JPH0230262B2 - - Google Patents

Info

Publication number
JPH0230262B2
JPH0230262B2 JP61143983A JP14398386A JPH0230262B2 JP H0230262 B2 JPH0230262 B2 JP H0230262B2 JP 61143983 A JP61143983 A JP 61143983A JP 14398386 A JP14398386 A JP 14398386A JP H0230262 B2 JPH0230262 B2 JP H0230262B2
Authority
JP
Japan
Prior art keywords
cement
methacrylate
oligomer
methyl methacrylate
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61143983A
Other languages
Japanese (ja)
Other versions
JPS625353A (en
Inventor
Fuontaniru Misheru
Chimaaru Miruna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceraver SA
Original Assignee
Ceraver SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceraver SA filed Critical Ceraver SA
Publication of JPS625353A publication Critical patent/JPS625353A/en
Publication of JPH0230262B2 publication Critical patent/JPH0230262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/06Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Prostheses (AREA)

Abstract

A cement for fixing a bone prosthesis, the cement containing: (a) a solid phase comprising firstly polymethylmethacrylate and a copolymer of methyl methacrylate with an acrylate or a methacrylate of another alcohol, both in powder form, and secondly an organic peroxide suitable for generating free radicals; and (b) a liquid phase comprising methyl methacrylate and an accelerator for accelerating decomposition of the organic peroxide. The copolymer is an oligomer, and the liquid phase includes as the accelerator for accelerating decomposition of said organic peroxide an acrylate or a methacrylate carrying a tertiary amine function, and as a cross-linking agent a compound having at least two functions in its molecule suitable for reacting with the reactive functions carried by the polymers of the solid phase, or else a double bond and a function suitable for reacting with the reactive functions carried by the polymers of the solid phase.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は骨用人工補整器具特に関節用内部人工
補整器具を固定するためのセメントに係る。この
セメントは、 (a) ポリメタクリル酸メチルの粉末と、メタクリ
ル酸メチル及び他のアルコールのメタクリル酸
エステルもしくはアクリル酸エステルのコポリ
マーの粉末とを含む一方で、遊離基発生有機過
酸化物を含む固相、並びに (b) メタクリル酸メチルと前記有機過酸化物の分
解促進剤とを含む液相 からなる。 この種のセメントは既に英国特許GB―A―第
1130653号明細書に記載されている。これら先行
技術のセメントは、しかしながら、極めて発熱性
の高い重合反応を起こし、そのため骨内に配置し
た後で凝固中に温度が約90℃に達する。このよう
な温度上昇は周囲の骨組識を変質させ、その結果
配置された人工補整器具の安定性に有害な影響を
及ぼす。これらのセメントはまた、前記有機過酸
化物の分解促進剤として第三アミン又は芳香族ス
ルフイン酸を含むが、これらの物質は生体に対し
て明らかな毒性を示す。 本発明の目的は、重合反応の発熱性がより小さ
く、凝固中の温度が56℃既ちタンパク質凝固温度
より下に維持され、前記有機過酸化物の分解促進
剤がセメントの最終的硬化の後で生体内に移行し
得ず、従つて長期的に見ても重大な有毒効果を及
ぼすことがないような骨用人工補整器具固定セメ
ントを提供することにある。 本発明のセメントは前記固相において前記コポ
リマーがオリゴマーであると共に、前記アルコー
ルが後で前記液相の分子と反応し得る官能基を担
持する脂肪族アルコールであり、且つ前記液相が
セメントを数分で凝固せしめる第三アミン官能基
担持メタクリル酸エステル又はアクリル酸エステ
ルを前記有機過酸化物の分解促進剤として含み、
前記アルコールの前記官能基と反応し得る官能基
を分子中に少なくと2つ有する化合物、又は前記
アルコールの官能基と反応して架橋剤として作用
する多重官能性ポリマーを発生し得る官能基と二
重結合とを分子中に含む化合物を非発熱性緩慢架
橋剤(slow and non―exothermal cross―
linking agent)として含むことを特徴とする。 本発明のセメントは更に好ましくは下記の特徴
を少なくとも1つ有する。 ―前記オリゴマーがメタクリル酸メチルとオキシ
ラン基担持メタクリル酸とのオリゴマー、例え
ばメタクリル酸メチルとメタクリル酸グリシジ
ルとのオリゴマーである。 ―セメントを数分で塊状物(又はバルク)に凝固
せしめる前記有機過酸化物の分解促進剤が構造
式: のメタクリル酸メチルアニリルグリシジルであ
る。 ―液相1重量部に対して約3重量部の固相を含
む。 以下に本発明のセメント組成物の非限定的一具
体例を示す。 固相の組成: ポリメタクリル酸メチル粉末 24g メタクリル酸メチルとメタクリル酸グリシジルと
のコポリマーの粉末(平均モル質量1000―5000
