JPH02302880A - Method for matching outline graphic - Google Patents

Method for matching outline graphic

Info

Publication number
JPH02302880A
JPH02302880A JP1125541A JP12554189A JPH02302880A JP H02302880 A JPH02302880 A JP H02302880A JP 1125541 A JP1125541 A JP 1125541A JP 12554189 A JP12554189 A JP 12554189A JP H02302880 A JPH02302880 A JP H02302880A
Authority
JP
Japan
Prior art keywords
scale
matching
contour
segments
figures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1125541A
Other languages
Japanese (ja)
Other versions
JP2938887B2 (en
Inventor
Shuko Ueda
修功 上田
Satoshi Suzuki
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1125541A priority Critical patent/JP2938887B2/en
Publication of JPH02302880A publication Critical patent/JPH02302880A/en
Application granted granted Critical
Publication of JP2938887B2 publication Critical patent/JP2938887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain the matching of each partial outline at the optimum scale by using a segment of an upper scale corresponding to the plural segments of the lowermost scale also as an object to be matched by using hierarchical property of rugged segments. CONSTITUTION:Convolution operation with a Gaussian function having a different scale sigma in each outline graphic is executed while increasing the scale sigmain stages, the outline graphics are sequentially smoothed, the rugged structure of sequentially obtained smoothed graphics are matched and the rugged structure is expressed in stages by the multiplex scale relating to the scale sigma. Then the ruggedness at the optimum scales of respective partial outlines is matched so that the sum of differences is minimized. Consequently, the optimum combination out of the combinations of all rugged partial outlines can be efficiently found out in the multiplex scale expression relating to the scale sigma.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、シル′エツト画像などの輪郭を追跡して得ら
れる輪郭図形の整合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for matching contour figures obtained by tracing the contours of a silhouette image or the like.

[従来の技術〕 従来、パターン認識にお07図形の輪郭線の凹凸構造に
着目して図形の整合をとる方法が数多く提案されている
。しかし、これらの大半は1つのスケールσでの凹凸構
造を記述しているにすぎず。
[Prior Art] Conventionally, many methods have been proposed for pattern recognition, focusing on the uneven structure of the outline of a 07 figure and matching the figures. However, most of these only describe the uneven structure at one scale σ.

図形の大局的な構造と局所的な構造とを同時に把握する
ことができず、それ故、変形の大きな2図形の整合をと
ることば困難であった。
It is not possible to grasp the global structure and local structure of a figure at the same time, and it is therefore difficult to match two figures that are highly deformed.

一方2輪郭図形をスケールσ(スケールの一例として「
分散」を考えることができる)のガウス関数により平滑
化することにより図形の凹凸構造を階層的に記述すると
いう多重スケール表現法が考案されCMokhtari
an、、 et、 al、  ”5ca1e、−bas
e、ddescription and recogn
ition of plan+ir curves、+
ndtwo dimensional 5hapes、
+IEEE Trans。
On the other hand, the two contour figures are scaled σ (an example of scale is "
CMokhtari devised a multi-scale representation method that hierarchically describes the uneven structure of a figure by smoothing it with a Gaussian function (which can be considered as "dispersion").
an,, et, al, ”5ca1e,-bas
e,ddescription and recognition
ition of plan+ir curves,+
nd two dimensional 5hapes,
+IEEE Trans.

PAMI、 Vol、PAMI−8,No、1. pp
、、34−43(,1986)) 、該多重スケール表
現を用いた2図形間の整合方法が幾つか提案されている
。   □ 〔発明が解決しようとする課題〕 しかしながら、従来技術は非常にl’ff(12した図
形同士を対象にした方法(Mokhtarian、 e
t、 al、+5cale−based descri
ption and recognition ofp
lanar curves and two dime
nsional 5hapes、”IEE[! Tra
ns、 PAMI、 Vol、PAMI−8,No、1
. pp、34−43(1986))か、または大局か
ら詳細へと整合を行う方法(酒匂他、“多重解像度を用
いた変形波形の照合アルゴリズム”、電子通信学会論文
誌(D)。
PAMI, Vol. PAMI-8, No. 1. pp
, 34-43 (, 1986)), several matching methods between two figures using the multi-scale representation have been proposed. □ [Problem to be solved by the invention] However, the conventional technology is very l'ff (method targeting 12 figures (Mokhtarian, e
t, al, +5cale-based descri
ption and recognition of ption and recognition
lanar curves and two dimes
nsional 5hapes,”IEE[!Tra
ns, PAMI, Vol, PAMI-8, No. 1
.. pp. 34-43 (1986)) or a method of matching from the big picture to the details (Sakawa et al., "Matching algorithm for deformed waveforms using multi-resolution", Transactions of the Institute of Electronics and Communication Engineers (D).

