は電波吸収体20の底面に
一致することになる。
FIG. 3 is a diagram showing a part of the radio anechoic chamber of the present invention, and this part is a part of two radio wave absorbers arranged inside the front wall 12 shown in FIGS. 1 and 2. shows. As shown in the figure, each radio wave absorber 20 has a plurality of radio wave absorbing plates 21 built into its bottom, and the bottom surface 22 is attached to the side wall 1.
It is a flat surface along 2. Instead of the hollow radio wave absorber 20 shown in the figure, a type of radio wave absorber that does not have a hollow part and is filled with a radio wave absorber may be used. In that case, the bottom surface will coincide with the bottom surface of the radio wave absorber 20.

前記側壁12と前記電波吸収体20との間には、アルミ
等からなる金属曽の乱反射部23が設けられ、これから
壁12の一部となっている。この乱反射部23は、第5
図に示されるように、パイプを半割りにした断面半円形
状となっており、それぞれの長手方向が−に下方向を向
くようにして、側壁12に取付けられている。これらの
乱反射部23の電波吸収体20側の表面は、円形の乱反
射面24となっている。
Between the side wall 12 and the radio wave absorber 20, a metal diffuser reflection section 23 made of aluminum or the like is provided and becomes a part of the wall 12. This diffused reflection section 23 has a fifth
As shown in the figure, it has a semicircular cross section obtained by dividing the pipe in half, and is attached to the side wall 12 with the longitudinal direction of each half facing downward. The surface of these diffuse reflection parts 23 on the radio wave absorber 20 side is a circular diffuse reflection surface 24 .

第4図は前記乱反射部23の機能を示す図であり、本発
明の電波無響室内の発信源18から発信された電磁波は
、受信アンテナ19以外に四方に飛翔し、電波吸収体2
0に到達する。この到達した電磁波は、一部が電波吸収
体20の表面で反射し、残りがこれを透過することにな
る。反射した電磁波は、電波吸収体20が四角錐形状等
の錐形状となっているので、受信アンテナ19にそのま
ま向かうことなく、傾斜して他の壁の内面の電波吸収体
に向かう。透過した電磁波は透過しながら、電気エネル
ギーが熱エネルギーに変換されつつ減衰されることにな
る。この減衰効果は電波吸収体20の底部に設けられた
電波吸収板21でも同様に得られる。そして、この電波
吸収板21を透過して第4図に示すように、乱反射部2
3の乱反射面24に至った電磁波は、平坦な底面22に
向けてこれに対して垂直に反射することなく、殆どの部
分で、底面22に向けて傾斜した状態で反射する。この
ように傾斜して反射すると、電波吸収体20の底部に位
置する電波吸収板22を透過することなく、ここで反射
することになる。この反射波は更に乱反射部23の表面
で反射して次第に減衰することになる。したがって、電
波吸収体20を透過した電磁波は、壁12で反射して電
波無響室に戻ることなく、電波吸収体20と乱反射部2
3との間で反射を繰り返すことになり、電波吸収体20
と乱反射部23を含めて本発明の電波無響室での電波吸
収効果が顕著となった。
FIG. 4 is a diagram showing the function of the diffused reflection section 23, in which the electromagnetic waves emitted from the source 18 in the radio anechoic chamber of the present invention fly in all directions other than the receiving antenna 19, and the radio wave absorber 2
Reach 0. A portion of the electromagnetic waves that have arrived will be reflected on the surface of the radio wave absorber 20, and the rest will be transmitted. Since the radio wave absorber 20 has a pyramidal shape such as a quadrangular pyramid shape, the reflected electromagnetic waves do not directly head toward the receiving antenna 19, but tilt toward the radio wave absorber on the inner surface of another wall. The transmitted electromagnetic waves are attenuated while their electrical energy is converted into thermal energy. This attenuation effect can be similarly obtained by the radio wave absorbing plate 21 provided at the bottom of the radio wave absorber 20. After passing through this radio wave absorption plate 21, as shown in FIG.
The electromagnetic waves that have reached the diffused reflection surface 24 of No. 3 are not reflected perpendicularly to the flat bottom surface 22, but are reflected obliquely toward the bottom surface 22 in most parts. When the light is reflected at an angle in this manner, it is reflected there without passing through the radio wave absorbing plate 22 located at the bottom of the radio wave absorber 20. This reflected wave is further reflected on the surface of the diffused reflection section 23 and is gradually attenuated. Therefore, the electromagnetic waves that have passed through the radio wave absorber 20 are reflected by the wall 12 and do not return to the radio anechoic chamber, and the electromagnetic waves pass through the radio wave absorber 20 and the diffused reflection section 2.
3, the radio wave absorber 20
The radio wave absorption effect in the radio anechoic chamber of the present invention including the diffused reflection section 23 became remarkable.