g/モルのオリゴマー) 12g 過酸化ベンゾイル 0.3g 36.3g 液相の組成: メタクリル酸メチル 10.9g メタクリル酸(非発熱性緩慢架橋剤) 1.03g メタクリル酸メチルアニリルグリシジル 0.8g 12.73g 固相/液相の重量比は約3である。 非発熱性緩慢架橋剤としてのメタクリル酸の質
量Zは次の一般式に基づいて決定される。 ここで、 mはコポリマー(この場合には、メタクリル酸
メチルとメタクリル酸グリジシルとのコポリマ
ー)の質量、 は前記コポリマーの平均官能性(既ち、コポ
リマー鎖1個当たりの反応基の平均数)、 は前記コポリマーの平均モル質量、 M′は液相に導入される反応分子(この場合に
は、メタクリル酸)のモル質量、既ち86g/モ
ル、 f′は前記反応分子の官能性(この場合には、
f′=1)である。 過酸化ベンゾイルの質量及びメタクリル酸メチ
ルアニリルグリシジルの質量は所望の硬化時間が
得られるように調整する。重合反応時間は約12分
である。 固相にはX線乳白剤(特に二酸化ジルコニウ
ム)のごとき充填剤を添加し得、液相には他のモ
ノマー(例えばメタクリル酸ブチル又はメタクリ
ル酸イソブチル)及び安定剤を添加し得る。 塊状物へのセメントの硬化は、液相と固相との
混合後の2つの異なる反応に対応する2つの連続
ステツプを介して生起する。固相の割合が高いに
も拘らず、塊状物への硬化前の前記混合物の粘度
は公知のセメントの粘度以下である。 第1ステツプは短時間で行なわれ、急速な塊状
物への硬化と人工補整器具の固定とに係り、第2
ステツプはより長時間にわたる、セメントの強化
に係る。 (1) ラジカル重合ステツプ 存在するアクリル酸系モノマー、即ちメタク
リル酸メチル、メタクリル酸及びメタクリル酸
メチルアニリルグリシジルのラジカル重合によ
つて先ず塊状物への硬化が生起する。 この重合反応を開始させる遊離基は過酸化ベ
ンゾイルとメタクリル酸メチルアニリルグリシ
ジルとの反応によつて発生する。これらの遊離
基はメタクリル酸メチルのラジカル重合反応及
びメタクリル酸のラジカル重合反応を緩慢に生
起せしめるが、それらは二重結合を有する分子
即ちメタクリル酸メチルアニリルグリシジル分
子を形成中の高分子鎖に導入する機能も果た
す。従つて、メタクリル酸メチルアニリルグリ
シジルはプライマー即ち過酸化ベンゾイルの分
解促進剤の役割とモノマーの役割とを同時に果
たすことになる。 次いでポリメタクリル酸メチルの粉末の部分
的溶解と、メタクリル酸メチル及びメタクリル
酸グリシジルのコポリマーの粉末の部分的溶解
とによつてポリマー鎖の生長反応が促進され
る。 粘度の増加によるこのような硬化促進作用
(ゲル効果)は公知のセメントでも見られる。
重合反応は速度を増し、且つ二重結合の開裂が
発熱反応であることから少なからぬ量の熱放出
が生じる。 公知のセメントでは放射された熱の一部がポ
リメタクリル酸メチル粉末に吸収される。本発
明のセメントはこの粉末の他に、やはり放出熱
の一部を吸収するコポリマーをかなり大量に含
む。オリゴマー(メタクリル酸メチル―メタク
リル酸グリシジル)はモル質量が小さいため、
(粘度を変えずに)液体メタクリル酸メチルの
割合を減少させることができ、従つて熱放出の
割合を低下させることができる。 メタクリル酸メチルアニリルグリシジルの代
わりにジメチル―パラ―トルイジンを重合反応
触媒として含み、且つメタクリル酸メチルとメ
タクリル酸グリシジルとのコポリマーは含まな
い混合物と、前述のごとき混合物とに関しては
同一条件下で熱量測定テストを行なつた結果、
最大温度は前者の場合が80℃〜90℃、後者の場
合が55℃であつた。55℃はタンパク質の凝固温
度(56℃)より低く、従つてセメント配置ゾー
ンの近傍の骨組織を変性させる危険がはるかに
小さい。 ジメチル―パラ―トルジンのごとき比較的有
毒な第三アミンに代えて、同様の促進剤の役割
も果たすが主要モノマーと共にコポリマーも形
成するような化合物を使用するため、前記分子
に起因する長期の毒性が極めて低下する。 (2) 三次元網状構造の形成 ラジカル重合反応の終了時には、セメントは
既に硬化しているが、このセメントは三次元網
状構造を形成せしめる反応性官能基を担持する
鎖を含んでいる。このような網状構造の形成速
度はラジカルステツプの重合速度より遅い。こ
の速度では前記構造の安定化に約1週間の時間
が必要である。 この場合、セメント媒質中には、第1ステツ
プでラジカル重合反応により形成された鎖と、
固相中に供給されたメタクリル酸メチル及びメ
タクリル酸グリシジルのランダムコポリマーの
オリゴマー鎖とが存在する。 前者の鎖は式: で示され得、数個のカルボキシル官能基が鎖に
沿つてランダムに分布されている。これらの鎖
の構造単位は主としてメタクリル酸メチルユニ
ツトと、数個のメタクリル酸メチルアニリルグ
リシジルユニツトと、数個のメタクリル酸ユニ
ツトとを含む。 後者の鎖は次式で示し得る。 カルボン酸官能基とオキシラン官能基はセメ
ントのバルク内部で反応し、オキシラン環を開
裂してヒドロキシルを形成する。このようにし
て2つの別個の鎖が共有結合により互いに結合
される。この種の網状構造の形成はセメントの
バルク内部で進行し、約1週間後には本格的な
架橋網状体となり、その結果セメントが強化さ
れてクリープが阻止される。セメントは最終的
にポリメタクリル酸メチルの線状鎖が半分挿入
された状態の網状構造を有することになる。 このようにして形成されたセメントは公知の
セメントと同じくらい良い機械的特性を示し、
混和性も固相の割合が高いのにも拘らず同じく
らい良い。 しかもこのセメントは公知のものと異なり、
硬化時の過度な発熱性と有機過酸化物の分解促
進剤に起因する毒性とを示すことはない。 本発明のセメントを人工補整器具内に配置す
る場合は、例えば固相及び液相を2〜3分混合
し、この混合物を5〜6分放置し、約7〜8分
後に手で又は注入器を用いて骨の中に導入す
る。 前述のセメント組成物は本発明を実施する上
で好ましい処方であると思われるが、この組成
物の成分の一部を他の同等の作用を持つ成分と
置き換えてもよく、又はセメントに要求される
順応性を得るための時間に応じて成分の割合、
特に過酸化物及びメタクリル酸メチルアニリル
グリシジルの割合をある程度変えてもよい。 また、本発明のセメントの処方として、下記
のごとき他のオリゴマー/反応分子(非発熱性
緩慢架橋剤)の組合わせを使用することもでき
る。
The present invention relates to a cement for fixing endoprosthetic devices for bones, particularly endoprosthetic devices for joints. The cement comprises: (a) a powder of polymethyl methacrylate and a powder of a copolymer of methacrylic or acrylic esters of methyl methacrylate and other alcohols; and (b) a liquid phase containing methyl methacrylate and a decomposition accelerator for the organic peroxide. This type of cement has already been covered by the British patent GB-A-No.