□ J−71−D、 11. pp、1019−1022.
(昭63−11))かのいずれかの方法に大別されるが
、いずれの方法も大局での整合の信顛性の低い、凹凸変
形の大きな図形間では適用できない。
□ J-71-D, 11. pp, 1019-1022.
(1983-11)) However, none of these methods can be applied between figures with large uneven deformations and low reliability of global matching.

本発明は上記従来の問題点を解決することを目的とする
。すなわち、σに関する多重スケール表現において、す
べての凹凸の部分輪郭の組合せの中から最適な組を効率
良く求める方法を提供することを目的とするものである
The present invention aims to solve the above-mentioned conventional problems. That is, the object of the present invention is to provide a method for efficiently finding an optimal set from among all combinations of uneven partial contours in multi-scale representation regarding σ.

[課題を解決するための手段〕 本発明においては、2つの輪郭図形の凹凸セグメントに
着目し、2図形間の凹凸整合は各々の最下位スケールσ
。、σ°。での凹(凸)セグメント(al”’ + l
=1.2. ”’+ N+  tlJ(0’ + j=
1+ L ”’+M)を基本単位とする。I+j の添
え字はある始点セグメントから図形内部を左手に見て輪
郭をトレースして得たセグメントの順序であり、閉図形
故。
[Means for Solving the Problems] In the present invention, attention is paid to the uneven segments of two contour figures, and the unevenness matching between the two figures is determined by the lowest scale σ of each.
. ,σ°. Concave (convex) segment (al”' + l
=1.2. ”'+ N+ tlJ(0' + j=
1+L''+M) is the basic unit.The subscript I+j is the order of the segments obtained by tracing the outline from a certain starting point segment while looking inside the figure with your left hand, because it is a closed figure.

a、 +01 とa 、 to+ 、 b、4to+ 
 とす、 (0)がそれぞれ隣接しているのはいうまで
もない。
a, +01 and a, to+, b, 4to+
It goes without saying that and (0) are adjacent to each other.

いま、1つの輪郭図形に着目すると、多重スケール表現
では隣接する奇数個のセグメントが、上位スケールで1
つのセグメントに対応する場合がある。本発明は、上記
ai(01、bjl)のみで整合をとるのではなく、凹
凸セグメントの階層性を用いて、最下位スケールの複数
セグメントに対応する上位スケールの1つのセグメント
も整合の対象とすることを主な特徴とする。このとき、
多重スケール上での凹凸セグメントの相違度を式fl)
で定義する。
Now, if we focus on one contour figure, in multi-scale representation, the adjacent odd number of segments are 1 in the upper scale.
may correspond to one segment. The present invention does not match only the above ai (01, bjl), but also uses the hierarchical nature of uneven segments to match one segment of an upper scale corresponding to multiple segments of the lowest scale. The main feature is that. At this time,
The degree of dissimilarity of concave and convex segments on multiple scales is expressed by the formula fl)
Defined by

d(j(0) 、 n、 j(01:m)=d(i”’
 、j(V) ) 十e(i10’ : n)+e(j
”’ : m)        (11式+11は、2
図形の最下位スケールσ。、σ゛。における各々(2n
+1)個のセグメント(a 1−2n ”ゝ。
d(j(0), n, j(01:m)=d(i”'
, j(V) ) 10e(i10' : n)+e(j
”': m) (Formula 11 + 11 is 2
The lowest scale σ of the figure. ,σ゛. each (2n
+1) segments (a 1-2n ”ゝ.

a 1−2n+I ”’ + ”’+ ’ ” i ”
 )と、  (2m+1)個のセグメント (b J−
1m (O’ +  b J−Zイ、、(0)、・・・
a 1-2n+I ”' + ”'+ ' ” i ”
) and (2m+1) segments (b J-
1m (O' + b J-Zi,, (0),...
.