第3図は前壁12の部分を示すが、後壁13と、左右の
壁14.15の部分も第1図に示されるように同様の構
造となっている。更に、天井壁16の内面も同様の構造
となっている。底壁11の部分に電波吸収体20と乱反
射部23を設けなければ、前述した広義の意味での電波
無響室が得られ、底壁11にも設ければ、前述した狭義
の意味での電波無響室が得られることになる。
Although FIG. 3 shows a portion of the front wall 12, the rear wall 13 and the left and right walls 14, 15 have a similar structure as shown in FIG. Furthermore, the inner surface of the ceiling wall 16 has a similar structure. If the radio wave absorber 20 and the diffuse reflection part 23 are not provided on the bottom wall 11, a radio anechoic chamber in the broad sense described above can be obtained, and if they are also provided on the bottom wall 11, the radio wave absorber 20 and the diffuse reflection section 23 can be created in the narrow sense described above. A radio anechoic chamber will be obtained.

前記乱反射部23を壁の一部とした場合には、それぞれ
の乱反射部23は金属により形成されているので、この
部分からの外部電波の侵入が防止されて、これらの乱反
射部23が設けられた壁自体を金属とすることは不要と
なり、鉄筋コンクリート等により壁を形成することが可
能となる。
When the diffusely reflecting portions 23 are formed as part of the wall, since each diffusely reflecting portion 23 is formed of metal, external radio waves are prevented from entering from this portion, and these diffusely reflecting portions 23 are provided. It becomes unnecessary to make the wall itself metal, and it becomes possible to form the wall with reinforced concrete or the like.

第6図は乱反射部23の他の実施例を示す図であり、こ
の場合には、金属製の板30を塑性加工するとによって
、この板30に多数の半球形状の乱反射面31を形成す
るようにしている。また、この半球形状の乱反射面31
に代えて、多角錐形状の乱反射面を形成するようにして
も良く。第5図に示された乱反射部をジグザク形状とし
ても良い。
FIG. 6 is a diagram showing another embodiment of the diffused reflection section 23. In this case, a large number of hemispherical diffused reflection surfaces 31 are formed on the metal plate 30 by plastic processing. I have to. Moreover, this hemispherical diffused reflection surface 31
Instead, a polygonal pyramid-shaped diffused reflection surface may be formed. The diffused reflection portion shown in FIG. 5 may have a zigzag shape.

(発明の効果) 以上のように、本発明によれば、電波無響室を形成する
それぞれの壁を金属材料により形成し1床壁と4つの側
壁と丙井壁とのうち少なくとも1つの壁の内側に、錐形
状をなし電波吸収材料を有する電波吸収体を多数配列し
、それぞれの前記電波吸収体の底部に前記壁に沿う平坦
面を形成し、前記電波吸収体が配列された前記壁の内面
に、前記・ト坦面を通過した電波を当該平坦面に向けて
傾斜させて反射させる乱反射面を有する乱反射部を形成
したので、電波吸収体を透過して壁に向かう電磁波は乱
反射部の表面の乱反射面で平坦面に向けて傾斜して反射
することになる。傾斜して平坦面に反射すると、その反
射波は電波吸収体を透過することなく減衰する。これに
より、電波無響室内の受信アンテナには反射波が到達す
ることなく、高精度の測定作業を行なうことが可能とな
る。
(Effects of the Invention) As described above, according to the present invention, each wall forming the radio anechoic chamber is formed of a metal material, and at least one wall among the one floor wall, the four side walls, and the Nii wall A large number of cone-shaped radio wave absorbers each having a radio wave absorbing material are arranged inside the radio wave absorber, and a flat surface along the wall is formed at the bottom of each of the radio wave absorbers, and the wall on which the radio wave absorbers are arranged. A diffused reflection section is formed on the inner surface of the device, which has a diffused reflection surface that tilts and reflects the radio waves that have passed through the flat surface toward the flat surface. The light is reflected at an angle toward the flat surface by the diffuse reflection surface of the surface. When reflected from a tilted flat surface, the reflected wave is attenuated without passing through the radio wave absorber. This makes it possible to perform highly accurate measurement work without reflected waves reaching the receiving antenna in the radio anechoic chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電波無響室の一例を示す一部切欠き斜
視図、第2図は第1図の平面側の断面図、第3図は本発
明の電波無響室の一部を示す断面図、第4図は乱反射部
での電磁波の反射状態を示す断面図、第5図は第3図に
示された乱反射部を示す斜視図、第6図は本発明の他の
実施例に係る乱反射部を示す斜視図である。 11・・・底壁、12〜15・・・前後左右の側壁、1
6・・・天井壁、20・・・電波吸収体、23・・・乱
反射部、31・・・乱反射部。 特許出願人     アップ・カンマ株式会社代理人 
弁理士   八 1)幹 雄(ばか1名)第21!0 イ5 第3図
FIG. 1 is a partially cutaway perspective view showing an example of the radio anechoic chamber of the present invention, FIG. 2 is a sectional view on the plane side of FIG. 1, and FIG. 3 is a part of the radio anechoic chamber of the present invention. FIG. 4 is a cross-sectional view showing the state of reflection of electromagnetic waves at the diffusely reflecting part, FIG. 5 is a perspective view showing the diffusely reflecting part shown in FIG. 3, and FIG. 6 is another embodiment of the present invention. It is a perspective view showing a diffused reflection part concerning an example. 11... Bottom wall, 12-15... Front, rear, left and right side walls, 1
6...Ceiling wall, 20...Radio wave absorber, 23...Diffuse reflection part, 31...Diffuse reflection part. Patent applicant Up Comma Co., Ltd. Agent
Patent Attorney 8 1) Mikio (1 idiot) No. 21!0 I5 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 床壁と、前後左右壁の側壁と、天井壁とにより内部に収
容空間を形成し、当該収容空間内に電波を発信する送信
源と、この送信源からの電波を受信する受信アンテナと
を設けるようにしてなる電波無響室において、前記それ
ぞれの壁を金属材料により形成し、前記床壁と前記4つ
の側壁と前記天井壁とのうち少なくとも1つの壁の内側
に、錐形状をなし電波吸収材料を有する電波吸収体を多
数配列し、それぞれの前記電波吸収体の底部に前記壁に
沿う平坦面を形成し、前記電波吸収体が配列された前記
壁の内面に、前記平坦面を通過した電波を当該平坦面に
向けて傾斜させて反射させる乱反射面を有する乱反射部
を形成してなる電波無響室。
A housing space is formed inside by a floor wall, front, left, right and left side walls, and a ceiling wall, and a transmission source for transmitting radio waves and a receiving antenna for receiving radio waves from this transmission source are provided in the housing space. In the radio anechoic chamber constructed as described above, each of the walls is formed of a metal material, and the inside of at least one wall of the floor wall, the four side walls, and the ceiling wall has a conical shape to absorb radio waves. A large number of radio wave absorbers having a material are arranged, a flat surface along the wall is formed at the bottom of each of the radio wave absorbers, and the radio wave absorbers are arranged on the inner surface of the wall on which the radio wave absorbers are arranged, and the radio wave absorbers pass through the flat surface. A radio anechoic chamber formed with a diffused reflection section having a diffused reflection surface that tilts and reflects radio waves toward the flat surface.
JP12284289A 1989-05-18 1989-05-18 Radio wave anechoic chamber Pending JPH02303097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12284289A JPH02303097A (en) 1989-05-18 1989-05-18 Radio wave anechoic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12284289A JPH02303097A (en) 1989-05-18 1989-05-18 Radio wave anechoic chamber