It is described in the specification of No. 1130653. These prior art cements, however, undergo highly exothermic polymerization reactions such that temperatures reach approximately 90° C. during solidification after placement in bone. Such temperature increases alter the surrounding bone structure and thus have a detrimental effect on the stability of the placed prosthetic device. These cements also contain tertiary amines or aromatic sulfinic acids as decomposition accelerators for the organic peroxide, but these substances exhibit obvious toxicity to living organisms. The object of the present invention is that the polymerization reaction is less exothermic, the temperature during coagulation is maintained at 56 °C below the protein coagulation temperature, and the organic peroxide decomposition accelerator is used after the final hardening of the cement. The object of the present invention is to provide a bone prosthesis fixing cement that cannot migrate into living organisms and therefore does not have any serious toxic effects even in the long term. In the cement of the present invention, in the solid phase, the copolymer is an oligomer, the alcohol is an aliphatic alcohol carrying a functional group that can later react with molecules in the liquid phase, and the liquid phase contains a number of cement molecules. a tertiary amine functional group-supported methacrylic ester or acrylic ester that solidifies in minutes as a decomposition accelerator for the organic peroxide;
A compound having at least two functional groups in its molecule that can react with the functional group of the alcohol, or a compound that has at least two functional groups that can react with the functional group of the alcohol to generate a multifunctional polymer that acts as a crosslinking agent. Compounds containing heavy bonds in their molecules are used as slow and non-exothermal cross-linking agents.
linking agent). The cement of the present invention further preferably has at least one of the following characteristics. - The oligomer is an oligomer of methyl methacrylate and oxirane group-supported methacrylic acid, such as an oligomer of methyl methacrylate and glycidyl methacrylate. - The organic peroxide decomposition accelerator that solidifies cement into lumps (or bulk) in a few minutes has the structural formula: is methylanilylglycidyl methacrylate. - Contains about 3 parts by weight of solid phase per 1 part by weight of liquid phase. A non-limiting specific example of the cement composition of the present invention is shown below. Composition of solid phase: Polymethyl methacrylate powder 24g Copolymer powder of methyl methacrylate and glycidyl methacrylate (average molar mass 1000-5000
g/mol oligomer) 12 g Benzoyl peroxide 0.3 g 36.3 g Liquid phase composition: Methyl methacrylate 10.9 g Methacrylic acid (non-exothermic slow crosslinking agent) 1.03 g Methylanilylglycidyl methacrylate 0.8 g 12.73 g Solid phase/liquid The phase weight ratio is approximately 3. The mass Z of methacrylic acid as a non-pyrogenic slow crosslinking agent is determined based on the following general formula. where m is the mass of the copolymer (in this case a copolymer of methyl methacrylate and glycicyl methacrylate), is the average functionality of said copolymer (i.e. the average number of reactive groups per copolymer chain), is the average molar mass of said copolymer, M′ is the molar mass of the reactant molecule introduced into the liquid phase (methacrylic acid in this case), already 86 g/mol, f′ is the functionality of said reactant molecule (in this case for,