bJ′。l)との多対多のセグメントの相違度を表わす
。5−2.(01等は、a、 ++1+から上記トレー
ス方向と逆にトレースしたときの2n個目のセグメント
を指す。式(1+の右辺第1項は各々の複数セグメント
に対応する上位スケールσ工、σ、での1対lのセグメ
ントの相違度であり、セグメントの始−5〜 点から終点までの回転角θ、および周囲長(L)に対す
る寄与度A/Lを用いて弐(2)で与える。尚。
bJ′. represents the degree of dissimilarity of many-to-many segments with l). 5-2. (01, etc. refers to the 2nth segment when tracing from a, ++1+ in the opposite direction to the above tracing direction.The first term on the right side of the equation (1+ is the upper scale σ corresponding to each multiple segment, σ, It is the degree of difference between segments of 1 to 1 at , and is given by (2) using the rotation angle θ from the start point to the end point of the segment and the contribution A/L to the peripheral length (L). still.

式(2)ではスケールを表わす添え字を省略しである。In equation (2), the subscript representing the scale is omitted.

式(1)の右辺第2項は上記複数セグメントを上位スケ
ールでの1つのセグメントで置換するためのコストで、
隣接セグメントの相違度の和として1式(3)で与える
。式(1)の右辺第3項についても同様である。尚1式
(1)でnまたはmがOのときは、u。
The second term on the right side of equation (1) is the cost of replacing the above multiple segments with one segment at the higher scale,
It is given by equation (3) as the sum of the dissimilarities of adjacent segments. The same applies to the third term on the right side of equation (1). In addition, when n or m is O in Formula 1 (1), u.

■はそれぞれOとする。■ is each O.

d(i、j)=(lθi−θj 1バθ1)θj))*
 l Q i/L、 −j2j/Lal       
      (2)e(i (01:n)= そして2式(1)に示した凹凸セグメントの相違度の総
和が最小になる凹凸セグメントの組(inn、 J:m
)を全ての組合せの中から求め、各部分輪郭毎に最適な
スケールでの凹凸の整合を実現する点が従来技術と異な
る。
d(i,j)=(lθi−θj 1barθ1)θj))*
l Q i/L, -j2j/Lal
(2) e(i (01:n)= Then, the set of uneven segments (inn, J: m
) is obtained from all combinations, and the unevenness is matched on an optimal scale for each partial contour, which is different from the conventional technology.

 G − 〔実施例〕 第1図は本発明の一実施例の構成を示す図であり、1は
同一図形での凹凸構造整合処理部、2は本発明の核であ
る2図形間の凹凸整合処理部である。
G - [Embodiment] Fig. 1 is a diagram showing the configuration of an embodiment of the present invention, in which 1 is a concave-convex structure matching processing unit for the same figure, and 2 is a concave-convex structure matching unit between two figures, which is the core of the present invention. This is the processing section.

同一図形での凹凸構造整合処理部1は、゛閉曲線の凹凸
構造整合方法”、特願平1−56182号に開示の技術
を用いて実現できる。第2図は同一図形での凹凸構造整
合処理部1の処理結果の例を示す図であり1図中の黒点
は変曲点であり、2つの変曲点を結ぶ線分群により整合
結果を示す。尚、同図では見やすさのために故意に平滑
化図形を平行移動しである。
The concavo-convex structure matching processing unit 1 for the same figure can be realized using the technique disclosed in "Method for matching concave-convex structures of closed curves", Japanese Patent Application No. 1-56182. Fig. 2 shows the process for matching concave-convex structures for the same figure. This figure shows an example of the processing result of part 1. The black dots in figure 1 are inflection points, and the matching results are shown by a group of line segments connecting two inflection points. The smoothed figure is translated in parallel.

2図形間の凹凸整合処理部2は、ダイナミ・ンクプログ
ラミングの手法を用いて以下の手順(手順1〜手順8)
により実現できる。
The unevenness matching processing unit 2 between the two figures uses the dynamic programming method to perform the following steps (steps 1 to 8).
This can be achieved by

まず、多重スケール表現での最下位スケールにおける隣
接する変曲点間の凹(凸)セグメンI・集□ 台を図形A、Bに対して各々以下で表わす。
First, concave (convex) segments I/group □ between adjacent inflection points in the lowest scale in multi-scale representation are expressed below for figures A and B, respectively.