Publications (1)

Publication Number Publication Date
JPH02303097A true JPH02303097A (en) 1990-12-17

Family

ID=14845984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12284289A Pending JPH02303097A (en) 1989-05-18 1989-05-18 Radio wave anechoic chamber

Country Status (1)

Country Link
JP (1) JPH02303097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122880A (en) * 1993-10-26 1995-05-12 Fuji Elelctrochem Co Ltd Radiowave black box
US6900384B2 (en) * 2000-05-22 2005-05-31 Telefonaktiebolget Lm Ericsson (Publ) Cover for an electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122880A (en) * 1993-10-26 1995-05-12 Fuji Elelctrochem Co Ltd Radiowave black box
US6900384B2 (en) * 2000-05-22 2005-05-31 Telefonaktiebolget Lm Ericsson (Publ) Cover for an electronic device

Similar Documents

Publication Publication Date Title
US4931798A (en) Electromagnetic anechoic chamber with an inner electromagnetic wave reflection surface and an electromagnetic wave absorption small ball disposed in the chamber
US3448455A (en) Armoured structure antenna
US5208599A (en) Serrated electromagnetic absorber
US4971850A (en) Assembled sound-muffling thermal insulation board
US5631661A (en) Geometrically optimized anechoic chamber
US5780785A (en) Acoustic absorption device and an assembly of such devices
KR20100049955A (en) Apparatus for measurement of antenna radiation performance and method of designing thereof
US5844518A (en) Thermoplastic syntactic foam waffle absorber
US3273150A (en) Anechoic chamber
US6008753A (en) Low radar cross-section (RCS) measurement chamber and associated measurement system
US3120641A (en) Microwave anechoic chamber
US4507660A (en) Anechoic chamber
Emerson et al. An improved design for indoor ranges
JPH02303097A (en) Radio wave anechoic chamber
JPH01114099A (en) Anechoic chamber for radio wave
JPH02142200A (en) Radiowave absorbing body
US5642118A (en) Apparatus for dissipating electromagnetic waves
JPH02303095A (en) Radio wave anechoic chamber
JPH02303096A (en) Radio wave anechoic chamber
EP1195848B1 (en) Microwave absorber wall
JPH0785517B2 (en) Anechoic chamber
JP2003086989A (en) Radiowave darkroom
JPH01158797A (en) Movable radio-wave absorber
JPH0384998A (en) Electromagnetic wave absorber
JP2001244686A (en) Radio wave absorber, radio wave dark box, radio wave darkroom, radio wave absorption panel, and radio wave absorbing screen