f′=1). The mass of benzoyl peroxide and the mass of methylanilylglycidyl methacrylate are adjusted to obtain the desired curing time. The polymerization reaction time is about 12 minutes. Fillers such as X-ray opacifiers (in particular zirconium dioxide) may be added to the solid phase, and other monomers (eg butyl methacrylate or isobutyl methacrylate) and stabilizers may be added to the liquid phase. The hardening of the cement into a mass occurs through two successive steps corresponding to two different reactions after mixing the liquid and solid phases. Despite the high proportion of solid phase, the viscosity of the mixture before hardening into a mass is below that of known cements. The first step is short and involves rapid curing into a mass and fixation of the prosthetic device;
The steps involve strengthening the cement over a longer period of time. (1) Radical Polymerization Step Hardening into a mass first occurs by radical polymerization of the acrylic acid monomers present, namely methyl methacrylate, methacrylic acid and methylanilylglycidyl methacrylate. The free radicals that initiate this polymerization reaction are generated by the reaction of benzoyl peroxide with methylanilylglycidyl methacrylate. These free radicals cause the radical polymerization reactions of methyl methacrylate and methacrylic acid to occur slowly, but they do not affect the polymer chains forming molecules with double bonds, that is, methylanilylglycidyl methacrylate molecules. It also performs the function of introducing. Therefore, methylanilylglycidyl methacrylate plays the role of a primer, that is, a decomposition accelerator for benzoyl peroxide, and the role of a monomer. The polymer chain growth reaction is then promoted by partial dissolution of the polymethyl methacrylate powder and partial dissolution of the copolymer powder of methyl methacrylate and glycidyl methacrylate. Such a hardening accelerating effect (gel effect) due to an increase in viscosity is also seen in known cements.
The polymerization reaction increases in rate and, since double bond cleavage is an exothermic reaction, a considerable amount of heat is released. In known cements, a portion of the radiated heat is absorbed by the polymethyl methacrylate powder. In addition to this powder, the cement according to the invention contains considerable amounts of copolymers, which also absorb a portion of the released heat. Oligomer (methyl methacrylate-glycidyl methacrylate) has a small molar mass, so
The proportion of liquid methyl methacrylate can be reduced (without changing the viscosity) and thus the rate of heat release can be reduced. A mixture containing dimethyl-para-toluidine as a polymerization reaction catalyst instead of methylanilylglycidyl methacrylate, but not containing a copolymer of methyl methacrylate and glycidyl methacrylate, and a mixture as described above have a calorific value under the same conditions. As a result of the measurement test,