A= (a i ”l l i =112. ・IN)
       (4)B=  (b; (0’  l 
 j  ・1,2.  ・・・、M )       
        (5)尚、以下では最下位スケールを
表わす添え字telを混乱のない程度に省略する。MX
Nの2次元テーブル(配列)を2つ(g(i+jLT(
LD)、および2MXNX2の3次元テーブル(配列)
を1つ(L (i、3.2))を用意し以下の手順を行
なう。以下の手順において式を実行するとは、右辺の値
を左辺に代入することを意味する。
A = (a i ”l l i =112.・IN)
(4) B= (b; (0' l
j・1,2. ..., M)
(5) In the following, the subscript tel indicating the lowest scale will be omitted to avoid confusion. MX
Two 2-dimensional tables (arrays) of N (g(i+jLT(
LD), and 2MXNX2 3D table (array)
Prepare one (L (i, 3.2)) and perform the following procedure. In the following procedure, executing an expression means assigning the value on the right side to the left side.

(手順l) もしalとす、との極性(凹または凸)が同じならば、
Cを0にし、さもなくば1にする。
(Step 1) If the polarity (concave or convex) of al and are the same,
Set C to 0, otherwise set to 1.

(手順2) j−c+2+c+4+c+ y7・+2(M−1)+c
に対して式(6)、 (7)を実行する。
(Step 2) j-c+2+c+4+c+ y7・+2(M-1)+c
Execute equations (6) and (7) for .

g (0,j)=O(6) T(9,J)=?l                
(7)(手順3) i=2−c、 4−c、 −、(N−2)−cに対して
式(8)を実行する。
g (0,j)=O(6) T(9,J)=? l
(7) (Step 3) Execute equation (8) for i=2-c, 4-c, -, (N-2)-c.

T(i、0)=O(8) (手順4) i・1,2.・・・、Nに対して手順5を実行する。T(i,0)=O(8) (Step 4) i・1,2. ..., execute step 5 for N.

(手順5) もしiが奇数ならC゛を0.さもなくばC゛を1とし、
 j=1+c+c’+ 3+c+c’、 ・、 2M−
1+c+c’ に対し手順6を実行する。
(Step 5) If i is an odd number, set C to 0. Otherwise, let C′ be 1,
j=1+c+c'+ 3+c+c', ・, 2M-
Execute step 6 for 1+c+c'.

(手順6) 式(9)、 0り、 03)、 04)を実行する。(Step 6) Execute equations (9), 03), 04).

g(i、j)=min (g(i−(2n+1)、j−
(2m+1))l + d(i:n、j:m)nこRn
、IIICRIll ここで、集合Rn、Rmは弐〇OL (11)で与える
g(i,j)=min (g(i-(2n+1),j-
(2m+1))l + d(i:n,j:m)nkoRn
, IIICRIll Here, the sets Rn and Rm are given by 2〇OL (11).

Rn=(nll≦n≦[(i−1>/2] V    
 Go)Rm=(mll≦m≦min ([(j−1)
/2 ] 。
Rn=(nll≦n≦[(i-1>/2] V
Go) Rm=(mll≦m≦min ([(j-1)
/2 ].

[T(i−(2n+1)、j−(2m+1))]  )
  jl         (If)[]はガウス記号
を表わす。
[T(i-(2n+1), j-(2m+1))] )
jl (If) [] represents a Gaussian symbol.

T(i、j)=T(i−(2n” +1)、 j−(2
m” +1))−(2m” +1) (12)L (i
、j、0)= i −(2n” +1)       
    θ3)L(i、j、1)=j  −(2m” 
 +1)                  θ褐こ
こに、n”、m”は式(9)の右辺を最小ならしめるn
、mの値である。
T(i,j)=T(i-(2n"+1), j-(2
m" +1)) - (2m" +1) (12)L (i
, j, 0) = i − (2n” +1)
θ3)L(i, j, 1)=j −(2m”
+1) θ brown where n", m" is n that minimizes the right side of equation (9)
, is the value of m.

(手順7) j=2+c、 4+c+川、2M−24cに対して1式
aωを実行すj”=argmin  (g(N、j)l
           05)(手順8) 手順5で得たL (i、j、0)、 L (i、j、1
)および2手順6で得たjlから、Lをトレースバック
することにより、最適な凹凸セグメントの整合が求まる
(Step 7) Execute equation aω for j=2+c, 4+c+kawa, 2M-24cj"=argmin (g(N,j)l
05) (Step 8) L (i, j, 0), L (i, j, 1) obtained in Step 5
) and 2. By tracing back L from jl obtained in step 6, the optimal alignment of the concavo-convex segments is found.

□ 上記手順中の変数c、c’ は、極性(凹または凸
)の異なるセグメント同士を対応の候補としないように
するためのものである。そして、 T (i。
□ The variables c and c' in the above procedure are used to prevent segments with different polarities (concave or convex) from being candidates for correspondence. And T (i.

j)はセグメントの重複した整合がないように、(i。j) such that there are no duplicate matches of segments (i.

j)から遷移可能なjの差分の最大値を与える。また、
Lは部分最適対応を記憶しておくテーブルの値である。
gives the maximum value of the difference of j that can be transitioned from j). Also,
L is a value in a table that stores partial optimal correspondences.

例えば第3図(A)(B)に夫々示すように2つの輪郭
図形101と102が与えられた場合、第1図図示の同
一図形での凹凸構造整合処理部1と2図形間の凹凸整合
処理部2とによる処理を施すと第3図の直線で示した整
合結果が得られる。第3図では、整合がとれた部分輪郭
の両端点同士を直線で結んである。
For example, when two contour figures 101 and 102 are given as shown in FIGS. 3A and 3B, respectively, uneven structure matching processing unit 1 and the unevenness matching between the two figures in the same figure shown in FIG. When processing is performed by the processing section 2, the matching result shown by the straight line in FIG. 3 is obtained. In FIG. 3, both end points of the matched partial contours are connected with a straight line.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各部分輪郭毎に最適なスケールでの整
合が実現できる。すなわち、非常に類似した部分輪郭に
対しては微視的な整合がとれ、あまり、1m似していな
い部分輪郭についてはより巨視的な整合が可能となり2
図形の認識等における有用な道具となり得る。なお多重
スケール表現を用いた従来の整合方法では、大局での整
合の信頼性の低い、凹凸変形の大きな図形間に対しては
対処できなかった。
According to the present invention, matching at an optimal scale can be realized for each partial contour. In other words, microscopic matching can be achieved for very similar partial contours, and more macroscopic matching is possible for partial contours that are not very similar by 1 m.
It can be a useful tool for figure recognition, etc. It should be noted that conventional matching methods using multi-scale representations cannot deal with shapes with large uneven deformations and low reliability of global matching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図。 第2図は同一図形での凹凸構造整合処理部の処理結果の
例。 第3図は2図形間の凹凸整合処理部において処理を施し
た結果の例である。 1・・・同一図形での凹凸構造整合処理部。 2・・・2図形間の凹凸整合処理部。 第1図 (A) (B) 第3
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. FIG. 2 is an example of the processing results of the concavo-convex structure matching processing unit for the same figure. FIG. 3 is an example of the result of processing performed in the unevenness matching processing section between two figures. 1... Concave and convex structure matching processing unit for the same figure. 2... Concave/convex matching processing section between two figures. Figure 1 (A) (B) 3rd

Claims (1)

【特許請求の範囲】 任意の2つの閉曲線からなる輪郭図形の整合を行なう方
法において、 各々の輪郭図形に対し、異なるスケールσを有するガウ
ス関数との畳み込み演算をσを段階的に増大させながら
実行し、上記輪郭図形を逐次平滑化し、同時に逐次得ら
れた平滑化図形間で凹凸構造の整合をとりσに関する多
重スケールで凹凸構造を階層的に表現する第1の過程と
、 第1の過程により得られた各輪郭図形でのσに関する階
層的な凹凸構造表現において、凹セグメントまたは凸セ
グメントからなる部分輪郭の回転角と周囲長に対する寄
与度とから相違度を求め、該相違度の総和が最小になる
ように各部分輪郭毎に最適なスケールでの凹凸を整合さ
せる第2の過程と を有する ことを特徴とする輪郭図形の整合方法。
[Claims] A method for matching contour figures consisting of two arbitrary closed curves, in which a convolution operation with a Gaussian function having a different scale σ is performed for each contour figure while increasing σ stepwise. and a first process of sequentially smoothing the contour figure and at the same time matching the uneven structure between the sequentially obtained smoothed figures and hierarchically expressing the uneven structure on multiple scales with respect to σ; In the hierarchical uneven structure representation regarding σ in each obtained contour figure, the degree of dissimilarity is calculated from the rotation angle of the partial contour consisting of concave segments or convex segments and the degree of contribution to the perimeter length, and the sum of the degrees of dissimilarity is the minimum. and a second step of matching the unevenness at an optimal scale for each partial contour so that the contour figures match.
JP1125541A 1989-05-18 1989-05-18 Outline figure matching method Expired - Fee Related JP2938887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125541A JP2938887B2 (en) 1989-05-18 1989-05-18 Outline figure matching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125541A JP2938887B2 (en) 1989-05-18 1989-05-18 Outline figure matching method