The maximum temperature was 80°C to 90°C in the former case and 55°C in the latter case. 55°C is lower than the coagulation temperature of proteins (56°C) and therefore there is much less risk of degenerating bone tissue in the vicinity of the cement placement zone. Instead of relatively toxic tertiary amines, such as dimethyl-para-toludine, we use compounds that also act as accelerators, but also form copolymers with the main monomer, thereby reducing the long-term toxicity caused by these molecules. becomes extremely low. (2) Formation of a three-dimensional network structure At the end of the radical polymerization reaction, the cement has already hardened, but this cement contains chains carrying reactive functional groups that form a three-dimensional network structure. The rate of formation of such a network is slower than the rate of polymerization of radical steps. At this rate, approximately one week is required for the structure to stabilize. In this case, the cement medium contains the chains formed by the radical polymerization reaction in the first step,
There are oligomeric chains of random copolymers of methyl methacrylate and glycidyl methacrylate provided in the solid phase. The former chain has the formula: , with several carboxyl functional groups randomly distributed along the chain. The structural units of these chains mainly include methyl methacrylate units, some methylanilylglycidyl methacrylate units, and some methacrylic acid units. The latter chain can be represented by the formula: The carboxylic acid and oxirane functional groups react within the bulk of the cement to cleave the oxirane ring and form a hydroxyl. In this way two separate chains are covalently linked to each other. The formation of this type of network proceeds within the bulk of the cement, and after about a week it becomes a fully-fledged crosslinked network, which strengthens the cement and inhibits creep. The cement will ultimately have a network structure with half-inserted linear chains of polymethyl methacrylate. The cement thus formed exhibits mechanical properties as good as known cements,
Miscibility is equally good despite the high proportion of solid phase. Moreover, this cement is different from known ones,
It does not exhibit excessive heat generation during curing or toxicity due to organic peroxide decomposition accelerators. If the cement of the invention is to be placed in an artificial prosthetic device, for example, the solid and liquid phases may be mixed for 2 to 3 minutes, this mixture is allowed to stand for 5 to 6 minutes, and after about 7 to 8 minutes, the cement can be placed manually or with a syringe. is used to introduce it into the bone. Although the cement composition described above is believed to be the preferred formulation for practicing the invention, some of the components of this composition may be replaced with other equally acting components, or the cement composition may be modified as required by the cement. proportion of ingredients, depending on the time to obtain adaptability.
In particular, the proportions of peroxide and methylanilylglycidyl methacrylate may be varied to some extent. Other oligomer/reactive molecule (non-pyrogenic slow crosslinking agents) combinations can also be used in the formulation of the cement of the present invention, such as those described below.

【表】【table】

【表】 プを阻害
しない、分子内に夫々2個以上の第一アミン
又は第二
アミン官能基を含む第一又は第二マルチアミ


メタクリル酸メチル―メタクリル酸グリシジル
コポリマー中のメタクリル酸グリシジルの割合を
変えることによつて前記網状構造の密度を変化さ
せてもよい。 コポリマーにガラス転移温度を低下させるよう
な第3のモノマーユニツト、例えばアクリル酸エ
チル、アクリル酸ブチル、アクリル酸エチル―2
―ヘキシル、メタクリル酸―n―ブチル、メタク
リル酸イソブチル、メタクリル酸グリシジル、ア
クリル酸、メタクリル酸又はビスフエノールAの
ジグリシジルエーテルを導入することによつてコ
ポリマーの可撓性を変えることもできる。
[Table] Two or more primary amines in each molecule that do not inhibit
or a primary or secondary multi-amino acid containing a secondary amine functionality.
hmm

The density of the network may be varied by varying the proportion of glycidyl methacrylate in the methyl methacrylate-glycidyl methacrylate copolymer. A third monomer unit that lowers the glass transition temperature of the copolymer, such as ethyl acrylate, butyl acrylate, ethyl acrylate-2
It is also possible to change the flexibility of the copolymer by introducing diglycidyl ethers of -hexyl, n-butyl methacrylate, isobutyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid or bisphenol A.

Claims (1)

【特許請求の範囲】 1 骨用人工補整器具、特に関節用内部人工補整
器具を固定するためのセメントであつて、 (a) ポリメタクリル酸メチルの粉末と、メタクリ
ル酸メチル及び他のアルコールのメタクリル酸
エステルもしくはアクリル酸エステルのコポリ
マーの粉末とを含む一方で、遊離基発生有機過
酸化物をも含む固相、並びに (b) メタクリル酸メチルと前記有機過酸化物の分
解促進剤とを含む液相 からなり、前記固相において前記コポリマーがオ
リゴマーであると共に、前記アルコールが後で前
記液相の分子と反応し得る官能基を担持する脂肪
族アルコールであり、且つ前記液相がセメントを
数分で塊に凝固せしめる第三アミン官能基担持メ
タクリル酸エステル又はアクリル酸エステルを前
記有機過酸化物の分解促進剤として含むと共に、
前記アルコールの前記官能基と反応し得る官能基
を分子中に少なくとも2つ有する化合物、又は前
記アルコールの官能基と反応して架橋剤として作
用する多官能性ポリマーを発生させ得る官能基と
二重結合とを分子中に含む化合物を非発熱性緩慢
架橋剤として含むことを特徴とするセメント。 2 前記オリゴマーがメタクリル酸メチルとオキ
シラン官能基担持メタクリル酸エステルとのオリ
ゴマーであることを特徴とする特許請求の範囲第
1項に記載のセメント。 3 前記オリゴマーがメタクリル酸メチルとメタ
クリル酸グリシジルとのオリゴマーであることを
特徴とする特許請求の範囲第2項に記載のセメン
ト。 4 セメントを数分で塊に凝固せしめる前記有機
過酸化物の分解促進剤が、構造式: のメタクリル酸メチルアニリルグリシジルである
ことを特徴とする特許請求の範囲第1項から第3
項のいずれか一項に記載のセメント。 5 液相1重量部に対して約3重量部の固相を含
むことを特徴とする特許請求の範囲第1項から第
4項のいずれか一項に記載のセメント。
[Scope of Claims] 1. A cement for fixing bone prosthesis devices, especially endoprosthesis devices for joints, which comprises: (a) powder of polymethyl methacrylate and methacrylic acid of methyl methacrylate and other alcohols; (b) a liquid comprising methyl methacrylate and a decomposition promoter for the organic peroxide; phase, in the solid phase the copolymer is an oligomer, the alcohol is an aliphatic alcohol carrying a functional group that can later react with molecules of the liquid phase, and the liquid phase separates the cement for several minutes. a tertiary amine functional group-supported methacrylic ester or acrylic ester that is coagulated into a lump as a decomposition accelerator for the organic peroxide;
A compound having at least two functional groups in its molecule that can react with the functional group of the alcohol, or a compound that has a functional group that can react with the functional group of the alcohol to generate a polyfunctional polymer that acts as a crosslinking agent. A cement characterized in that it contains a compound containing a bond in its molecule as a non-pyrogenic slow crosslinking agent. 2. The cement according to claim 1, wherein the oligomer is an oligomer of methyl methacrylate and methacrylic ester carrying an oxirane functional group. 3. The cement according to claim 2, wherein the oligomer is an oligomer of methyl methacrylate and glycidyl methacrylate. 4 The organic peroxide decomposition accelerator that solidifies cement into a lump in a few minutes has the structural formula: Claims 1 to 3 are methylanilylglycidyl methacrylate.
Cement as described in any one of paragraphs. 5. The cement according to any one of claims 1 to 4, comprising about 3 parts by weight of solid phase per 1 part by weight of liquid phase.
JP61143983A 1985-06-20 1986-06-19 Cement for fixing artificial prosthetic device for bone Granted JPS625353A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8509397 1985-06-20
FR8509397 1985-06-20

Publications (2)

Publication Number Publication Date
JPS625353A JPS625353A (en) 1987-01-12
JPH0230262B2 true JPH0230262B2 (en) 1990-07-05

Family

ID=9320476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61143983A Granted JPS625353A (en) 1985-06-20 1986-06-19 Cement for fixing artificial prosthetic device for bone

Country Status (6)

Country Link
US (1) US4782118A (en)
EP (1) EP0208172B1 (en)
JP (1) JPS625353A (en)
AT (1) ATE50503T1 (en)
CA (1) CA1268575A (en)
DE (1) DE3669108D1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406390B1 (en) * 1989-01-20 1994-04-13 Schumann, Klaus, Prof. Dr. med. Surgical needle and process for obtaining it
GB9100097D0 (en) * 1991-01-04 1991-02-20 Sec Dep For Health The Biocompatible mouldable polymeric material
JPH04276665A (en) * 1991-03-04 1992-10-01 Canon Inc Integrated solar battery
US5753182A (en) * 1996-02-14 1998-05-19 Biomet, Inc. Method for reducing the number of free radicals present in ultrahigh molecular weight polyethylene orthopedic components
US7008433B2 (en) 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
FR2838334B1 (en) * 2002-04-16 2006-05-26 Polymerexpert Sa NON-TOXIC RADICAL POLYMERIZATION ACTIVATOR FOR BONE OR DENTAL CEMENT
DE60335037D1 (en) 2003-03-14 2010-12-30 Depuy Spine Inc HYDRAULIC DEVICE FOR BONE CEMENT INJECTION IN PERCUTANEOUS VERTEBROPLASTY
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
US8415407B2 (en) 2004-03-21 2013-04-09 Depuy Spine, Inc. Methods, materials, and apparatus for treating bone and other tissue
WO2006011152A2 (en) 2004-06-17 2006-02-02 Disc-O-Tech Medical Technologies, Ltd. Methods for treating bone and other tissue
US8579908B2 (en) 2003-09-26 2013-11-12 DePuy Synthes Products, LLC. Device for delivering viscous material
DE102005033210B4 (en) * 2005-06-22 2008-04-30 Heraeus Kulzer Gmbh Polymethylmethacrylate bone cement
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
US8360629B2 (en) 2005-11-22 2013-01-29 Depuy Spine, Inc. Mixing apparatus having central and planetary mixing elements
DE102006006510A1 (en) * 2006-02-10 2007-08-23 Heraeus Kulzer Gmbh Local drug delivery system and a method for its production
EP2068898A4 (en) 2006-09-14 2011-07-20 Depuy Spine Inc Bone cement and methods of use thereof
WO2008047371A2 (en) 2006-10-19 2008-04-24 Depuy Spine, Inc. Fluid delivery system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3200142A (en) * 1963-02-01 1965-08-10 Rafael L Bowen Surface-active comonomer and method of preparation
US3810859A (en) * 1970-07-22 1974-05-14 Goodrich Co B F Thickenable alkyl acrylate latices
US4228062A (en) * 1978-05-02 1980-10-14 Lee Pharmaceuticals Rapid setting high bond strength adhesive
US4404327A (en) * 1979-10-31 1983-09-13 Crugnola Aldo M Orthopaedic cement from acrylate polymers
US4284551A (en) * 1979-11-30 1981-08-18 American Dental Association Health Foundation Tertiary aromatic amine accelerators derived from para-aminophenethanol
DE3314977A1 (en) * 1983-04-26 1984-10-31 ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld USE OF DIFUNCTIONAL ACRYLIC ACID AND METHACRYLIC ACID ESTERS FOR THE PRODUCTION OF CURABLE BONE CEMENTS

Also Published As

Publication number Publication date
EP0208172A1 (en) 1987-01-14
CA1268575A (en) 1990-05-01
ATE50503T1 (en) 1990-03-15
EP0208172B1 (en) 1990-02-28
US4782118A (en) 1988-11-01
DE3669108D1 (en) 1990-04-05
JPS625353A (en) 1987-01-12

Similar Documents

Publication Publication Date Title
JPH0230262B2 (en)
EP0777503B1 (en) Radiopaque polymers and methods for preparation thereof
JP3481762B2 (en) Poly (alkylene diglycolate) s, copolymers, blends, their production methods and medical devices using them
US4588583A (en) Surgical material
JP3168007B2 (en) How to use biomaterials for tissue repair
US5847046A (en) Biodegradable bone cement
US5320886A (en) Hydrophilic crosslinking monomers and polymers made therefrom
US4490497A (en) Compositions for surgical cement, based on at least one acrylic monomer and at least one acrylic polymer
JPS6251629B2 (en)
Kharas et al. Synthesis and characterization of fumarate‐based polyesters for use in bioresorbable bone cement composites
CN104922733B (en) Injectable expansion type bone cement and preparation method thereof
JPH0520107B2 (en)
JP2009522001A (en) Photocurable bone growth material for treating dental bone defects
JP2001503290A (en) PROCESS FOR PRODUCING BONE CEMENT CONTAINING ACTIVE COMPOUND
US4626310A (en) Surgical adhesive systems for hard body tissues
Peter et al. Poly (propylene fumarate)
JPS58147476A (en) Surgical adhesive for adhering vital hard tissue and synthetic resin and/or metal
JP2751938B2 (en) Bone cement composition and hardened body
RU2128523C1 (en) Polymer composition for producing surgical cement
Gresser et al. Bone cement, Part 1: Biopolymer for avulsive maxillofacial repair
HUT64866A (en) Cement compositions
Fan et al. Synthesis and characterization of novel radiopaque polycarbonate
RU2195320C2 (en) Polymer composition for surgical bone cement
Gresser et al. Bone Cement, Part 1
CN112843333B (en) Composition for forming bone cement, method for preparing same, and bone cement