Publications (2)

Publication Number Publication Date
JPH02302880A true JPH02302880A (en) 1990-12-14
JP2938887B2 JP2938887B2 (en) 1999-08-25

Family

ID=14912752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125541A Expired - Fee Related JP2938887B2 (en) 1989-05-18 1989-05-18 Outline figure matching method

Country Status (1)

Country Link
JP (1) JP2938887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070474A1 (en) * 2010-11-26 2012-05-31 日本電気株式会社 Object or form information expression method
JP2016520897A (en) * 2013-04-01 2016-07-14 アセルサン・エレクトロニク・サナイ・ヴェ・ティジャレット・アノニム・シルケティAselsan Elektronik Sanayi ve Ticaret Anonim Sirketi System and method for describing an image outline

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070474A1 (en) * 2010-11-26 2012-05-31 日本電気株式会社 Object or form information expression method
JPWO2012070474A1 (en) * 2010-11-26 2014-05-19 日本電気株式会社 Information representation method of object or shape
JP5754055B2 (en) * 2010-11-26 2015-07-22 日本電気株式会社 Information representation method of object or shape
US9256802B2 (en) 2010-11-26 2016-02-09 Nec Corporation Object or shape information representation method
JP2016520897A (en) * 2013-04-01 2016-07-14 アセルサン・エレクトロニク・サナイ・ヴェ・ティジャレット・アノニム・シルケティAselsan Elektronik Sanayi ve Ticaret Anonim Sirketi System and method for describing an image outline

Also Published As

Publication number Publication date
JP2938887B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
Neverova et al. Continuous surface embeddings
Li et al. Multiscale Features for Approximate Alignment of Point-based Surfaces.
US8774502B2 (en) Method for image/video segmentation using texture feature
US6424746B1 (en) Figure classifying method, figure classifying system, feature extracting method for figure classification, method for producing table for figure classification, information recording medium, method for evaluating degree of similarity or degree of difference between figures, figure normalizing method, and method for determining correspondence between figures
Cohen et al. Crater detection via convolutional neural networks
Michel et al. Scale invariant and deformation tolerant partial shape matching
JP2013519144A (en) Efficient scale space extraction and description of feature points
JPH06162198A (en) Pattern recognizing device
JP2006523345A (en) Shape matching method for indexing and searching multimedia data
Altantsetseg et al. Pairwise matching of 3D fragments using fast Fourier transform
Lisani et al. On the theory of planar shape
EP0604687B1 (en) Method for deriving character features in a character recognition system
Chang et al. Deformed trademark retrieval based on 2D pseudo-hidden Markov model
JPH02302880A (en) Method for matching outline graphic
Arjun et al. An efficient image retrieval system based on multi-scale shape features
Madhavi et al. A hybrid content based image retrieval system using log-gabor filter banks
Aboudib et al. A model of bottom-up visual attention using cortical magnification
Slater et al. The illumination-invariant matching of deterministic local structure in color images
JP2000215315A (en) Graphic classifying method, graphic retrieving method, graphic classification and retrieval system, and recording medium
Jia et al. A new geometric descriptor for symbols with affine deformations
Ye Quantitative comparisons of edge based and region based feature detection in digital aerial imagery analysis
Verma et al. Wavelet based directional local extrema patterns for image retrieval on large image database
Lange et al. Moment-based pattern representation using shape and grayscale features
Quan et al. On shortened 3D local binary descriptors
JPH0464114B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees